
Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Chapter 7
Sorting Algorithms

Data Structures

COMPUTER SCIENCE DEPARTMENT FACULTY

OF ENGINEERING AND TECHNOLOGY

COMP2321

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

• Sorting is a process of arranging a collection of data items into
either ascending or descending order.

• Suppose that we want to search for

• particular record in a database

• telephone number in telephone directory

• TV channel in a list of more than 2000 channels.

• Majority of programming projects use a sort somewhere, and in
many cases, the sorting cost determines the running time.

• Sorting arranges data in a sequence which makes searching
easier.

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

• Merge Sort
• Quick Sort
• insertion sort
• Shell sort
• External Sort

• Selection
• Bubble
• Radix/Bucket
• Heap Sort

Sort Algorithms

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Technique

Comparative

Non-
Comparative

Stability

Stable

Un-Stable

Space

In-place

Out-place

Accept New
Data

Offline

Online

Locality

Internal sort

External sort

Sorting Algorithms

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Sorting Algorithms
• Types regard to the main technique:

• Comparison-based: the elements are compared with each
other to construct the sorted array.
• E.g. Bubble, Selection, Quick.

• Non Comparison-based: the elements are not compared
with each other to construct the sorted array.
• E.g. Radix, Count.

• Types regard to the memory used:

• In-place: the algorithm does not use any extra memory to
sort the array. E.g. Bubble, selection.

• Out-place: the algorithm uses any extra memory to sort the
array. E.g. Merge, Radix

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

• Online/Offline technique:

• Online: the algorithm can accept new data while the
algorithm is running, i.e. complete data is not required to
start the sorting operation.

• Insertion Sort is one of the rare algorithm which satisfies this
property.

• Insertion sort processes the array from left to right and if new
elements are added to the right, it doesn’t impact the
ongoing operation.

• Most algorithms are offline.

Sorting Algorithms

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

• Types regard to the order of elements:

• Stable: if the algorithm does not change the order of elements
with the same value.
• if there are two items F and S with the same key values, and F appear

before S in the original list. Then F must appear before S in the sorted list.

• Unstable: if the algorithm may change the order of elements
with the same value.

• For example, consider the array 4, 4, 1, 3.  4’, 4”, 1, 3.
• Stable : 1, 3, 4’, 4”.

• Unstable: 1, 3, 4”, 4’.

• Bubble sort, insertion sort and merge sort are stable algorithms.

• Selection sort is unstable.

Sorting Algorithms

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Sorting Algorithms

• An internal sort requires that the collection of data fit entirely
in the computer’s main memory.

• An external sort is used when the collection of data cannot fit
in the computer’s main memory all at once, but must reside in
secondary storage such as on a disk.

• The external merge sort is a popular example for external
sorting.

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

1- Merge Sort

• Divide and conquer algorithm

• The basic idea behind merge sort is this: it tends to
be a lot easier to sort two smaller, sorted lists
rather than sorting a single large, unsorted one.

• It’s useful when data set is huge (in Gbytes)
and memory is low (in Mega bytes)

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Example 1

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Example 2

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Merge Sort Algorithm
/* low is for left index and high is right index of the sub-array of

array to be sorted */

void mergeSort(int low, int high)

{

if (low < high)

{

int mid = (low +high)/2;

// Sort first and second halves

mergeSort(low, mid);

mergeSort(mid +1, high);

merge(low, mid, high);

}

}
Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Merge Sort : Time Complixity

/* low is for left index and high is right

index of the sub-array of array to be

sorted */

void mergeSort(int low, int high)

{

if (low < high)

{

int mid = (low +high)/2;

// Sort first and second halves

mergeSort(low, mid);

mergeSort(mid +1, high);

merge(low, mid, high);

}

}

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

void merge(int low, int mid, int high)
{

int i, j, k;
i=low; //for Another Array copied
j=low;
k=mid+1;

while (j < =mid && k < =high)
{

if (A[j] <= A[k])
{

B[i] = A[j];
j++;

}
else
{

B[i] = A[k];
k++;

}
i++;

}

if(j < =mid) // copy all remines elements to Array
{

for(k=j; k<=mid;k++, i++)
B[i] = A[k];

}
else{ // copy all remines elements to Array

for(j=k; j<=high;j++,i++)
B[i] = A[j];

}
}

/* Copy the remaining elements of B[], back to A[]*/
for(i=low; j<=high; i++)

A[i] = B[i];
}

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Merge Sort Properties

• Time complexity:

• Best : O(n log n)

• Average: O(n log n)

• Worst: O(n log n)

• Stable or un-stable?

• Stable

• Comparative or Non-Comparative?

• Comparative

• In-place or out-place?

• Out-place

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

2- Insertion Sort
• Insertion sort is a simple sorting algorithm that is appropriate for
small inputs.

• Most common sorting technique used by card players.
• The list is divided into two parts:

sorted and unsorted.
• In each pass, the first element of the unsorted part is picked up,
transferred to the sorted sublist, and inserted at the appropriate
place.
• A list of n elements will take at most n-1 passes to sort the data.

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Insertion Sort

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Insertion Sort

• Sorted | Unsorted

50 10 30 60 80 40

50 10 30 60 80 40

50 10 30 60 80 40

50 10 30 60 80 40

10 50 30 60 80 40

50 10 30 60 80 40

50 10 30 60 80 40

10 50 30 60 80 40

10 30 50 60 80 40

50 10 30 60 80 40

50 10 30 60 80 40

10 50 30 60 80 40

10 30 50 60 80 40

10 30 50 60 80 40

50 10 30 60 80 40

50 10 30 60 80 40

10 50 30 60 80 40

10 30 50 60 80 40

10 30 50 60 80 40

10 30 50 60 80 40

50 10 30 60 80 40

50 10 30 60 80 40

10 50 30 60 80 40

10 30 50 60 80 40

10 30 50 60 80 40

10 30 50 60 80 40

10 30 40 50 60 80

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Insertion Sort: code

• void insertionSort(float a[], int n)
{

for (int i = 1; i < n; i++) {
float tmp = a[i];
for (int j=i; j>0 && tmp <

a[j-1]; j--)
a[j] = a[j-1];

a[j] = tmp;
}

}

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Insertion Sort-Analysis
• Running time depends on not only the size of the array

but also the contents of the array.

• Best-case:
– Array is already sorted in ascending order.
– Inner loop will not be executed.
– The number of moves: 2*(n-1)  O(n)
– The number of key comparisons: (n-1)  O(n)

• Best-case: O(n)

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Insertion Sort-Analysis
• Worst-case:

• – Array is in reverse order:
– Inner loop is executed i-1 times, for i = 2,3, …, n
– The number of moves: 2*(n-1)+(1+2+...+n-1)= 2*(n-1)+
n*(n-1)/2  O(n2)
– The number of key comparisons: (1+2+...+n-1)= n*(n-
1)/2  O(n2)

• Worst-case: O(n2)

• Average-case: O(n2)
– We have to look at all possible initial data
organizations.

• Insertion Sort Best : O(n), Average: O(n2), Worst:
O(n2)

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Insertion Sort Properties

• Time complexity: Best : O(n), Average: O(n2),
Worst: O(n2)

• Stable or un-stable?

• Stable

• Comparative or Non-Comparative?

• Comparative

• In-place or out-place?

• In-place

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

QuickSort

Like Merge Sort, QuickSort is a Divide and

Conquer algorithm. It picks an element as pivot

and partitions the given array around the picked

pivot. There are many different versions of
quickSort that pick pivot in different ways.

• Always pick first element as pivot.

• Always pick last element as pivot

• Pick a random element as pivot.

• Pick median as pivot.

Instructor: Murad Njoum
Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.
Instructor: Murad Njoum

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Quick Sort

Instructor: Murad Njoum
Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.
Instructor: Murad Njoum

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.
Instructor: Murad Njoum

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.
Instructor: Murad Njoum

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.
Instructor: Murad Njoum

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.
Instructor: Murad Njoum

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.
Instructor: Murad Njoum

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Instructor: Murad Njoum

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

For instance, with input 8, 1, 4, 9, 6, 3, 5, 2, 7, 0 the left element is 8, the right

element is 0, and the center (in position (left + right)/2)

element is 6. Thus, the pivot would be v = 6.

Median of :

8, 1, 4, 9, 6, 3, 5, 2, 7,

0
center = (left + right)/2)

=[0+9]/2=4 , median

is

Is left(8) > center (6) , swap

them6, 1, 4, 9, 8, 3, 5, 2, 7, 0

Is left(6) > right (0) , swap them

0, 1, 4, 9, 8, 3, 5, 2, 7, 6

Is center(8) > right (6) , swap them

0, 1, 4, 9, 6, 3, 5, 2, 7, 8

0, 1, 4, 9, 8, 3, 5, 2, 7, 6

A[p ... r]

1st swap

2nd swap

left rightcenter

3rd swap

left rightcenter

Last swap

Result

ji

8 1 4 9 6 3 5 2 7 0

8 1 4 9 6 3 5 2 7 0

6 1 4 9 8 3 5 2 7 0

0 1 4 9 8 3 5 2 7 6

0 1 4 9 6 3 5 2 7 8

0 1 4 9 7 3 5 2 6 8

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

void Q_sort(int A[], int left, int right)
{
int i, j, pivot;
if (left < right)
{
pivot = median3(A, left, right);
i = left;
j = right -1;

for(;;) //while(i<j) omit else, break
{

while(A[i] < pivot){++i;}
while(A[j] > pivot){--j;}

if (i < j)
exchange (A, i , j);
else
break;
}
exchange(A, i, right – 1); //swap occur between i and pivot

Instructor: Murad Njoum
Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

int median3(int A[], int left, int right)
{

int center = (left + right)/2;
if (A[left] > A[center])

exchange(A, left, center);
if (A[left] > A[right])

exchange(A, left, right);
if (A[center] > A[right])

exchange(A, center, right); //rearrange
elements

exchange(A, center, right – 1); //swap median
pivat with most right elements in array
return A[right – 1]; //return the pivot
}

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Time taken by QuickSort in general can be written as following.

T(n) = T(k) + T(n-k-1) + (n)

The first two terms are for two recursive calls, the last term is for

the partition process.

k is the number of elements which are smaller than pivot.

The time taken by QuickSort depends upon the input array and

partition strategy.

Following are three cases.

Worst Case: The worst case occurs when the partition process

always picks

greatest or smallest element as pivot. If we consider above

partition strategy

where last element is always picked as pivot, the worst case would

occur when the array

is already sorted in increasing or decreasing order. Following is

recurrence for worst case.
T(n) = T(0) + T(n-1) +(n) which is equivalent to T(n) =
T(n-1) + (n)

The solution of above recurrence is O(n2).

Best Case: The best case occurs when the partition process

always picks the middle element as pivot. Following is recurrence

for best case.

T(n) = 2T(n/2) + (n)
Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Shell Sort

Shell Sort is mainly a variation of Insertion Sort.

In insertion sort, we move elements only one position

ahead. When an element has to be moved far ahead, many

movements are involved.

The idea of shell Sort is to allow exchange of far items.

In shellSort, we make the array h-sorted for a large value of

h.

We keep reducing the value of h until it becomes 1. An array

is said to be h-sorted if all sublists of every h’th element is

sorted.

Uploaded By: anonymousSTUDENTS-HUB.com

http://en.wikipedia.org/wiki/Shellsort
http://quiz.geeksforgeeks.org/insertion-sort/

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

15 19 23 29 31 7 9 5 2

Shell Sort:
Solution in class At

board

23 29 15 19 31 7 9 5 2

Suppose we have an array

like this

It’s case of insertion

sort ?

How many shifts we need to move 7 to

correct postion? 5 shifts

What if we move 7 to first position in just

one movement.

This is called

shell techniques:

We use distincit elemenst, not near

elements

efficenciy of algoritm depends on

gap

gap =5 ,3,1, it could be any

gap,

we use gap=n/2

23 29 15 19 31 7 9 5 2

0 1 2 3 4 5 6 7 8

i j

compare a[i] ,a[j] , if (a[i]>a[j]) , then

swap

i++, j++

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Shell Sort:

Solution in class At

board

23 29 15 19 31 7 9 5 2

23 29 15 19 31 7 9 5 2

i j

23 29 15 19 31 7 9 5 2

i j

No

swap

swap

23 7 15 19 31 29 9 5 2

i j

after that increment i,j

23 7 15 19 31 29 9 5 2

j

23 7 9 19 31 29 15 5 2

23 7 9 19 31 29 15 5 2

23 7 9 5 31 29 15 19 2

23 7 9 5 31 29 15 19 2

23 7 9 5 2 29 15 19 31

We have to look backword

also, in same as gap

value(4)
2 7 9 5 23 29 15 19 31

After Complete Phase

One2 7 9 5 23 29 15 19 31

i
Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Shell Sort:

Solution in class At

board

2 5 9 7 15 19 23 29 31

i j

2 7 9 5 23 29 15 19 31

i j

No

swap

swap

2 5 9 7 23 29 15 19 31

i j
after that increment i,j

2 5 9 7 23 29 15 19 31

i j

2 5 9 7 23 29 15 19 31

2 5 9 7 23 29 15 19 31

2 5 9 7 15 29 23 19 31

2 5 9 7 15 29 23 19 31

2 5 9 7 15 19 23 29 31

2 7 9 5 23 29 15 19 31

After Complete Phase two

Gap= 4/2=2

2 5 9 7 15 19 23 29 31

2 5 9 7 15 19 23 29 31

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Shell Sort:

Solution in class At

board

i j

2 5 9 7 15 19 23 29 31

i j

No

swap

swap

2 5 9 7 15 19 23 29 31

i j

after that increment i,j

2 5 7 9 15 19 23 29 31

i j

2 5 7 9 15 19 23 29 31

2 5 7 9 15 19 23 29 31

2 5 7 9 15 19 23 29 31

2 5 7 9 15 19 23 29 31

2 5 7 9 15 19 23 29 31

2 5 9 7 15 19 23 29 31

After Complete Phase three

Gap= 2/2=1

2 5 7 9 15 19 23 29 31

2 5 7 9 15 19 23 29 31

No

swap

Gap= 1/2=0 ,stop

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Shell sort
void Shellsort(ElementType A[], int N)
{

int i, j, Increment;
ElementType Tmp;

for(gap = N / 2; gap > 0; gap /= 2)
for(j = gap ; j < N; j++)
{

Tmp = ;
for(i = j- gap; i >=0 ;i -= gap)

if(A[i]< A[i + gap]) //test for
swap

{temp = A[i + gap];
A[i + gap]=A[i];

A[i] = Tmp;
}

else
break;

}
}

Time Complexity: Time complexity of above

implementation of shellsort is O(n2). In the above

implementation gap is reduce by half in every iteration.

There are many other ways to reduce gap which lead to

better time complexity.

0 1 2 3 4 5 6 7 8

gap=4
j=4, i = 4-4=0 ===>break

23 29 15 19 31 7 9 5 2

i j

j=5, i = 5-4=1, ==>swap
i=i-gap=1-4=-3 , condition is

false
...

j=8,i=8-4=4......if it true then
swap
i=i-gap=4-4=0 ...if it true then
swap

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Suppose we have 5 GB of data using only 1 GB

of RAM , what is the best sorting algoritm could

you use?

Solution in class At board (We will Back

later)

External

Sorting

Instructor: Murad Njoum
Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

• Used when the data to be sorted is so

large that we cannot use the computer’s

internal storage (main memory) to store

it

• We use secondary storage devices to

store the data

• The secondary storage devices we

discuss here are tape drives. Any other

storage device such as disk arrays, etc.

can be used
Instructor: Murad Njoum

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Two-way Sorting

Algorithm: Sort

Phase
Algorithm:

I. Sort Phase

1. Read M records from one pair of tape drives.

Initially, all the records are present only on one

tape drive

2. Sort the M records in the computer’s internal

storage. If M is small (< 10) use insertion sort.

For larger values of M use quick sort.

3. Write the M sorted records into the other pair of

tape drives (i.e., the pair which does not contain

the input records). While writing the records,

alternate between the two tape drives of that pair.

4. Repeat steps 1-3 until the end of input

Instructor: Murad Njoum
Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

1. Read 1 GB of the data in main memory and sort by

using quicksort.

2. Write the sorted data to disk.

3. Repeat steps 1 and 2 until all of the data is in

sorted 1 GB chunks (there are 10 GB / 1 GB = 10

chunks), which now need to be merged into one

single output file.

4. Read the first 90 MB of each sorted chunk (of 1

GB) into input buffers in main memory and allocate

the remaining 100 MB for an output buffer.

(For better performance, we can take the output

buffer larger and the input buffers slightly smaller.)

5. Perform a 10-way merge and store the result in the

output buffer.

Example 2 For sorting 10 GB of data using only 1 GB of

RAM:

Instructor: Murad Njoum
Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.
Instructor: Murad Njoum

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.

Instructor: Murad Njoum

Uploaded By: anonymousSTUDENTS-HUB.com

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS: Sorting Algo.Uploaded By: anonymousSTUDENTS-HUB.com

