

COMPUTER SCIENCE DEPARTMENT FACULTY OF ENGINEERING AND TECHNOLOGY ADVANCED PROGRAMMING COMP231

> Instructor :Murad Njoum Office : Masri322

Chapter 3 Selections

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

The boolean Type and Operators

Often in a program you need to compare two values, such as whether i is greater than j. Java provides six comparison operators (also known as relational operators) that can be used to compare two values. The result of the comparison is a Boolean value: true or false.

boolean b = (1 > 2);

Relational Operators

Java Operator	Mathematics Symbol	Name	Example (radius is 5)	Result
<	<	less than	radius < 0	false
<=	≤	less than or equal to	radius <= 0	false
>	>	greater than	radius > 0	true
>=	≥	greater than or equal to	radius >= 0	true
==	=	equal to	radius == 0	false
!=	¥	not equal to	radius != 0	true

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Problem: A Simple Math Learning Tool

This example creates a program to let a first grader practice additions. The program randomly generates two single-digit integers number1 and number2 and displays a question such as "What is 7 + 9?" to the student. After the student types the answer, the program displays a message to indicate whether the answer is true or false.

import java.util.Scanner; public class AdditionQuiz {

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

One-way if Statements

Note

Simple if Demo

Write a program that prompts the user to enter an integer. If the number is a multiple of 5, print HiFive. If the number is divisible by 2, print HiEven.

```
import java.util.Scanner;
public class SimpleIfDemo {
    public static void main(String[] args) {
        Scanner input = new Scanner(System.in);
        System.out.print("Enter an integer: "); int number = input.nextInt();
        if (number % 5 == 0)
        System.out.println("HiFive");
        if (number % 2 == 0)
        System.out.println("HiEven");
    }
}
```


if-else Example

```
if (radius >= 0) {
   area = radius * radius * 3.14159;
   System.out.println("The area for the "
        + "circle of radius " + radius +
        " is " + area);
}
else {
   System.out.println("Negative input");
}
```


liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Multiple Alternative if Statements

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Note

The <u>else</u> clause matches the most recent <u>if</u> clause in the same block.

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Note, cont.

Nothing is printed from the preceding statement. To force the <u>else</u> clause to match the first <u>if</u> clause, you must add a pair of braces:

```
int i = 1;
int j = 2;
int k = 3;
if (i > j) {
    if (i > k)
        System.out.println("A");
}
else
    System.out.println("B");
This statement prints B.
```


Common Errors

Adding a semicolon at the end of an <u>if</u> clause is a common mistake.

This mistake is hard to find, because it is not a compilation error or a runtime error, it is a logic error.

This error often occurs when you use the next-line block style.

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

TIP

CAUTION

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Problem: An Improved Math Learning Tool

This example creates a program to teach a first grade child how to learn subtractions. The program randomly generates two singledigit integers <u>number1</u> and <u>number2</u> with <u>number1 >= number2</u> and displays a question such as "What is 9 - 2?" to the student. After the student types the answer, the program displays whether the answer is correct.

SubtractionQuiz Run

Problem: Body Mass Index

Body Mass Index (BMI) is a measure of health on weight. It can be calculated by taking your weight in kilograms and dividing by the square of your height in meters. The interpretation of BMI for people 16 years or older is as follows:

Problem: Computing Taxes

The US federal personal income tax is calculated based on the filing status and taxable income. There are four filing statuses: single filers, married filing jointly, married filing separately, and head of household. The tax rates for 2009 are shown below.

Marginal Tax Rate	Single	Married Filing Jointly or Qualifying Widow(er)	Married Filing Separately	Head of Household
10%	\$0-\$8,350	\$0-\$16,700	\$0 - \$8,350	\$0 - \$11,950
15%	\$8,351 - \$33,950	\$16,701 - \$67,900	\$8,351 - \$33,950	\$11,951 - \$45,500
25%	\$33,951 - \$82,250	\$67,901 - \$137,050	\$33,951 - \$68,525	\$45,501 - \$117,450
28%	\$82,251 - \$171,550	\$137,051 - \$208,850	\$68,526 - \$104,425	\$117,451 - \$190,200
33%	\$171,551 - \$372,950	\$208,851 - \$372,950	\$104,426 - \$186,475	\$190,201 - \$372,950
35%	\$372,951+	\$372,951+	\$186,476+	\$372,951+

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Problem: Computing Taxes, cont.

```
if (status == 0) {
  // Compute tax for single filers
}
else if (status == 1) {
  // Compute tax for married file jointly
  // or qualifying widow(er)
}
else if (status == 2) {
  // Compute tax for married file separately
}
else if (status == 3) {
  // Compute tax for head of household
}
else {
  // Display wrong status
}
                                      ComputeTax
                                                    Run
```

Logical Operators

Operator	Name	Description
1	not	logical negation
&&	and	logical conjunction
II	or	logical disjunction
^	exclusive or	logical exclusion

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Truth Table for Operator !

р	!p	Example (assume age = 24, weight = 140)	
true	false	!(age > 18) is false, because (age > 18) is true.	
false	true	!(weight == 150) is true, because (weight == 150) is false.	(i)

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Truth Table for Operator &&

p ₁	p ₂	p ₁ && p ₂	Example (assume age = 24, weight = 140)
false	false	false	(age <= 18) && (weight < 140) is false, because both
			conditions are both false.
false	true	false	
true	false	false	(age > 18) & (weight > 140) is false, because (weight
			> 140) is false.
true	true	true	(age > 18) && (weight >= 140) is true, because both
			(age > 18) and $(weight >= 140)$ are true.
oductio	on to j	ava progra	mming 11th edition ,2019 , Edit By : Mr.Murad Njoum

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Truth Table for Operator ||

p	1	p ₂	$\mathbf{p}_1 \parallel \mathbf{p}_2$	Example (assume age = 24, weihgt = 140)
f	alse	false	false	
f	alse	true	true	$(age > 34) \parallel (weight \le 140)$ is true, because $(age > 34)$
				is false, but (weight <= 140) is true.
t	rue	false	true	$(age > 14) \parallel (weight >= 150)$ is false, because
				(age > 14) is true.
t	rue	true	true	
tro	oduct	on to ja	iva progra	mming 11 th edition , 2019 , Edit By : Mr.Murad Njoum

Truth Table for Operator ^

p ₁	p ₂	p ₁ ^ p ₂	Example (assume age = 24, weight = 140)
false	false	false	$(age > 34) \land (weight > 140)$ is true, because $(age > 34)$ is false and $(weight > 140)$ is false.
false	true	true	$(ana > 34) \land (waight > -140)$ is true because $(ana > 34)$ is false
14150	uue	uue	but (weight $>= 140$) is true.
true	false	true	$(age > 14) \land (weight > 140)$ is true, because $(age > 14)$ is
			true and (weight > 140) is false.
true	true	false	

liang introduction to Java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Examples

Here is a program that checks whether a number is divisible by $\underline{2}$ and $\underline{3}$, whether a number is divisible by $\underline{2}$ or $\underline{3}$, and whether a number is divisible by $\underline{2}$ or $\underline{3}$ but not both:

Examples

System.out.println("Is " + number + " divisible by 2 and 3? " + ((number % 2 == 0) && (number % 3 == 0)));

System.out.println("Is " + number + " divisible by 2 or 3? " +

 $((number \% 2 == 0) \parallel (number \% 3 == 0)));$

The & and | Operators

Supplement III.B, "The & and | Operators"


```
The & and | Operators

If x is 1, what is x after this

expression?

(x > 1) \& (x++ < 10)

If x is 1, what is x after this

expression?

(1 > x) \&\& (1 > x++)

How about (1 == x) | (10 > x++)?

(1 == x) || (10 > x++)?
```

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Problem: Determining Leap Year?

This program first prompts the user to enter a year as an <u>int</u> value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by 100, or it is divisible by 400.

```
(year \% 4 == 0 \&\& year \% 100 != 0) \parallel (year \% 400)== 0)LeapYear Run
liang introduction to java programming 11th edition ,2019, Edit By : Mr.Murad Njoum
```

Problem: Lottery

Write a program that randomly generates a lottery of a two-digit number, prompts the user to enter a two-digit number, and determines whether the user wins according to the following rule:

- If the user input matches the lottery in exact order, the award is \$10,000.
- If the user input matches the lottery, the award is \$3,000.
- If one digit in the user input matches a digit in the lottery, the award is \$1,000.

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Lottery

Run

switch Statements

switch (status) {
 case 0: compute taxes for single filers;
 break;
 case 1: compute taxes for married file jointly;
 break;
 case 2: compute taxes for married file separately;
 break;
 case 3: compute taxes for head of household;
 break;
 default: System.out.println("Errors: invalid status");
 System.exit(1);
 }
}

switch Statement Flow Chart

switch Statement Rules

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

switch Statement Rules

When the value in a **case** statement matches the value of the **switch-expression**, the statements *starting from this case* are executed until either a **break** statement or the end of the **switch** statement is reached.

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Conditional Operators if (x > 0) y = 1else y = -1;is equivalent to y = (x > 0) ? 1 : -1;(boolean-expression) ? expression1 : expression2 Ternary operator Binary operator Unary operator

Conditional Operator

```
if (num % 2 == 0)
   System.out.println(num + "is even");
else
   System.out.println(num + "is odd");
```

```
System.out.println(
  (num % 2 == 0)? num + "is even" :
  num + "is odd");
```


liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Operator Precedence

```
var++, var--
+, - (Unary plus and minus), ++var,--var
(type) Casting
! (Not)
*, /, % (Multiplication, division, and remainder)
+, - (Binary addition and subtraction)
<, <=, >, >= (Relational operators)
==, !=; (Equality)
^ (Exclusive OR)
&& (Conditional AND) Short-circuit AND
|| (Conditional OR) Short-circuit OR
=, +=, -=, *=, /=, %= (Assignment operator)
```


Operator Precedence and Associativity

The expression in the parentheses is evaluated first. (Parentheses can be nested, in which case the expression in the inner parentheses is executed first.) When evaluating an expression without parentheses, the operators are applied according to the precedence rule and the associativity rule.

If operators with the same precedence are next to each other, their associativity determines the order of evaluation. All binary operators except assignment operators are left-associative.

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Operator Associativity

When two operators with the same precedence are evaluated, the *associativity* of the operators determines the order of evaluation. All binary operators except assignment operators are *leftassociative*.

a - b + c - d is equivalent to ((a - b) + c) - d

Assignment operators are *right-associative*. Therefore, the expression

a = b += c = 5 is equivalent to a = (b += (c = 5))

Example

Applying the operator precedence and associativity rule, the expression 3 + 4 * 4 > 5 * (4 + 3) - 1 is evaluated as follows:

liang introduction to java programming 11th edition ,2019 , Edit By : Mr.Murad Njoum

Debugger

Debugger is a program that facilitates debugging. You can use a debugger to

- Execute a single statement at a time.
- Trace into or stepping over a method.
- Set breakpoints.
- Display variables.
- Display call stack.
- Modify variables

