Storage and
Indexing

e 2o
= RZE|
D?%%Iédl\l X§u5ltgi%dcom Storage and Indexing Hz%lgb%gee y%gmasﬁ%mlf%

Motivation

- DBMS stores vast quantities of data

* Data is stored on external storage devices and fetched into main
memory as needed for processing

e Page is unit of information read from or written to disk. (in DBMS, a
page may have size 8KB or more).

e Data on external storage devices :
— Disks: Can retrieve random page at fixed cost (/O operations).

But reading several consecutive pages is much cheaper (i.e.
faster) than reading them in random order

— Tapes: Can only read pages in sequence.
Cheaper than disks; used for archival storage.

* Cost of page I/0 dominates cost of typical database operations

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Data on External Storage

Architecture of a DBMS

U§er
l SQL Query

Query Comp|ler

L Query Plan (optlrmzed)

Execution Engine

I Index and Record requests

Index/File/Record Manager

L Page Comm

Buffer Manager

I Read/Write pages

-

Disk Space Manager
? Disk /0

~ o

A first course in database systems, 3* ed, Ullman and Widom

o

o
DS -I:LHL usl'_rlz arn acom Storage ana Inaexing Hgtl(g)o%see gy%%masq%mgg

Introduction

| DBMS abstracts data as a collection of Sophisticated users, application
rec O rd S Stored |n a fl Ie Uus-l:-phiﬁl:cmtd nsers (customers, travel agents, etc.) PrOrANNETs, DB administrators
"IAfile is a set of pages, each contain certain [Web Forms] [Appl‘-ca-iou Front Ends J [SQL Interface J

set of records. B ' B

- —_——————

& -

. SQL cc.':nuwns shows conmand fow
"' The files layer is responsible or data | !
organization for fast data retrieval. Plan Executor Parser shens imteraesion
‘IFile organization: a way of organizing Query
records in a file. S optmie Engine
|Each file organization makes certain : !
operations efficient, but other operations vl N Tomfem e T
EX p ens ive Lock " Buffer L:auagm' it:t::::
Manager y
o || oo [bmrs

Index Files == shows refersnces
\ system Catalog
Diata Files g——~"
DATABASE

D?THL%IC_:L(Q‘I XZ)SLL_sl;Izgiﬁdcom Storage and Indexing H(Btlc(t)b%gee gy%%%ﬁ%mg§

Data on External Storage

'] Hard disks are the primary storage devices for DBMS

4

"IThe taps are used for archiving. Dikacm Disk head = .~ Spindle s

" IThe unit of information read from or written from
disk is a page.

"JA pageistypically 4KB or 8KB

"IThe cost of page I/0 is the MOSt expensive
operation.

"IDisks have fixed cost per page.
| Each record in a file has a unique identifier called

rid. 7
IUsing the rid, we can identify the page address I I e

con B
D?%%%{Q‘I Xé[sl_rlzgi%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mgg

Data on External Storage

_IThe buffer manager is responsible for
loading a page into memory.
"IWhen the files layer wants to access a

Sophisticated users, application

Unsophisticated users (customers, travel agents, etc.) programmers, DB administrators

[Web Forms] {Apphcaliou Front Ends J { SQL Interface]

- * - T eemem-—-———i
certain page, it asks the buffer manager to Bt ORI shows comansnd flow
load it into memory (if it is not already e = —
there)
. . g Query
| Space on disk is managed by disk space Operator Evaluator Optimizer Evaluation
manager. I S
Transaction | Files and Access Methods S
Manager
1 Recovery
Lock =" Buffer Manager == Manager
Manager)
Concurrency Disk Space Manager
| Control ° DBMS |
Index Files < - "f"m' -
\ System Catalog
Data Files 4_/ R

D2 ARENT R HYUB.com HRloaded ByransnGimeiys

Storage and Indexing

Data on External Storage

* File organization:
— Method of arranging a file of records on external storage.
— Record id (rid) is sufficient to physically locate record
— Indexes are data structures that allow us to find the record ids of
records with given values in index search key fields
* Architecture: Buffer manager stages pages from external
storage to main memory buffer pool.

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee @y@gﬁﬁ%m%

Multiple File Organizations

Many alternatives exist, each good in some situations and not so good in others

 Heap Files:

— is the simplest file organization: records are stored randomly
across the pages.

— Suitable when typical access is a full scan of all records
— Unordered collection of records
— Add/Remove records: Easy (Cost?)

* Sorted Files:
— Best for retrieval in search key order, or a range of records is needed
— Arrange and store collection of records in sorted manner.
— Add/Remove records: Easy or not (Cost?)

e Clustered Files & Indexes: Group data into block to enable fast
lookup and efficient modifications. (More on this soon ...)
An index is a data structure that allows fast retrieval of data
records.

We can create several indexes for same data file, each with
cip BB o

D?%%Iédl\l X§J§inll¥zﬁ%58'qt SN key Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Bigger Questions

* What is the “best” file organization?
— Depends on access patterns ...
— How? What are they?

e Can we be quantitative about tradeoffs?
— Better 2 How much?

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Goals for Today

* Big picture overheads for data access

* Then estimate cost in a principled way

* Foundation for query optimization
— Can’t choose the fastest scheme without an estimate of speed!

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Cost

Model &
Analysis

»on e el

D?%%Iédl\l A_élsl_rlbgi%dcom Storage and Indexing H(Ptl(?b%%lee g’y%?e';i%lﬁ%mg§

Cost Model for Analysis

B: The number of data blocks
R: Number of records per block

D: (Average) time to read/write disk block

Average case analysis for uniform random workloads

We will ignore
— Sequential vs Random |/O
— Pre-fetching
— Any in-memory costs

Good enough to show the overall trends!

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

More Assumptions

* Single record insert and delete
* Equality selection — exactly one match
 For Heap Files:
— Insert always appends to end of file.
* For Sorted Files:

— Files compacted after deletions.
— Sorted according to search key

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Heap Files & Sorted Files

Heap File

Records are just integers

e B: The number of data blocks =5
* R: Number of records per block = 2

* D:(Average) time to read/write disk block = 5ms L(y - 3
DS %%Iczt&l Ibsusl;lz%tjz%acom Storage and Indexing Ht%lc(t)baagee RZ&F‘W‘S‘?

Cost of Operations

Scan all records
Equality Search
Range Search
Insert

Delete

 B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block e 3
D?%%ICEMQ‘I Xl?dglzgi%dcom Storage and Indexing Ht%lcg)b%gee g‘y%%%%ﬁ%mgg

Cost of Operations

Scan all records
Equality Search
Range Search
Insert

Delete

 B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block e 3
D?%%ICEMQ‘I Xl?dglzgi%dcom Storage and Indexing Ht%lcg)b%gee g‘y%%%%ﬁ%mgg

Scan All Records

Heap File
I Sorted File
* B: The number of data blocks Pages touched: ?
* R: Number of records per block Time to read the record: ?

* D: Average time to read/write disk block e
D?%%%&‘I Il')siyzgi%acom Storage and Indexing Ht%lc(t)bectgee g‘y%%?rﬁhmg§

Cost of Operations

Scan all records B*D B*D
Equality Search

Range Search

Insert

Delete

 B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block e 3
D?%%ICEMQ‘I Xl?dglzgi%dcom Storage and Indexing Ht%lcg)b%gee g‘y%%%%ﬁ%mgg

Cost of Operations

Scan all records B*D B*D
Equality Search

Range Search

Insert

Delete

e B:The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block e 3
D?%%ICEMQ‘I Xl?dglzgi%dcom Storage and Indexing H(%I(g)b%gee g‘y%%%%ﬁ%mgg

Find Key 8
Heap File

I

Pages touched on average?

« P(i): Probability of key on page 7is 1/B
* T(i): Number of pages touched if key on page 7is i
 Therefore the expected number of pages touched

ZT(@')P(@') — Zz% = B(ljg D« g

=l
e e

D?%%Iczt&j X?dyzgi%dcom Storage and Indexing H(Qt%qgee g‘yégzgh%mg§

Find Key 8

Heap File

Pages touched on average: B/2

* Breaking an assumption
— What if there was more than one key?

— Need to check all the pages 2> B

con B oy
- % —

D?THL%%&I X?dyzgi%dcom Storage and Indexing H&%%ee gy@%?ﬁﬁmg§

Find Key 8

Sorted File

* Worst-case: Pages touched in binary search
— log,B

* Average-case: Pages touched in binary search
— log,B?

con B o
- 1y e

D?THL%%&I X?dyzgi%dcom Storage and Indexing H&%%ee gy@%?ﬁﬁmg§

Average Case Binary Search

110 / !\
o N AN

3 10s
ool HE B H HHE B

Expected Number of Reads: 1(1/B)+2(2/B)+3(4/B)+4(8/B)

log, B oi—1 | log, B B
E = — E 2"t =log, B
=1 B B 1 Ep i
g 1= i B o
D?%%Iczt&j szdyzgi%fzcom Storage and Indexing H(I?tlc(t)be(lzqgee g‘yégzgh%mg§

Cost of Operations

_ Heap File Sorted File

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search

Insert

Delete

 B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block e 3
D?%%ICEMQ‘I Xl?dglzgi%dcom Storage and Indexing Ht%lcg)b%gee g‘y%%%%ﬁ%mgg

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search

Insert

Delete

e B:The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block e 3
D?%%ICEMQ‘I Xl?dglzgi%dcom Storage and Indexing H(%I(g)b%gee g‘y%%%%ﬁ%mgg

Find Keys Between 7 and 9
Heap File

I

Always touch all blocks. Why?

con B o
- 1y e

D?%%E(Q‘I Ibsu-sl;lz%tji%tcom Storage and Indexing Ht%lc(t)baagee g‘y%%?rﬁhmlé?

Find Keys Between 7 and 9
Heap File

I

Always touch all blocks. Why?
Sorted File

.I

* Find beginning of range

e Scan right

con B o
- 1y e

D?%%E(Q‘I Ibsu-sl;lz%tji%tcom Storage and Indexing Ht%lc(t)baagee g‘y%%?rﬁhmlé?

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages)*D
Insert

Delete

 B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block e 3
D?%%ICEMQ‘I Xl?dglzgi%dcom Storage and Indexing Ht%lcg)b%gee g‘y%%%%ﬁ%mgg

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages)*D
Insert

Delete

 B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block e 3
o RZE|
D?%%ICEMQ‘I szusl_rlzgi%fzcom Storage and Indexing H(%I(g)(%gee g‘y%%masﬁ%mgg

Insert 4.5

Heap File

Stick at the end of the file. Cost? =2*D Why 2?

o B
N 2P AL Y5 1=

D?%Ir%lczt!}l X§u_sl;llyi§dcom Storage and Indexing H(Bflc(t)bac'gee gy@%ﬁ;ﬁm§§

Insert 4.5
Heap File
Read last page, append, write. Cost = 2*D
Sorted File

G)

* Find location for record: log,B

S wB e
na 2P A) =

D?%Ir%lcztclﬂ X§u_sl;llyi§dcom Storage and Indexing H(Bflc(t)bac'gee gy@%ﬁhm‘s@

Insert 4.5
Heap File
Read last page, append, write. Cost = 2*D
Sorted File

B E R R e

* Find location for record: log,B
* Insert and shift rest of file Cost? 2*B/2 Why? ,
e e

D?%Ir%lczt!}l X§u_sl;llyi§dcom Storage and Indexing H(Bflc(t)bac'gee gy@%ﬁ;ﬁm§§

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages)*D
Insert 2*D ((log,B)+B)*D
Delete

e B:The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block e 3
D?%%ICEMQ‘I Xl?dglzgi%dcom Storage and Indexing H(%I(g)b%gee g‘y%%%%ﬁ%mgg

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages)*D
Insert 2*D ((log,B)+B)*D
Delete

e B:The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block e 3
D?%%ICEMQ‘I Xl?dglzgi%dcom Storage and Indexing H(%I(g)b%gee g‘y%%%%ﬁ%mgg

Delete 4.5

Heap File

Average case to find the record: B/2 reads
Delete record from page
Cost? =(B/2+1)*D Why +1°?

con B o
- 1y e

D?THL%%&I X?dyzgi%dcom Storage and Indexing H&%%ee gy@%?ﬁﬁmg§

Delete 4.5

Heap File

Average case runtime: (B/2+1) * D

Sorted File

I

* Find location for record: log,B

* Delete record in page 2 Gap e
= RZE|;
D?%%E(Q‘I Ibsusl;lz%tji%tcom Storage and Indexing Ht%lc(t)baagee g‘y%%ni%hmlé?

Delete 4.5

Heap File

)

Average case runtime: (B/2+1) * D

Sorted File

5 Ly [o7) (53

* Find location for record: log,B
° H H . %
Shift rest of file left by 1 record: 2 * (B/2) e
D?%Ir%lcztclﬂ X§u_sl;llyi§dcom Storage and Indexing H(Bflc(t)bac'gee gy@%ﬁhm‘s@

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages)*D
Insert 2*D ((log,B)+B)*D
Delete (0.5*B+1)*D ((log,B)+B)*D

 B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block Which is bEtter&m\é
D?%%ICEMQ‘I Xl?dglzgi%dcom Storage and Indexing Ht%lcg)b%gee g‘y%%%%ﬁ%mgg

Cost of Operations

Scan all records B*D B*D Issues:
* Find
Equality Search 0.5*B*D (log,B)*D * Range
* Modification
Range Search B*D ((log,B)+pages)*D
Can we do
Insert 2*D ((log,B)+B)*D better?
Delete (0.5*B+1)*D ((log,B)+B)*D
e B: The number of data blocks Indexe
* R: Number of records per block s
* D: Average time to read/write disk block e

D?%%ICEMQ‘I Xl?dglzgi%dcom Storage and Indexing H(%I(g)b%gee g‘y%%%%ﬁ%mgg

o i
D?%%Iédl\l A_élsl_rlbgi%dcom Storage and Indexing H(Ptl(?b%%lee g’y%?e';i%lﬁ%mg§

41
Indexes Overview

v" Indexing organizes data records on disk to optimize certain kinds of retrieval operations.

v An index is a data structure that enables fast lookup of data entries by search key.

* Lookup (retrieval): may support many different operations
— Equivalence (i.e. =), range (i.e. >, <, >=), ...

« Data Entries: records stored in the index file, (k, {items})
— A data entry with search key value k, denoted as k*.
— Could be actual records or record-ids (pointers).

— We can efficiently search an index to find the desired data entries, and
then use these to obtain data records.

» Search Key: any subset of columns (i.e. fields) in the relation.

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Search Key: Any Subset of Columns?

e Search key does not require to be a key of the relation
— Recall: key of a relation must be unique (e.g., SSN)
— Search keys don’t have to be unique

* Additional indexes can be created on a given collection of data
records, each with a different search key,

Why indexing used?

* to speed up search operations that are not efficiently

supported by the file organization used to store the data
records on disk.

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Example

e Consider the Employee Table.
 We can store the records in a file organized as an index on employee age;
* which itis an alternative to sorting the file by age (i.e Sorted file).

* Additionally, we can create an auxiliary index file based on salary, to
speed up queries involving salary.

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Example: creating different indexes

<age, sal> m

19,100
20,10
20,20
24,80
25,75

10,20
20,20
75,25
80,24
100,19

1
5
3
2
4

4
1
5
2
3

DR Amad Astinaiza o)

Employee Table
Ahmad 20 10
Assad 24 80
Murad 25 75
Moh’d 19 100
Qusai 20 20

Storage and Indexing

19
20
20
24
25

w N U B

10
20
75
80
100

A N W U1 B

HRloaded ByransnGimeiys

&
Search Key: Any Subset of Columns?

<age, sal> m

* Search key needn’t be a key of the relation 31,400 1
— Recall: key of a relation must be unique (e.g., SSN) 32,300 2
— Search keys don’t have to be unique 55,140 3
 Composite Keys: more than one column 55,400 4

— Think: Phone Book <Last Name, First>

— Lexicographic order

Salary
— <Age, Salary>:
* Age =31 & Salary =400 Ahmad $400

e Age =55 & Salary > 200 443 Assad 32 $300
* Age>31 & Salary =400 244 Moh’d 55 $140

© Age=31 134 Qusai 55 $400
e Age>31

e Salary =300

OSSN SN

Means that the index is unable to
exclude all entries that are not in the

It set.
result se L(y g
RZ I
DS %%Ic_:t&‘l szusl_rlzgz%acom Storage and Indexing H(%I(g)(%gee aﬁ%m%

Data Entries: How are they stored?

 What is the representation of data in the index?
— Actual data or pointer(s) to the data

 How is the data stored in the data file?
— Clustered or unclustered with respect to the index

* Big Impact on Performance

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

What to store as a data entry in an index?

e Three main alternatives:
1. By Value:

A data entry k* is an actual data record (with search key value k).
2. By Reference: <k, rid of matching data record>

A data entry k* is a (k, r7d) pair, where ridis the record id of a data

record with search key value k.
3. By List of References: <k, list of rids of a// matching data records>

A data entry k* is a (k. rid-list) pair, where rid-list is a list of record ids of
data records with search key value k.

e Can have multiple (different) indexes per file, for e.g.,
— file stored by age
— a hash index on salary and
— B+ tree index on name.

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Alternatives for Storing Data Entries

Alternative 1: By Value — Actual data record (with key value k)

* Index as a file organization for records
— Similar to heap files or sorted files
* No “pointer lookups” to get data records

— Following record ids

* Could a single relation have multiple indexes of this form?

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Alternatives for Storing Data Entries

Alternative 2: By Reference, <k, rid of matching data record> and

Alternative 3: By List of references, <k, list of rids of matching data records>

By Reference

-- Last Salary .
Name By List of references
Gonzalez

— Gonzalez Amanda 400
Gonzalez 2 » L
] 443 Gonzalez Joey $300 Gonzalez {1, 2, 3}
Gonzalez 3
_— 244 Gonzalez Jose $140 Hong 4
Hong 4 /
—_— 134 Hong Sue $400

e Alternatives 2 or 3 needed to support multiple indexes per table!
e Alternative 3 more compact than alternative 2

* Forvery large rid lists, single data entry spans multiple blocks.
R o8

DS %%Ic_:t&‘l szusl_rlzgz%acom Storage and Indexing H(%I(g)(%gee Rzalﬁ%mgg

Clustered vs. Unclustered Index

* |n aclustered index:

— index data entries are stored in (approximate) order by value of search
keys in data records

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Clustered vs. Unclustered Index

* |n aclustered index:

— index data entries are stored in (approximate) order by value of search
keys in data records

Clustered Unclustered
Record Id Last Salary Key Record Id
Name
Gonzalez —_— Gonzalez Amanda $400 Gonzalez 3
Gonzalez 2 -_— 443 Gonzalez Joey $300 Gonzalez 1
Gonzalez 3 —_— 244 Gonzalez Jose $140 Hong 4
Hong 4 _— 134 Hong Sue $400 Gonzalez 2
i—ry,m_/% =S

DS %%%{Q‘I X§us|_rlzgz%acom Storage and Indexing H(%I(g)(%qgee VS eRZgﬁ%mgg

Clustered vs. Unclustered Index

* |n aclustered index:

— index data entries are stored in (approximate) order by value of search
keys in data records

— A file can be clustered on at most one search key

e Cost of retrieving data records through index varies greatly based on
whether index is clustered or not!

* Note: there is another definition of “clustering”
— Data Mining/Al: grouping similar items in n-space

o i
RZE|
D?%%Iédl\l A_§ g8.com Storage and Indexing Hz%lgb%gee g’y%%masﬁ%mlfg

usnaina

Clustered vs. Unclustered Index

Alternative 2: Use references to data entries, data records in a Heap File
* To build a clustered index, first sort the heap file
— Leave some free space on each block for future inserts

* Overflow blocks may be needed for inserts

— Thus, order of data records is “close to”, but not identical to, the sort
order

Clustered _
Index Entries
direct search for
data entries

N

Unclustered

e

A=l
D?THL%%&I X!?dyzgi%dcom Storage and Indexing H&%%ee g‘yég;‘rzg %m%@

Clustered vs. Unclustered Index

Alternative 2: Use references to data entries, data records in a Heap File
* To build a clustered index, first sort the heap file

— Leave some free space on each block for future inserts
* Overflow blocks may be needed for inserts

— Thus, order of data records is “close to”, but not identical to, the sort
order

Clustered Unclustered

Index Entries
direct search for
data entries

N\

4—». Data Entri¢

Index File

/e N\ et S RREEE ...
------- --- L,

—m
DS %%Iczt&l Ibsusl;lz%tjz%acom Storage and Indexing Ht%lc(t)baagee VS RZ&F‘W‘S‘?

Clustered vs. Unclustered Index

Alternative 2: Use references to data entries, data records in a Heap File
* To build a clustered index, first sort the heap file
— Leave some free space on each block for future inserts

* Overflow blocks may be needed for inserts

— Thus, order of data records is “close to”, but not identical to, the sort
order

Clustered Unclustered

Index Entries
direct search for
data entries

N\

4—». Data Entri¢

Index File

+ \\\ Data Filg
_ W N

—m &
Storage and Indexing Ht%lc?baagee VS RZ&F‘W‘S‘?

HUB.com

snaina

pR RGN 5

Clustered vs. Unclustered Indexes

e Clustered Index Pros
— Efficient for range searches

— Potentially locality benefits? S
* Sequential disk access, prefetching, etc. algorithms.

Graduation project or
Master

— Support certain types of compression

e (Clustered Cons

— More expensive to maintain
* Need to update index data structure

— File usually only packed to 2/3 to accommodate inserts
— Need more storage space

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B) * D
Range Search B*D ((log,B)+pages)*D
Insert 2*D ((log,B)+B)*D
Delete (0.5*B+1)*D ((log,B)+B)*D

Can we do better with indexes?

e B:The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block e 3
D?%%ICEMQ‘I Xl?dglzgi%dcom Storage and Indexing H(%I(g)b%gee g‘y%%%%ﬁ%mgg

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records

Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages))*D
Insert 2*D ((log,B) + B)*D
Delete (0.5*B+1)*D ((log,B) + B)*D

 B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block L& g
DS %r@zlc_:t&l szusl_rlzgzﬁacom Storage and Indexing H(%I(g)b%gee Rzalﬁ%mgg

Clustered vs. Unclustered Index

Assumptions:
* Store data by reference (Alternative 2)

* Clustered index with 2/3 full heap file pages
— Clustered = Heap file is initially sorted
— Fan-out (F): relatively large. Why?
* Page of <key, pointer> pairs ~ O(R)
— Assume static index

i B
:.v¢\/‘

D?THL%%&I X?dyzgi%dcom Storage and Indexing Détabase g‘ygmg§

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records

Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages))*D
Insert 2*D ((log,B) + B)*D
Delete (0.5*B+1)*D ((log,B) + B)*D

 B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block L& g
DS %r@zlc_:t&l szusl_rlzgzﬁacom Storage and Indexing H(%I(g)b%gee Rzalﬁ%mgg

Scan all the Records

Assumptions:

* Store data by reference (Alternative 2)

* Clustered index with 23 full heap file pages
* Occupancy = 66.6%

— Clustered 2 -is initially sorted

Cost? =15*B*D Why?
=(3/2)*B*D

File size = 1.5 data size

Do we need

the index? e

Storage and Indexing Détabase g‘ygmg§

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D

Range Search B*D ((log,B)+pages))*D

Insert 2*D ((log,B) + B)*D

Delete (0.5*B+1)*D ((log,B) + B)*D

 B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block L& g

DS %r@zlc_:t&l szusl_rlzgzﬁacom Storage and Indexing H(%I(g)b%gee Rzalﬁ%mgg

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D

Range Search B*D ((log,B)+pages))*D

Insert 2*D ((log,B) + B)*D

Delete (0.5*B+1)*D ((log,B) + B)*D

 B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block L& g

DS %r@zlc_:t&l szusl_rlzgzﬁacom Storage and Indexing H(%I(g)b%gee Rzalﬁ%mgg

Find the record with key 3

Search the index: =log.(1.5*B) *D
* Each page load narrows search by factor of F

e Lookup record in heap file by record-id =D

13
bzl

Lk

D?%%E(Q‘I Il)sis!;zlgi%dcom Storage and Indexing Détabase gy?W‘&'?

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D ((log:1.5*B))*D
Range Search B*D ((log,B)+pages))*D

Insert 2*D ((log,B) + B)*D

Delete (0.5*B+1)*D ((log,B) + B)*D

 B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block L& g
DS %r@zlc_:t&l szusl_rlzgzﬁacom Storage and Indexing H(%I(g)b%gee Rzalﬁ%mgg

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D ((log:1.5*B))*D
Range Search B*D ((log,B)+pages))*D

Insert 2*D ((log,B)+B)*D

Delete (0.5*B+1)*D ((log,B)+B)*D

 B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block L& g
DS %r@zlc_:t&l szusl_rlzgzﬁacom Storage and Indexing H(%I(g)b%gee Rzalﬁ%mgg

Find keys between 3 and 7

Search the index: =log.(1.5*B) *D
* Each page load narrows search by factor of F
* Lookup record in heap file by record-id =D

e Scan the data pages until the end of range
= (#matching pages) * D

Cost?
Parsone

I
»{,‘ézz\é

D?THL%%&I X?dyzgi%dcom Storage and Indexing Détabase g‘ygmg§

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D ((log:1.5*B))*D
Range Search B*D ((log,B)+pages))*D ((log;1.5*B)+pages)*D
Insert 2*D ((log,B)+B)*D

Delete (0.5*B+ 1)*D ((log,B)+B)*D

 B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block L& g
DS %r@zlc_:t&l szusl_rlzgzﬁacom Storage and Indexing H(%I(g)b%gee Rzalﬁ%mgg

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D (log1.5*B)*D
Range Search B*D ((log,B)+pages))*D ((log;1.5*B)+pages)*D
Insert 2*D ((log,B)+B)*D

Delete (0.5*B+1)*D ((log,B)+B)*D

 B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block L& g
DS %r@zlc_:t&l szusl_rlzgzﬁacom Storage and Indexing H(%I(g)b%gee Rzalﬁ%mgg

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D (log1.5*B)*D
Range Search B*D ((log,B)+pages))*D ((log;1.5*B)+pages)*D
Insert 2*D ((log,B)+B)*D ((log;1.5*B)+2)*D
Delete (0.5*B+1)*D ((log,B)+B)*D

 B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block L& g
DS %r@zlc_:t&l szusl_rlzgzﬁacom Storage and Indexing H(%I(g)b%gee Rzalﬁ%mgg

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D (loge1.5*B)*D
Range Search B*D ((log,B)+pages))*D ((log;1.5*B)+pages)*D
Insert 2*D ((log,B)+B)*D ((log;1.5*B)+2)*D
Delete (0.5*B+1) *D ((log,B)+B)*D ((log;1.5*B)+2)*D

 B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block L& g
DS %r@zlc_:t&l szusl_rlzgzﬁacom Storage and Indexing H(%I(g)b%gee Rzalﬁ%mgg

Tree-Based Indexing

e Usually B+ tree is used.
* Each node points to one block

— Make leaves into a linked list (range queries are easier)

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

B+ Trees Basics

 Parameter d = the degree
* Each node has >=d and <= 2d keys (except root)

30 120 | 240

Keys k < 30
y Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

e Each leaf has >=d and <= 2d keys:
40 | 50 | 60

Next leaf

v

40 50 60

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

B+ Tree Example

- Find the key 40

80
20 60 100 120 140
|\ N ~
20 £ 40 < 60 \\K
10 | 15 | 18 20 |30 40 [50 | | 60 | 65 80 | 85 | 90
o] AR R 1\ T
con B o

lﬁﬂ?’zlr%lczt&‘l szdsl;lzgi%étcom Storage and Indexing Ht%lc(‘t)baagee gy%%%hmg§

Searching a B+ Tree

* Exact key values: Select
— Start at the root From
— Proceed down, to the leaf \Where

* Range queries:

— As above Select
— Then sequential traversal From
Where

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee §y§¥;§§ﬁ%m9§

B+ Trees in Practice

The average number of children
for a non-leaf node is called the
fan-out of the tree.

e Typical order: d= 100.

e Typical fill-factor: 67%.
— average fanout = 133

e Typical capacities:
— Height 4: 1334 =312,900,700 records
— Height 3: 1333 = 2,352,637 records

 B-Trees — dynamic, good for changing data, range
qgueries

How many I/O needed to
search for a record within
312 million records?

con B
D?%%Iédl\l Iét_sl_rlzgi%dcom Storage and Indexing Hz%lgbe}gee g’y%%%aslﬁ%mg§

Hash-Based Indexes

« Good for equality selections.

* Index is a collection of buckets.
« Bucket = primary page plus zero or more overflow pages.
» Buckets contain data entries.

« Hashing function h: h(s) = bucket in which (data entry for) record r
belongs.

h looks at the search key fields of r.

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee @y@gﬁﬁ%m%

Static Hashing

* H#primary pages fixed, allocated sequentially, never de-allocated;
 overflow pages if needed.
* h(k)=k mod N = bucket to which data entry with key k belongs. (N = # of buckets)

- h(k) =(a™* k+Db) usually works well.
— aand b are constants

h(key) mod N

N-1 | 5, ...

Primary bucket pages Overflow pages
e 2o
o RZE|
D?%%Iédl\l X§uytgi%dcom Storage and Indexing Hz%lgb%gee g’y%%masﬁ%mg§

Summary

* Many file organizations, with tradeoffs
— Heap Files, Sorted Files, Clustered Files and Indexes
— Benefits depend on the common operations
— Compute expected costs

* Indexes: fast lookup of data entries by search key
— Lookup: equivalence, range, region ...
— Search key: arbitrary columns

e Data Entries:

— 3 alternatives: By Value, By Reference, By List of
References

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Summary

e Often multiple indexes per file of data records
— Each with a different search key

* |ndexes can be classified as clustered vs unclustered

— Important consequences for utility/performance

o i
D?%%Iédl\l Xé[ﬂ%%dcom Storage and Indexing Hz%lgb%gee g’y%%%aslﬁ%mg§

Summary

Cost of Operations

[=
%

(a) Scan (b) Equality |[(c) Range (d) Insert |(e) Delete
(1) Heap |BD 0.5BD BD 2D Search
+D

(2) Sorted |BD Dlog 2B D(log2B) |Search |Search
+D. # pgs w. |+ BD +BD
match recs

(3) 1.5BD Dlog r 1.5B |D(log F 1.5B) |Search [Search

Clustered +D. # pgs w.|+ D +D
match recs

(4) Unclust. | BD(R+0.15) |D(1 + D(log F 0.15B |Search |Search

jires index log F0.15B) [+ # match |[+2D |+2D
recs)

(5) Unclust. |BD(R+0.125) |2D BD Search |Search

Hash index + 2D + 72D

pr AR IsHERcom

Storage and Indexing

Hhlopded BYanmegius

