ENCS5337: Chip Design Verification
Spring 2023/2024

Verification Cycle, Verification
Methodology & Verification Plan

Dr. Ayman Hroub

Many thanks to Dr. Kerstin Eder for most of the slides

SSSSSSSSSSSSSSSS


https://students-hub.com

The Verification Cycle

Designer implements

Functional the functional specification
Specification > (in HDL)
\/ Plan 4
\ Create Review
Verification \ Develop
Plan Verification \ !
t

Perform Escape
Analysis

\ Run Regression
_ Tape Out
Debug Fabricated A/\/%gdiness

Hardware

Environmen
Lessons \/ Stimulus, checkers, Debug HDL and
Learned Formal Verification EnVIFOHant

STUDENTS-HUB.com


https://students-hub.com

Functional Specifications

= The functional specification describes the
desired product
= |t contains the specification of:
— The function that it must perform.
— The interfaces with which it communicates.
— The conditions that affect the design.

= Designers implement the specification in HDL

= Verification engineers incorporate the functional
specification into the verification plan and
environment.

— This may seem redundant, but it is the foundation of
verification, i.e. the specification for the verification.

SSSSSSSSSSSSSSSS


https://students-hub.com

Create Verification Plan

Functions to be verified: list the functions that will be

verified at this level of verification.

— Functions not covered: any functions that must be verified at a
different level of the hierarchy.

Resources required (people) and schedule details: tie

the plan to the program management by estimating the

cost of verification.

Required tools: list the software and hardware
necessary to support the described environment.

Specific tests and methods: define the type of
environment that the verification engineers will create.

Completion criteria: Define the measurements that
Indicate that verification is complete.

SSSSSSSSSSSSSSSS


https://students-hub.com

Develop Verification Environment

The verification environment is the set of software code
and tools that enable the verification engineer to identify
flaws in the design.

— The software code tends to be specific to the design,

— while the tools are more generic and are used across multiple
verification projects

= Major components in the verification environment are
stimulus and checking for simulation based
environments, and rules generation (properties) for
formal verification environments

= The environment is continually refined throughout the

verification cycle
— Refinements include fixes and additions to the software code

STUDENTS-HUB.com


https://students-hub.com

Debug HDL and Environment

STUDENTS-HUB.com

Run tests according to the verification plan and look for
anomalies

Examine the anomalies to reveal the failure source

— Can be either in the verification environment or in the HDL
design

Fix the cause of the failure
— Either the verification environment or the HDL design

Once the problem is fixed, rerun the exact same test(s)

— Aim to ensure that the update corrects the original anomaly and
does not introduce new ones

Update the verification plan based on lessons learnt

J


https://students-hub.com

Run Regression

Regression is the continuous running of the
tests defined in the verification plan

Often, verification teams leverage large
workstation pools, or “farms”, to run an ever-
iIncreasing number of verification jobs

Regression is used to uncover hard-to-find bugs
and ensure that the quality of the design keeps
Improving

With chip fabrication on the horizon, the
verification team must reflect on the environment
to ensure that

— they have applied all valid scenarios to the design
— and performed all pertinent checks

This is the tape-out readiness checkpoint. O

SSSSSSSSSSSSSSSS


https://students-hub.com

Debug Fabricated Hardware

= The design team releases the hardware to the
fabrication facility when they meet all fabrication
criteria

— This process is also known as the tape-out.

= The design team receives the hardware once
the chip fabrication completes

= The hardware Is then mounted on test platforms
or into the planned systems for these chips

= The hardware debug team performs the
“hardware bring-up”

— During hardware bring-up, further anomalies may
present themselves.

SSSSSSSSSSSSSSSS


https://students-hub.com

Perform Escape Analysis

= Analysis of bugs that were found later than when
they should have

= The goal is to fully understand the bug, as well
as the reasons that it went undiscovered by the
verification environments

= Important goal: Reproduce the bug in a
simulation environment, if possible.
— The lack of reproduction in the verification

environment indicates that the design team may not
understand the bug

— It would then follow that the team cannot assert that
the bug fix is correct without reproducing the original
bug in verification. U

SSSSSSSSSSSSSSSS


https://students-hub.com

Common Verification Breakdowns

Verification
Instead of t

Underdeve
Underdeve

based on the design itself
ne specification

oped verification plans

oped specifications

L ack of resources

ape-out based on schedule instead of

pre-defined measures

SSSSSSSSSSSSSSSS

10


https://students-hub.com

The Verification Cycle

= The process that includes creation of test
plans, writing and running verification tests,
debugging, and analysis of the holes In the
verification environments

SSSSSSSS -HUB.com 11


https://students-hub.com

Verification Methodology

SSSSSSSSSSSSSSSS


https://students-hub.com

Outline

= Verification methodology evolution
= Basic verification environment
= Evolution of the Verification plan

= Contents of the Verification plan
— Functions to be verified
— Specific tests
— Coverage goals
— Test case scenarios (Tests list)

= Example

SSSSSSSSSSSSSSSS


https://students-hub.com

Simulation-based Verification Environment Flow

Test case
Test case — Driver or
translator

(not always required)

Environment - Slgulz_atlon
Data \ ngine

Initialization

. . Test case results
Run-time requirements

_>

Design
Source

VHDL
Verilog

STUDENTS-HUB.com 14


https://students-hub.com

Simulation based on Compiled Code

= To simulate with ModelSim:
— Compile HDL source code into a library.
— Compiled design can be simulated.

Write
HDL
code

SSSSSSSSSSSSSSSS

Correct
syntax errors

il

Compile Simulate
HDL the

code design

Debug
the

design

15


https://students-hub.com

Simulation-based Verification Environment Structure

Stimulus
Initiator A

Stimulus
Initiator B

This is another (slightly more
sopisticated) example of a
testbench.

(New components to be
covered during the following
lectures.)

STUDENTS-HUB.com

Stimulus
Responder

Checker

Monitor

16


https://students-hub.com

Verification Methodology Evolution

Test Patterns

'

Test Cases
5 A
3
(¢») Test Case Test Case
Generators Drivers

(£
/ ‘Coverage tools

SSSSSSSSSSSSSSSS

17


https://students-hub.com

Test Case Generators

* Replace hand-crafted specific test patterns
with machine generated random patterns

— Single scenario — multiple scenarios
— Specific target — more generic targets

— Small number of tests — large number of
tests

* Test case generators are tools that are
external to the verification environment

— Offline generation U
— For the environment, tests are hardcoded

SSSSSSSS -HUB.com 20


https://students-hub.com

Test Case Drivers

= The stimuli generation is embedded in the
verification environment

= Stimuli are generated during the operation
of the environment (and simulation)

= The driver can react to the state of the
DUV

— Can improve the quality of the stimuli and
stress per cycle

J

SSSSSSSS -HUB.com 2 1


https://students-hub.com

Coverage

SSSSSSSSSSSSSSSS

he move from target-specific test cases to
random stimuli generation reduced the ability of
the verification team to ensure that all
Interesting cases are verified

Coverage measurement and analysis are the
“automatic replacement” for this

— Replaces one-to-one matching with many-to-many
= Many tests can potentially hit many interesting cases
Coverage measures whether test cases hit the

scenarios they are supposed to hit

— And highlights untested areas

Coverage measures the effectiveness of the
verification U

22


https://students-hub.com

Verification Plan

SSSSSSSSSSSSSSSS


https://students-hub.com

Evolution of the Verification Plan

= The source of the verification plan is the
Functional Spec document

— Must understand the DUV before determining
how to verify it

— Confront unclear and ambiguous definitions
— Incomplete and changing continuously

= Other factors may affect its content

SSSSSSSSSSSSSSSS

24


https://students-hub.com

Design and Verification Process Interlock

|
: : |
2 | Design Cycle Duration
@ | Functional |
= | Specification |
S Development
= |
% IHigh Level
o Design (uArch) |
(@)]
I Design Implementation | |
A IFinal Physical |
Design
" I
g |Create Evolve Verification Plan
= Verification
(@]
c Plan |
- Implement |
IS Environment |
§ From Plan |Debug HDL and Environment:
= Write and Run Tests from Plan . |
= Regression |
- T T
Initial Review Milestone Final Review Milestone Tape Out

STUDENTS-HUB.com 25


https://students-hub.com

Example: Verifying a Simple Calculator

= Specs:
- The calculator has four commands: add, subtract,
shift left and shift right

- It can handle (but not process) four requests in
parallel.

- All requests have equal priority. They are processed
In order, I.e., First Come First Served.

26

SSSSSSSSSSSSSSSS


https://students-hub.com

Top Level of Calculator Design

STUDENTS-HUB.com

req1_cmd_in<0:3>
req2_cmd_in<0:3>
req3_cmd_in<0:3>
reqgd_cmd_in<0:3>

req1_data_in<0:31>
req2_data_in<0:31>
req3_data_in<0:31>
req4_data_in<0:31>

reset<1:7>
c_clk

calc

out_resp1<0:1>
out_resp2<0:1>
out_resp3<0:1>
out_resp4<0:1>

out_data1<0:31>

out_data2<0:31>
out_data3<0:31>

out_datad4<0:31>

27


https://students-hub.com

Calculator Input Commands

= Input commands are coded as follows:

0 no-op

1 add operand 1 and operand 2

2 subtract operand 2 from operand 1

5 shift left operand 1 by operand 2 places
6 shift right operand 1 by operand 2 places

= |[nput data timing:

SSSSSSSSSSSSSSSS

Operand 1 arrives with the command, i.e., at the
same clock cycle.

Operand 2 arrives on the following clock cycle.

28


https://students-hub.com

Calculator Output Responses

= Qutput response lines encode the

following:

- 0 no response

- 1 successful operation completion

- 2 invalid command or overflow/underflow error
- 3 internal error

= Valid result data on output lines
accompanies the response on successful
completion

SSSSSSSS -HUB.com 29


https://students-hub.com

Calculator Verification Plan

= You have been given the specs.

= Now It Is your job to demonstrate that the actual
design implementation matches the intent.

= Even for a relatively simple design like this
calculator, it is still best not to jump into test case
writing before thinking through the entire
verification plan requirements.

SSSSSSSSSSSSSSSS

30


https://students-hub.com

Contents of the Verification Plan

= Description of the verification levels
= Functions to be verified

= Resource requirements

= Required tools
= Schedule

= Specific tests and methods

= Coverage requirements (Coverage Plan)
= Completion criteria

= Test scenarios (Matrix) (Test Plan)

= Risks and dependencies

SSSSSSSSSSSSSSSS

31


https://students-hub.com

Description of Verification Levels

SSSSSSSSSSSSSSSS

The first step in building the verification plan is to
decide on which levels to perform the verification
The decision is based on many factors, such as
— The complexity of each level

— Resources

— Risk

— Existence of a clean interface and specification

The decision should include which functions are

verified at lower levels and which at the current
level

Each level and piece selected need to have its
own verification plan

32


https://students-hub.com

Verification Levels for This Calculator

= This calculator Is simple enough to be
verified only at the top level

— In addition we do not have enough details on
the internal components

= |n more realistic world, we may decide to
verify the ALU and shifter alone

— For example, using formal verification

SSSSSSSS -HUB.com 33


https://students-hub.com

Functions to be verified

= This section lists the specific functions of the
DUV that the verification team will exercise

— Omitted functions may slip away and not be verified

= Assign Priority for each function
— Ciritical functions
— Secondary functions

= Functions not verified at this level
— Fully verified at a lower level
— Not applicable to this level

SSSSSSSSSSSSSSSS

34


https://students-hub.com

Required Tools

= Specification and list of the verification toolset
— Simulation engines
— Debuggers
— Verification environment authoring tools
— Formal verification tools
— ... and more

= For this calculator
— Simulation engine
— Waveform viewer
— Verification environment authoring tool

SSSSSSSSSSSSSSSS

35


https://students-hub.com

Specific Tests and Methods

= What type of Verification?
— Black box
— White box
— Grey box
= Verification Strategy
— Formal Verification
— Deterministic
— Random based
= Checking

— Simple 1/O checking for data correctness

SSSSSSSSSSSSSSSS

36


https://students-hub.com

Coverage Requirements

= Traditionally, coverage is the feedback mechanism
that evaluates the quality of the stimuli
— Required in all random-based verification environments
— Some aspects of coverage are directly achieved in deterministic
testing
= Coverage is defined as events (or scenarios) or families
of events that span the functionality and code of the DUV

— The environment has exercised all types of commands and
transactions

— The stimulus has created a specific or varying range of data
types

— The environment has driven varying degrees of legal concurrent
stimulus

= Soon: Coverage metrics

STUDENTS-HUB.com 37


https://students-hub.com

Completion Criteria

These might

STUDENTS-HUB.com

Include:

Coverage
targets

Target
metrics, e.g.
bug rate drop

Resolution of
open Issues

Review

Regression
results

No

Coverage
omplete?

Yes

38



https://students-hub.com

Test Scenarios (Matrix)

= Specifies test scenarios that will be used
throughout the verification process

— deterministic or random

— Scenarios are connected to items In the
coverage requirements

= Start with a basic set for the basic
functionality

— Add more tests to plug holes in coverage,
reach corner cases, etc.

= Examples for calcl design

SSSSSSSSSSSSSSSS

39


https://students-hub.com

Test Scenarios for Calcl: Basic Tests (partial list)

Test # Description

11 Check the basic command-response protocol on each of the
four ports for each command

1.2 Check the operation of each command (on each port?)

1.3 Check overflow and underflow for add and subtract commands

1.4 Check ...

= These generic tests should be broken to more specific tests
— Testcase 1.1.1.1 : Check the protocol for add command on

— Test case 1.1.2.4 : Check the protocol for sub command on

STUDENTS-HUB.com 40


https://students-hub.com

Test Scenarios: Advanced Tests (partial list)

Topic Test # Description
For each port, check that each command can be followed by other
2.1.1 ) ) : :
command without leaving the state of the design dirty
Command :
sequences For all ports combined, check that each command can be followed by
2.1.2 | other command without leaving the state of the design dirty (concurrent
commands)
Fairness 2.2 Check that there is fairness among the channels
2.3.1 | Add two numbers that overflow by 1
2.3.2 | Add two numbers that reach the maximum value
corner 2.3.3 | Subtract two numbers that underflow by 1
cases 2.3.4 | Subtract two equal numbers (result is 0)
2.3.5 | Shift (left and right) O places
2.3.6 | Shift completely out (left and right)

STUDENTS-HUB.com

41



https://students-hub.com

Risks and Risk Management

= Complexity of design project
= Architecture and microarchitecture closure

= Resources

— Not just verification
= New tools
= Deliveries

— Internal A
- n Y
— External [ )%
| |

= Dependencies “\g
— Design availability

— Quality of lower levels verification
— Tools and verification IP

STUDENTS-HUB.com

42


https://students-hub.com

Summary

= Verification Cycle
— Foundation for successful verification

= Verification Methodology

— Evolution of:
= Test patterns
» Test cases
» Test case generators/drivers

= Verification Plan
— The specification for the verification process.

SSSSSSSSSSSSSSSS

43


https://students-hub.com

