
ENCS5337: Chip Design Verification

Spring 2023/2024

Verification Cycle, Verification 

Methodology & Verification Plan

Dr. Ayman Hroub

Many thanks to Dr. Kerstin Eder for most of the slides

STUDENTS-HUB.com

https://students-hub.com


2

The Verification Cycle

Functional 

Specification

Designer implements

the functional specification

(in HDL)

Create

Verification

Plan
Develop 

Verification 

Environment
Stimulus, checkers,

Formal Verification

Debug HDL and

Environment

Run Regression

Perform Escape

Analysis

Debug Fabricated

Hardware

Lessons 

Learned

Tape Out 

Readiness

Plan 

Review

STUDENTS-HUB.com

https://students-hub.com


3

Functional Specifications

 The functional specification describes the 
desired product

 It contains the specification of:
– The function that it must perform.

– The interfaces with which it communicates.

– The conditions that affect the design.

 Designers implement the specification in HDL

 Verification engineers incorporate the functional 
specification into the verification plan and 
environment.
– This may seem redundant, but it is the foundation of 

verification, i.e. the specification for the verification.

STUDENTS-HUB.com

https://students-hub.com


4

Create Verification Plan

 Functions to be verified: list the functions that will be 
verified at this level of verification.
– Functions not covered: any functions that must be verified at a 

different level of the hierarchy. 

 Resources required (people) and schedule details: tie 
the plan to the program management by estimating the 
cost of verification.

 Required tools: list the software and hardware 
necessary to support the described environment. 

 Specific tests and methods: define the type of 
environment that the verification engineers will create.

 Completion criteria: Define the measurements that 
indicate that verification is complete.

STUDENTS-HUB.com

https://students-hub.com


5

Develop Verification Environment

The verification environment is the set of software code 
and tools that enable the verification engineer to identify 
flaws in the design. 
– The software code tends to be specific to the design, 

– while the tools are more generic and are used across multiple 
verification projects

 Major components in the verification environment are 
stimulus and checking for simulation based 
environments, and rules generation (properties) for 
formal verification environments

 The environment is continually refined throughout the 
verification cycle 
– Refinements include fixes and additions to the software code

STUDENTS-HUB.com

https://students-hub.com


6

Debug HDL and Environment

 Run tests according to the verification plan and look for 
anomalies 

 Examine the anomalies to reveal the failure source
– Can be either in the verification environment or in the HDL 

design

 Fix the cause of the failure
– Either the verification environment or the HDL design

 Once the problem is fixed, rerun the exact same test(s)
– Aim to ensure that the update corrects the original anomaly and 

does not introduce new ones

 Update the verification plan based on lessons learnt

STUDENTS-HUB.com

https://students-hub.com


7

Run Regression

 Regression is the continuous running of the 
tests defined in the verification plan

 Often, verification teams leverage large 
workstation pools, or “farms”, to run an ever-
increasing number of verification jobs

 Regression is used to uncover hard-to-find bugs 
and ensure that the quality of the design keeps 
improving 

 With chip fabrication on the horizon, the 
verification team must reflect on the environment 
to ensure that 
– they have applied all valid scenarios to the design

– and performed all pertinent checks

This is the tape-out readiness checkpoint.

STUDENTS-HUB.com

https://students-hub.com


8

Debug Fabricated Hardware

 The design team releases the hardware to the 
fabrication facility when they meet all fabrication 
criteria
– This process is also known as the tape-out.

 The design team receives the hardware once 
the chip fabrication completes

 The hardware is then mounted on test platforms 
or into the planned systems for these chips

 The hardware debug team performs the 
“hardware bring-up”
– During hardware bring-up, further anomalies may 

present themselves.

STUDENTS-HUB.com

https://students-hub.com


9

Perform Escape Analysis

 Analysis of bugs that were found later than when 
they should have

 The goal is to fully understand the bug, as well 
as the reasons that it went undiscovered by the 
verification environments

 Important goal: Reproduce the bug in a 
simulation environment, if possible.
– The lack of reproduction in the verification 

environment indicates that the design team may not 
understand the bug

– It would then follow that the team cannot assert that 
the bug fix is correct without reproducing the original 
bug in verification.

STUDENTS-HUB.com

https://students-hub.com


10

Common Verification Breakdowns

 Verification based on the design itself 

instead of the specification

 Underdeveloped verification plans

 Underdeveloped specifications

 Lack of resources

 Tape-out based on schedule instead of 

pre-defined measures

STUDENTS-HUB.com

https://students-hub.com


11

The Verification Cycle

 The process that includes creation of test 
plans, writing and running verification tests, 
debugging, and analysis of the holes in the 
verification environments

STUDENTS-HUB.com

https://students-hub.com


Verification Methodology

STUDENTS-HUB.com

https://students-hub.com


13

Outline

 Verification methodology evolution

 Basic verification environment

 Evolution of the Verification plan

 Contents of the Verification plan

– Functions to be verified

– Specific tests

– Coverage goals

– Test case scenarios (Tests list)

 Example

STUDENTS-HUB.com

https://students-hub.com


14

Simulation-based Verification Environment Flow

Output

Simulation

Engine

Test case results

Test case

Test case

Driver or 

translator

(not always required)

Design 

Source
Model

VHDL

Verilog

Environment

Data

Initialization

Run-time requirements

STUDENTS-HUB.com

https://students-hub.com


15

Simulation based on Compiled Code

 To simulate with ModelSim:

– Compile HDL source code into a library.

– Compiled design can be simulated.

Write 

HDL 

code

Compile 

HDL 

code

Simulate 

the 

design

HDL files
HDL library

Compile Simulate

Correct 

syntax errors

Debug 

the 

design

STUDENTS-HUB.com

https://students-hub.com


16

Simulation-based Verification Environment Structure

DUV

Stimulus

Initiator A

Stimulus 

Initiator B

Monitor

Scoreboard

CheckerStimulus

Responder

This is another (slightly more 
sopisticated) example of a 
testbench.

(New components to be 
covered during the following 
lectures.)

STUDENTS-HUB.com

https://students-hub.com


17

Verification Methodology Evolution

T
im

e

Test Patterns

Test Cases

Test Case

Generators

Test Case

Drivers

Coverage tools

STUDENTS-HUB.com

https://students-hub.com


20

Test Case Generators

 Replace hand-crafted specific test patterns 
with machine generated random patterns

– Single scenario → multiple scenarios

– Specific target → more generic targets

– Small number of tests → large number of 
tests

 Test case generators are tools that are 
external to the verification environment

– Offline generation 

– For the environment, tests are hardcoded

STUDENTS-HUB.com

https://students-hub.com


21

Test Case Drivers

 The stimuli generation is embedded in the 

verification environment

 Stimuli are generated during the operation 

of the environment (and simulation)

 The driver can react to the state of the 

DUV

– Can improve the quality of the stimuli and 

stress per cycle

STUDENTS-HUB.com

https://students-hub.com


22

Coverage

 The move from target-specific test cases to 
random stimuli generation reduced the ability of 
the verification team to ensure that all 
interesting cases are verified

 Coverage measurement and analysis are the 
“automatic replacement” for this
– Replaces one-to-one matching with many-to-many

 Many tests can potentially hit many interesting cases

 Coverage measures whether test cases hit the 
scenarios they are supposed to hit
– And highlights untested areas

 Coverage measures the effectiveness of the 
verification

STUDENTS-HUB.com

https://students-hub.com


Verification Plan

STUDENTS-HUB.com

https://students-hub.com


24

Evolution of the Verification Plan

 The source of the verification plan is the 

Functional Spec document

– Must understand the DUV before determining 

how to verify it

– Confront unclear and ambiguous definitions

– Incomplete and changing continuously

 Other factors may affect its content

STUDENTS-HUB.com

https://students-hub.com


25

Design and Verification Process Interlock

Design Cycle Duration

High Level

Design (uArch)

Design Implementation
Final Physical

Design

Create 

Verification

Plan

Evolve Verification Plan

Implement

Environment

From Plan Debug HDL and Environment:

Write and Run Tests from Plan
Regression

Functional

Specification

Development

A
rc

h
it

e
c

ts
D

e
s

ig
n

e
rs

V
e

ri
fi

c
a
ti

o
n

 E
n

g
in

e
e

rs

Initial Review Milestone Final Review Milestone Tape Out

STUDENTS-HUB.com

https://students-hub.com


26

Example: Verifying a Simple Calculator

 Specs:

- The calculator has four commands: add, subtract, 

shift left and shift right

- It can handle (but not process) four requests in 

parallel.

- All requests have equal priority. They are processed 

in order, i.e., First Come First Served.

STUDENTS-HUB.com

https://students-hub.com


27

Top Level of Calculator Design

STUDENTS-HUB.com

https://students-hub.com


28

Calculator Input Commands

 Input commands are coded as follows:

- 0 no-op 

- 1 add operand 1 and operand 2

- 2 subtract operand 2 from operand 1

- 5 shift left operand 1 by operand 2 places 

- 6 shift right operand 1 by operand 2 places

 Input data timing: 

- Operand 1 arrives with the command, i.e., at the 

same clock cycle.

- Operand 2 arrives on the following clock cycle. 

STUDENTS-HUB.com

https://students-hub.com


29

Calculator Output Responses

 Output response lines encode the 

following: 
- 0 no response 

- 1 successful operation completion 

- 2 invalid command or overflow/underflow error 

- 3 internal error

 Valid result data on output lines 

accompanies the response on successful 

completion 
STUDENTS-HUB.com

https://students-hub.com


30

Calculator Verification Plan

 You have been given the specs.

 Now it is your job to demonstrate that the actual 

design implementation matches the intent.

 Even for a relatively simple design like this 

calculator, it is still best not to jump into test case 

writing before thinking through the entire 

verification plan requirements.

STUDENTS-HUB.com

https://students-hub.com


31

Contents of the Verification Plan

 Description of the verification levels

 Functions to be verified

 Resource requirements

 Required tools

 Schedule

 Specific tests and methods

 Coverage requirements (Coverage Plan)

 Completion criteria

 Test scenarios (Matrix) (Test Plan)

 Risks and dependencies

STUDENTS-HUB.com

https://students-hub.com


32

Description of Verification Levels

 The first step in building the verification plan is to 
decide on which levels to perform the verification

 The decision is based on many factors, such as 
– The complexity of each level

– Resources

– Risk

– Existence of a clean interface and specification

 The decision should include which functions are 
verified at lower levels and which at the current 
level

 Each level and piece selected need to have its 
own verification plan

STUDENTS-HUB.com

https://students-hub.com


33

Verification Levels for This Calculator

 This calculator is simple enough to be 

verified only at the top level

– In addition we do not have enough details on 

the internal components

 In more realistic world, we may decide to 

verify the ALU and shifter alone

– For example, using formal verification

STUDENTS-HUB.com

https://students-hub.com


34

Functions to be verified

 This section lists the specific functions of the 

DUV that the verification team will exercise

– Omitted functions may slip away and not be verified

 Assign Priority for each function

– Critical functions

– Secondary functions

 Functions not verified at this level

– Fully verified at a lower level 

– Not applicable to this level

STUDENTS-HUB.com

https://students-hub.com


35

Required Tools

 Specification and list of the verification toolset
– Simulation engines

– Debuggers

– Verification environment authoring tools

– Formal verification tools

– … and more

 For this calculator
– Simulation engine

– Waveform viewer

– Verification environment authoring tool

STUDENTS-HUB.com

https://students-hub.com


36

Specific Tests and Methods

 What type of Verification?
– Black box

– White box

– Grey box

 Verification Strategy
– Formal Verification

– Deterministic

– Random based

 Checking
– Simple I/O checking for data correctness

STUDENTS-HUB.com

https://students-hub.com


37

Coverage Requirements

 Traditionally, coverage is the feedback mechanism 
that evaluates the quality of the stimuli
– Required in all random-based verification environments

– Some aspects of coverage are directly achieved in deterministic 
testing

 Coverage is defined as events (or scenarios) or families 
of events that span the functionality and code of the DUV
– The environment has exercised all types of commands and 

transactions

– The stimulus has created a specific or varying range of data 
types

– The environment has driven varying degrees of legal concurrent 
stimulus

 Soon: Coverage metrics

STUDENTS-HUB.com

https://students-hub.com


38

Completion Criteria

Regress

Coverage

Complete?

Bug Rate 

Dropped

No Open

Issues

Review

Clean

Regression
“Ship It”!

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

These might 

include:

 Coverage 

targets

 Target 

metrics, e.g. 

bug rate drop

 Resolution of 

open issues

 Review

 Regression 

results

STUDENTS-HUB.com

https://students-hub.com


39

Test Scenarios (Matrix)

 Specifies test scenarios that will be used 
throughout the verification process

– deterministic or random 

– Scenarios are connected to items in the 
coverage requirements

 Start with a basic set for the basic 
functionality

– Add more tests to plug holes in coverage, 
reach corner cases, etc.

 Examples for calc1 design

STUDENTS-HUB.com

https://students-hub.com


40

Test Scenarios for Calc1: Basic Tests (partial list)

DescriptionTest #

Check the basic command-response protocol on each of the 

four ports for each command
1.1

Check the operation of each command (on each port?)1.2

Check overflow and underflow for add and subtract commands1.3

Check …1.4

 These generic tests should be broken to more specific tests

– Test case 1.1.1.1 : Check the protocol for add command on channel 1

– …

– Test case 1.1.2.4 : Check the protocol for sub command on channel 4

STUDENTS-HUB.com

https://students-hub.com


41

Test Scenarios: Advanced Tests (partial list)

DescriptionTest #Topic

For each port, check that each command can be followed by other 

command without leaving the state of the design dirty
2.1.1

Command 

sequences For all ports combined, check that each command can be followed by 

other command without leaving the state of the design dirty (concurrent 

commands)

2.1.2

Check that there is fairness among the channels2.2Fairness

Add two numbers that overflow by 12.3.1

Corner 

cases

Add two numbers that reach the maximum value2.3.2

Subtract two numbers that underflow by 12.3.3

Subtract two equal numbers (result is 0)2.3.4

Shift (left and right) 0 places2.3.5

Shift completely out (left and right) 2.3.6

STUDENTS-HUB.com

https://students-hub.com


42

Risks and Risk Management

 Complexity of design project

 Architecture and microarchitecture closure

 Resources
– Not just verification

 New tools

 Deliveries
– Internal

– External

 Dependencies
– Design availability

– Quality of lower levels verification

– Tools and verification IP

STUDENTS-HUB.com

https://students-hub.com


43

Summary

 Verification Cycle

– Foundation for successful verification

 Verification Methodology

– Evolution of:

 Test patterns

 Test cases

 Test case generators/drivers

 Verification Plan

– The specification for the verification process.

STUDENTS-HUB.com

https://students-hub.com

