Data Structures COMP242

Ala' Hasheesh ahashesh@birzeit.edu

Algorithm Analysis

Uploaded By: anon¹ymous

To select best Algorithm, we analyze two factors:

- **Time:** Function describing the amount of time it takes the given algorithm to give us the output
- Space/Memory: Function describing the total amount of memory needed to run our algorithm

STUDENTS-HUB.com

Uploaded By: anon²ymous

In this course we will focus on time complexity!

STUDENTS-HUB.com

Uploaded By: anon³ymous

Running time depends on:

- Algorithm design (Linear vs Logarithmic)
- Input size (n = 10 vs n = 10⁶)
- Programming language (c vs JAVA)
- Compiler
- OS (windows vs Linux)
- Computer Hardware (CPU, RAM, etc...)

STUDENTS-HUB.com

Uploaded By: anon⁴ymous

Asymptotic Notation

Asymptotic Notation is a formal notation for discussing and analyzing "classes of functions"

- "Big-O" notation : O(N)
- "Big-Omega of n": $\Omega(N)$
- "Theta of n": $\Theta(N)$

"Big-O" notation : O(N)

• T(N) = O(f(N)) if there are positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$ "Upper Bound"

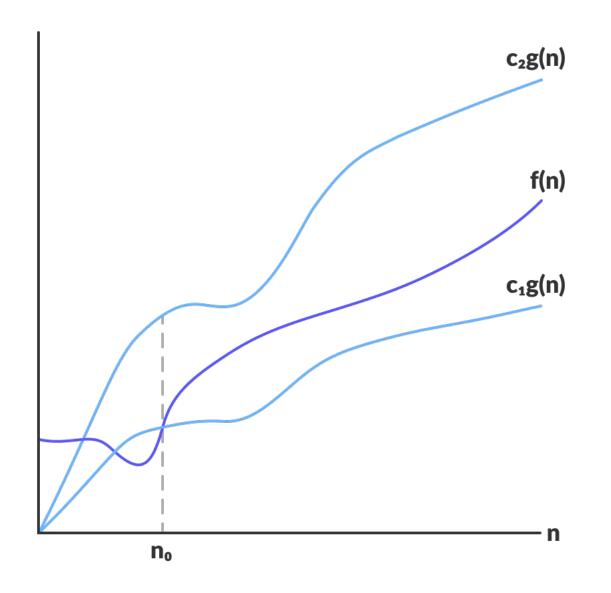
"Big-Omega of n": $\Omega(N)$

• $T(N) = \Omega(g(N))$ if there are positive constants c and n_0 such that $T(N) \ge cg(N)$ when $N \ge n_0$ "Lower Bound"

"Theta of n": $\Theta(N)$

• $T(N) = \Theta(h(N))$ if and only if T(N) = O(h(N)) and $T(N) = \Omega(h(N))$ "Tight Bound"

STUDENTS-HUB.com



STUDENTS-HUB.com

Uploaded By: anon⁷ymous

Big-O		Name	
0(1)		Constant	
$O(\log n)$		Logarithmic	
$O(\log^2 n)$		Log-squared time	
0(<i>n</i>)		Linear	
O(nlog n)			
$0(n^2)$		Quadratic	
$0(n^3)$		Cubic	
$O(n^i)$		Polynomial	
$0(c^{n})$	<i>c</i> > 1	Exponential	

Time Complexity:

Computational complexity that measures or estimates the time taken for running an algorithm.

Complexity can be viewed as the maximum number of primitive operations that a program may execute. STUDENTS-HUB.com Uploaded By: anon[§]ymous

Function	N=10	N=100	N=1000	N=10 ⁶
0(<i>n</i>)	10 ns	100 ns	1000 ns	1 ms
$0(n^2)$	100 ns	10000 ns	1 ms	17 min
0(nlog n)	35 ns	700 ns	10000 ns	20 ms
$0(2^{n})$	1000 ns	4 x 10 ¹⁴ years!	Too long!	Too long!
0(<i>n</i> !)	4 ms	Too long!	Too long!	Too long!

STUDENTS-HUB.com

Rules

Assume $T_1(n) = O(f(n))$ and $T_2(n) = O(g(n))$ then:

1.
$$T_1(n) + T_2(n) = \max(O(f(n), O(g(n))))$$

2.
$$T_1(n) * T_2(n) = O(f(n) * g(n))$$

STUDENTS-HUB.com

private int add(int x, int y) {
 return x + y; // 1 operation
}

T(n) = c

= 0(1)

private int add(int n) {
 int sum = 0; // 1 operation
 for (int i = 0; i < n; i++) { // 2n
 sum = sum + i; // n
 }
 return sum; // 1
}</pre>

T(n) = 3n + c

Here **d** and **c** are constants

 $= \mathbf{0}(\mathbf{n})$

Uploaded By: ano¹¹ymous

STUDENTS-HUB.com

Rule1

• $T(n) = 1 + 3n + 5n^2$

STUDENTS-HUB.com

Uploaded By: ano¹²ymous

Rule1

•
$$T(n) = 1 + 3n + 5n^2$$

 $0(n^2)$

STUDENTS-HUB.com

Rule1

- $T(n) = 1 + 3n + 5n^2$
- $1 + 3n + 5n^2 \le n^2 + 3n^2 + 5n^2$
- $1 + 3n + 5n^2 \le 9n^2$

STUDENTS-HUB.com

Rule1

- $T(n) = 1 + 3n + 5n^2$
- $1 + 3n + 5n^2 \le n^2 + 3n^2 + 5n^2$
- $1 + 3n + 5n^2 \le 9n^2$

O(**n**²)

STUDENTS-HUB.com

Better

0(1) 0(log n) $0(log^2 n)$ 0(n) 0(n) 0(nlog n) $0(n^2)$ $0(n^3)$ $0(n^i)$	Big-O	
$0(\log^2 n)$ 0(n) 0(nlog n) $0(n^2)$ $0(n^3)$ $0(n^i)$	0(1)	
0(n) 0(nlog n) $0(n^2)$ $0(n^3)$ $0(n^i)$	$O(\log n)$	
0(nlog n) $0(n^2)$ $0(n^3)$ $0(n^i)$	$O(\log^2 n)$	
$0(n^2)$ $0(n^3)$ $0(n^i)$	0(<i>n</i>)	
$0(n^3)$ $0(n^i)$	O(nlog n)	
$O(n^i)$	$0(n^2)$	
	$0(n^{3})$	
$\mathcal{O}(\mathcal{D})$	$O(n^i)$	
$O(c^n) \qquad \qquad c > 1$	$O(c^n)$	<i>c</i> > 1

For Example:

 $O(\log n)$ is better than O(n)

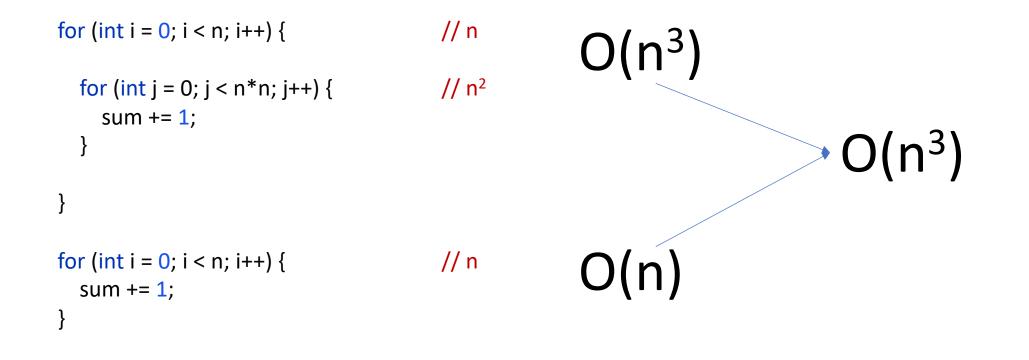
Worse

STUDENTS-HUB.com

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n * n; j++) {
        sum += 1;
    }</pre>
```

}

}



STUDENTS-HUB.com

```
for (int i = 0; i < n; i++) { // n
  for (int j = n; j < n*n; j++) { // n<sup>2</sup> - n
      sum += 1;
  }
}
```

```
for (int i = 0; i < n*n; i++) { // n<sup>2</sup>
    for (int j = i*i; j > 0; j--) { // n<sup>4</sup>
        for (int k = j; k < j * j; k++) { // n<sup>8</sup> - n<sup>4</sup>
            sum++;
        }
    }
}
```

STUDENTS-HUB.com

Uploaded By: ano²⁰ymous

```
for (int i = 0; i < n; i++) { // n
for (int j = n; j < n*n; j++) { // \approx n<sup>2</sup>
sum += 1;
}
T(n) = O(n<sup>3</sup>)
```

```
for (int i = 0; i < n*n; i++) { // n^2
for (int j = i*i; j > 0; j--) { // \approx n^4
for (int k = j; k < j * j; k++) { // \approx n^8
sum++;
}
}
T(n) = O(n^{14})
```

STUDENTS-HUB.com

If statement & switch

if (sum > 10) { // O(n) } else { // O(n^2) }

We usually analyze worse case running time!

O(n²)

STUDENTS-HUB.com

Uploaded By: ano²²ymous

If statement & switch

```
switch (sum % 2) {
    case 1:
        // O(n)
        break;
    case 2:
        // O(n^10)
        break;
    default:
        // O(n^3)
}
```

O(n³)

STUDENTS-HUB.com

Uploaded By: ano²³ymous

```
for (int i = 0; i < n; i++) {
    for (int j = n - 1; j < n; j++) {
        sum += 1;
    }</pre>
```

}

}

Uploaded By: ano²⁵ymous

O(n)

STUDENTS-HUB.com

}

Uploaded By: ano²⁶ymous

Recursion (Factorial)

```
int fact(int n) {
    if (n == 0) {
        return 1;
    }
```

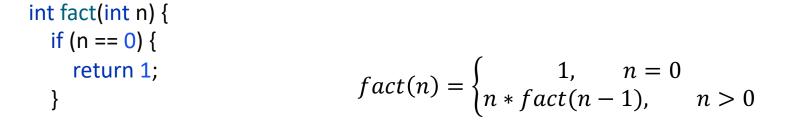
}

```
return n * fact(n - 1);
```

STUDENTS-HUB.com

Uploaded By: ano²⁷ymous

Recursion



```
return n * fact(n - 1);
```

STUDENTS-HUB.com

}

Uploaded By: ano²⁸ymous

Recursion

int fact(int n) {
if (n == 0) {
return 1;
}

$$fact(n) = \begin{cases} 1, & n = 0 \\ n * fact(n-1), & n > 0 \end{cases}$$

return n * fact(n - 1);

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

}

Uploaded By: ano²⁹ymous

Recursion

Multiplication is just one operation that takes constant time **c**

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

T(n) = T(n-1) + c

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

T(n) = T(n-1) + c

T(n-1) = T(n-2) + c

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = T(n-1) + c$$

 $T(n-1) = T(n-2) + c$
 $T(n) = T(n-1) + c$

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

С

STUDENTS-HUB.com

$$T(n) = T(n-1) + c$$

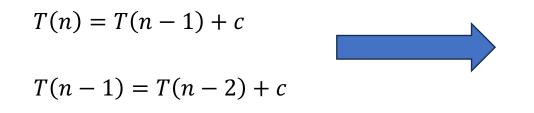
$$T(n-1) = T(n-2) + c$$

$$T(n-1) = T(n-2) + c$$

$$T(n) = \mathbf{T}(n-1) + c$$
$$T(n) = [\mathbf{T}(n-2) + c] + c$$

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com



T(n) = T(n - 1) + cT(n) = [T(n - 2) + c] + cT(n) = T(n - 2) + c + c

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano³⁵ymous

T(n) = T(n-2) + c + c

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

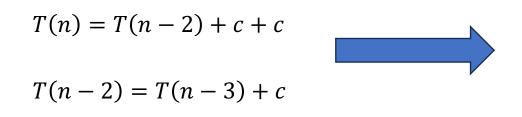
Uploaded By: ano³⁶ymous

T(n) = T(n-2) + c + c

T(n-2) = T(n-3) + c

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com



T(n) = T(n-2) + c + cT(n) = [T(n-3) + c] + c + cT(n) = T(n-3) + c + c + c

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano³⁸ymous

T(n) = T(n-3) + c + c + c

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

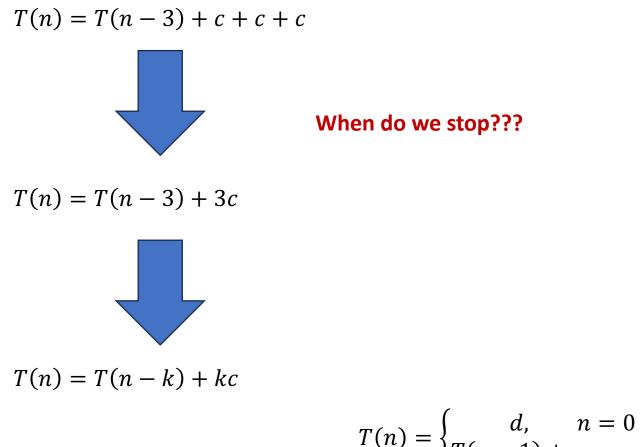
T(n) = T(n-3) + c + c + c

T(n) = T(n-3) + 3c

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

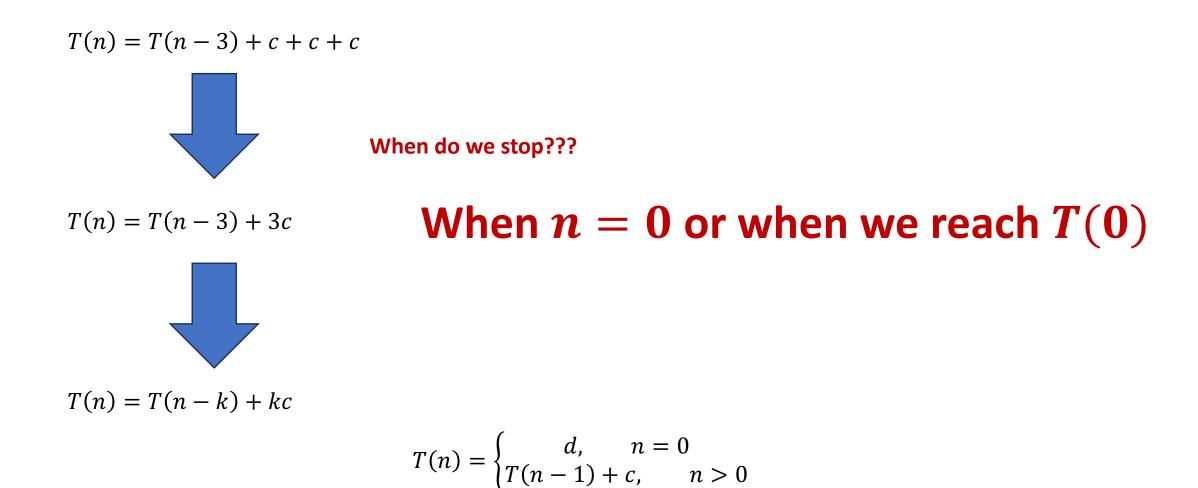
STUDENTS-HUB.com

Uploaded By: ano⁴⁰ymous



$$T(n) = \begin{cases} u, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com



STUDENTS-HUB.com

Uploaded By: ano⁴²ymous

T(n) = T(n-k) + kc

We should stop when we reach T(0)

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

T(n) = T(n-k) + kc

We should stop when we reach T(0)

Set k = n

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

T(n) = T(n-k) + kc

We should stop when we reach T(0)

Set **k** = **n**

T(n) = T(n-n) + nc

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

T(n) = T(n-k) + kc

We should stop when we reach T(0)

Set **k** = **n**

T(n) = T(n-n) + nc

T(n) = T(0) + nc

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁴⁶ymous

T(n) = T(n-k) + kc

We should stop when we reach T(0)

Set **k** = **n**

T(n) = T(n-n) + nc

T(n) = T(0) + nc

T(n) = d + nc

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

T(n) = T(n-k) + kc

We should stop when we reach T(0)

Set **k** = **n**

T(n) = T(n-n) + nc

T(n) = T(0) + nc

T(n) = d + nc

O(n)

$$T(n) = \begin{cases} d, & n = 0\\ T(n-1) + c, & n > 0 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁴⁸ymous

```
String toBinary(int n) {
    if (n <= 1) {
        return n + "";
     }</pre>
```

```
return toBinary(n / 2) + (n % 2);
```

STUDENTS-HUB.com

}

```
String toBinary(int n) {

if (n <= 1) {

return n + "";

}

f(n) = \begin{cases} n + "", & n \le 1 \\ f\left(\frac{n}{2}\right) + (n\%2), & n > 1 \end{cases}
```

```
return toBinary(n / 2) + (n % 2);
```

STUDENTS-HUB.com

}

String toBinary(int n) {
if (n <= 1) {
return n + "";
}

$$f(n) = \begin{cases} n + "", n \\ f\left(\frac{n}{2}\right) + (n\%2), \end{cases}$$

return toBinary(n / 2) + (n % 2);

$$\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$$

 $n \leq 1$

n > 1

STUDENTS-HUB.com

}

$$T(n) = T\left(\frac{n}{2}\right) + c$$

$$\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = T\left(\frac{n}{2}\right) + c$$
$$T(n) = T\left(n * \frac{1}{2}\right) + c$$

$$T(n) = \begin{cases} d, n \le 1\\ T\left(\frac{n}{2}\right) + c, n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁵³ymous

$$T(n) = T\left(\frac{n}{2}\right) + c$$
$$T(n) = T\left(n * \frac{1}{2}\right) + c$$

$$T\left(\frac{n}{2}\right) = T\left(\frac{n}{2} * \frac{1}{2}\right) + c$$
$$T\left(\frac{n}{2}\right) = T\left(\frac{n}{2 * 2}\right) + c$$

$$\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁵⁴ymous

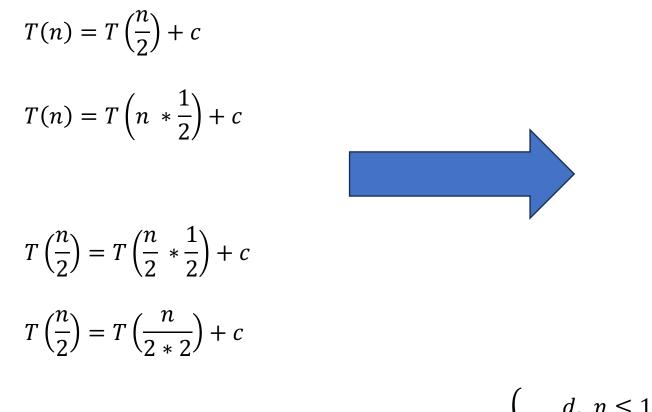
 $T(n) = T\left(\frac{n}{2}\right) + c$ $T(n) = T\left(n * \frac{1}{2}\right) + c$ $T\left(\frac{n}{2}\right) = T\left(\frac{n}{2} * \frac{1}{2}\right) + c$ $T\left(\frac{n}{2}\right) = T\left(\frac{n}{2*2}\right) + c$

$$T(n) = T\left(\frac{n}{2}\right) + c$$

$$T(n) = \left[T\left(\frac{n}{2*2}\right) + c\right] + c$$

$$\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$$

STUDENTS-HUB.com



$$T(n) = T\left(\frac{n}{2}\right) + c$$
$$T(n) = [T\left(\frac{n}{2 * 2}\right) + c] + c$$
$$T(n) = T\left(\frac{n}{2 * 2}\right) + c + c$$

$$\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁵⁶ymous

$$T(n) = T\left(\frac{n}{2*2}\right) + c + c$$
$$T(n) = T\left(\frac{n}{4}\right) + c + c$$

$$\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁵⁷ymous

$$T(n) = T\left(\frac{n}{2*2}\right) + c + c$$
$$T(n) = T\left(\frac{n}{4}\right) + c + c$$

$$T(n) = T\left(n * \frac{1}{2}\right) + c$$

$$T\left(\frac{n}{4}\right) = T\left(\frac{n}{4} * \frac{1}{2}\right) + c$$

$$T\left(\frac{n}{4}\right) = T\left(\frac{n}{4 * 2}\right) + c$$

$$T(n) = \begin{cases} d, n \le 1\\ T\left(\frac{n}{2}\right) + c, n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁵⁸ymous

$$T(n) = T\left(\frac{n}{2*2}\right) + c + c$$

$$T(n) = T\left(\frac{n}{4}\right) + c + c$$

$$T(n) = T\left(n * \frac{1}{2}\right) + c$$

$$T\left(\frac{n}{4}\right) = T\left(\frac{n}{4} * \frac{1}{2}\right) + c$$

$$T\left(\frac{n}{4}\right) = T\left(\frac{n}{4*2}\right) + c$$

$$T(n) = T\left(\frac{n}{4}\right) + c + c$$

$$T(n) = \left[T\left(\frac{n}{4*2}\right) + c\right] + c + c$$

$$T(n) = T\left(\frac{n}{4*2}\right) + c + c + c$$

 $\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$

Uploaded By: ano⁵⁹ymous

STUDENTS-HUB.com

$$T(n) = T\left(\frac{n}{4*2}\right) + c + c + c$$

$$\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁶⁰ymous

$$T(n) = T\left(\frac{n}{4*2}\right) + c + c + c$$
$$T(n) = T\left(\frac{n}{2*2*2}\right) + c + c + c$$

$$\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁶¹ymous

$$T(n) = T\left(\frac{n}{4*2}\right) + c + c + c$$
$$T(n) = T\left(\frac{n}{2*2*2}\right) + c + c + c$$

$$T(n) = T\left(\frac{n}{2^3}\right) + 3c$$

$$T(n) = \begin{cases} d, n \le 1\\ T\left(\frac{n}{2}\right) + c, n > 1 \end{cases}$$

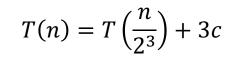
STUDENTS-HUB.com

Uploaded By: ano⁶²ymous

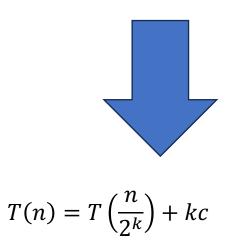
$$T(n) = T\left(\frac{n}{4*2}\right) + c + c + c$$

 $T(n) = T\left(\frac{n}{2*2*2}\right) + c + c + c$

When do we stop???



When $n \leq 1$ or when we reach T(1)



$$\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = T\left(\frac{n}{2^k}\right) + kc$$

We want $T\left(\frac{n}{2^k}\right) = T(1)$

STUDENTS-HUB.com

Uploaded By: ano⁶⁴ymous

$$T(n) = T\left(\frac{n}{2^k}\right) + kc$$

We want $T\left(\frac{n}{2^k}\right) = T(1)$

We want $rac{n}{2^k} = 1$

STUDENTS-HUB.com

Uploaded By: ano⁶⁵ymous

$$T(n) = T\left(\frac{n}{2^{k}}\right) + kc$$

We want $T\left(\frac{n}{2^{k}}\right) = T(1)$
We want $\frac{n}{2^{k}} = 1$
 $\frac{n}{2^{k}} = 1$

STUDENTS-HUB.com

Uploaded By: ano⁶⁶ymous

$$T(n) = T\left(\frac{n}{2^{k}}\right) + kc$$

We want $T\left(\frac{n}{2^{k}}\right) = T(1)$
We want $\frac{n}{2^{k}} = 1$
 $\frac{n}{2^{k}} = 1$

$$n = 2^k$$

STUDENTS-HUB.com

Uploaded By: ano⁶⁷ymous

$$T(n) = T\left(\frac{n}{2^k}\right) + kc \qquad log_2 n = log_2 2^k$$

We want $T\left(\frac{n}{2^k}\right) = T(1)$

We want
$$\frac{n}{2^k} = 1$$

 $\frac{n}{2^k} = 1$

Zĸ

$$n = 2^k$$

STUDENTS-HUB.com

Uploaded By: ano⁶⁸ymous

$$T(n) = T\left(\frac{n}{2^{k}}\right) + kc$$

$$\log_{2} n = \log_{2} 2^{k}$$
We want $T\left(\frac{n}{2^{k}}\right) = T(1)$

$$\log_{2} n = k \log_{2} 2$$
We want $\frac{n}{2^{k}} = 1$

$$\frac{n}{2^{k}} = 1$$

 $\overline{2^k} - 1$

 $n = 2^k$

STUDENTS-HUB.com

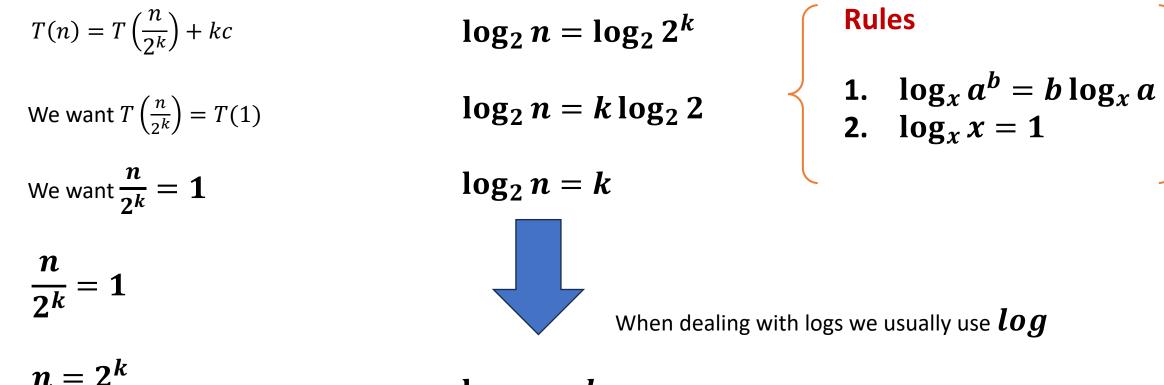
Uploaded By: ano⁶⁹ymous

$$T(n) = T\left(\frac{n}{2^k}\right) + kc$$
 $\log_2 n = \log_2 2^k$ RulesWe want $T\left(\frac{n}{2^k}\right) = T(1)$ $\log_2 n = k \log_2 2$ 1. $\log_x a^b = b \log_x a$ We want $\frac{n}{2^k} = 1$ $\log_2 n = k$ 2. $\log_x x = 1$

$$\frac{n}{2^k}=1$$

$$n = 2^k$$

STUDENTS-HUB.com



 $\log n = k$

STUDENTS-HUB.com

$$T(n) = T\left(\frac{n}{2^k}\right) + kc$$
 log $n = k$

$$T(n) = \begin{cases} d, n \le 1\\ T\left(\frac{n}{2}\right) + c, n > 1 \end{cases}$$

STUDENTS-HUB.com

Recursion (To Binary)

$$T(n) = T\left(\frac{n}{2^{k}}\right) + kc$$

$$\frac{n}{2^{k}} = 1$$

$$n = 2^{k}$$

$$\log n = k$$

$$\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Recursion (To Binary)

$$T(n) = T\left(\frac{n}{2^k}\right) + kc$$
 log $n = k$

 $T(n) = T(1) + c \log n$

 $T(n) = d + c \log n$

$$\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Recursion (To Binary)

$$T(n) = T\left(\frac{n}{2^k}\right) + kc$$
 log $n = k$

 $T(n) = T(1) + c \log n$

 $T(n) = d + c \log n$

0(log *n*)

$$\mathsf{T}(n) = \begin{cases} d, \ n \le 1\\ T\left(\frac{n}{2}\right) + c, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁷⁷ymous

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = 2T\left(n * \frac{1}{2}\right) + n$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = 2T\left(n * \frac{1}{2}\right) + n$$

$$T\left(\frac{n}{2}\right) = 2T\left(\frac{n}{2} * \frac{1}{2}\right) + \frac{n}{2}$$

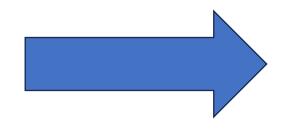
$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$T(n) = 2T\left(n * \frac{1}{2}\right) + n$$

 $T(n) = 2T\left(\frac{n}{2}\right) + n$



 $T\left(\frac{n}{2}\right) = 2T\left(\frac{n}{2} * \frac{1}{2}\right) + \frac{n}{2}$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁸⁰ymous

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = 2T\left(n * \frac{1}{2}\right) + n$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$T(n) = 2\left[2T\left(\frac{n}{2} * \frac{1}{2}\right) + \frac{n}{2}\right] + n$$

$$T\left(\frac{n}{2}\right) = 2T\left(\frac{n}{2} * \frac{1}{2}\right) + \frac{n}{2}$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁸¹ymous

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = 2T\left(n * \frac{1}{2}\right) + n$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$T(n) = 2\left[2T\left(\frac{n}{2} * \frac{1}{2}\right) + \frac{n}{2}\right] + n$$

$$T(n) = \left[\mathbf{4T}\left(\frac{\mathbf{n}}{\mathbf{4}}\right) + \mathbf{n}\right] + n$$

$$T\left(\frac{n}{2}\right) = 2T\left(\frac{n}{2} * \frac{1}{2}\right) + \frac{n}{2}$$

STUDENTS-HUB.com

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

Uploaded By: ano⁸²ymous

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = 2T\left(n * \frac{1}{2}\right) + n$$
$$T\left(\frac{n}{2}\right) = 2T\left(\frac{n}{2} * \frac{1}{2}\right) + \frac{n}{2}$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = 2\left[2T\left(\frac{n}{2} * \frac{1}{2}\right) + \frac{n}{2}\right] + n$$
$$T(n) = \left[4T\left(\frac{n}{4}\right) + n\right] + n$$

$$T(n) = 4T\left(\frac{n}{4}\right) + n + n$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

Uploaded By: ano⁸³ymous

STUDENTS-HUB.com

$$T(n) = 4T\left(\frac{n}{4}\right) + n + n$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁸⁴ymous

$$T(n) = 4T\left(\frac{n}{4}\right) + 2n$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁸⁵ymous

$$T(n) = 4T\left(\frac{n}{4}\right) + 2n$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = 2T\left(n * \frac{1}{2}\right) + n$$
$$T\left(\frac{n}{4}\right) = 2T\left(\frac{n}{4} * \frac{1}{2}\right) + \frac{n}{4}$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁸⁶ymous

 $T(n) = 4T\left(\frac{n}{4}\right) + 2n$

$$T(n) = 4T\left(\frac{n}{4}\right) + 2n$$

$$T(n) = 2T\left(n * \frac{1}{2}\right) + n$$

 $T(n) = 2T\left(\frac{n}{2}\right) + n$

$$T\left(\frac{n}{4}\right) = 2T\left(\frac{n}{4} * \frac{1}{2}\right) + \frac{n}{4}$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁸⁷ymous

$$T(n) = 4T\left(\frac{n}{4}\right) + 2n$$

$$T(n) = 4T\left(\frac{n}{4}\right) + 2n$$

$$T(n) = 4T\left(\frac{n}{4}\right) + 2n$$

$$T(n) = 4\left[2T\left(\frac{n}{8}\right) + \frac{n}{4}\right] + 2n$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$T(n) = 2T\left(n * \frac{1}{2}\right) + n$$

$$T(n) = \begin{cases} d, n = 1\\ 2T\left(\frac{n}{2}\right) + n, n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁸⁸ymous

+ 2*n*

$$T(n) = 4T\left(\frac{n}{4}\right) + 2n$$

$$T(n) = 4T\left(\frac{n}{4}\right) + 2n$$

$$T(n) = 4T\left(\frac{n}{4}\right) + 2n$$

$$T(n) = 4\left[2T\left(\frac{n}{8}\right) + \frac{n}{4}\right] + 2n$$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$T(n) = 2T\left(n * \frac{1}{2}\right) + n$$

$$T(n) = \begin{bmatrix} d, n = 1\\ 2T\left(\frac{n}{2}\right) + n, n > 1 \end{bmatrix}$$

STUDENTS-HUB.com

Uploaded By: ano⁸⁹ymous

$$T(n) = 4T\left(\frac{n}{4}\right) + 2n$$

$$T(n) = 4\left[2T\left(\frac{n}{8}\right) + \frac{n}{4}\right] + 2n$$

$$T(n) = \left[8T\left(\frac{n}{8}\right) + n\right] + 2n$$

$$T(n) = \left[8T\left(\frac{n}{8}\right) + n\right] + 2n$$

$$T(n) = 8T\left(\frac{n}{8}\right) + n + 2n$$

$$T(n) = 8T\left(\frac{n}{8}\right) + n + 2n$$

$$T(n) = \left\{\frac{d, n = 1}{2T\left(\frac{n}{2}\right) + n, n > 1}\right\}$$

Uploaded By: ano⁹⁰ymous

STUDENTS-HUB.com

$$T(n) = 8T\left(\frac{n}{8}\right) + n + 2n$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = 8T\left(\frac{n}{8}\right) + n + 2n$$

$$T(n) = (2 * 2 * 2)T\left(\frac{n}{2 * 2 * 2}\right) + 3n$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = 8T\left(\frac{n}{8}\right) + n + 2n$$

$$T(n) = (2 * 2 * 2)T\left(\frac{n}{2 * 2 * 2}\right) + 3n$$

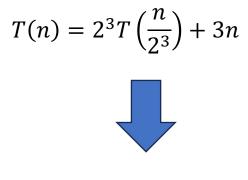
$$T(n) = 2^3 T\left(\frac{n}{2^3}\right) + 3n$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = 8T\left(\frac{n}{8}\right) + n + 2n$$

$$T(n) = (2 * 2 * 2)T\left(\frac{n}{2 * 2 * 2}\right) + 3n$$



$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

When do we stop?

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

When do we stop?

When
$$T\left(\frac{n}{2^k}\right) = T(1)$$

When $\frac{n}{2^k} = 1$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

Uploaded By: ano⁹⁷ymous

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

When do we stop?

When
$$T\left(\frac{n}{2^k}\right) = T(1)$$

When $\frac{n}{2^k} = 1$

When $\log_2 n = k$ (From previous Example)

STUDENTS-HUB.com

Uploaded By: ano⁹⁸ymous

$$T(n) = 2^{k}T\left(\frac{n}{2^{k}}\right) + kn$$
$$\frac{n}{2^{k}} = 1$$
$$n = 2^{k}$$
$$\log n = 1$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

k

STUDENTS-HUB.com

Uploaded By: ano⁹⁹ymous

$$T(n) = 2^{k}T\left(\frac{n}{2^{k}}\right) + kn$$
$$\frac{n}{2^{k}} = 1$$
$$n = 2^{k}$$
$$n = 2^{k}$$
$$\log n = k$$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = 2^{k}T\left(\frac{n}{2^{k}}\right) + kn$$
$$\frac{n}{2^{k}} = 1$$
$$n = 2^{k}$$
$$T(n) = 2^{k}T\left(\frac{n}{2^{k}}\right) + kn$$
$$\log n = k$$

 $T(n) = \mathbf{n}T(\mathbf{1}) + n\log n$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = 2^{k}T\left(\frac{n}{2^{k}}\right) + kn$$
$$\frac{n}{2^{k}} = 1$$
$$n = 2^{k}$$
$$n = 2^{k}$$
$$\log n = k$$

 $T(n) = \mathbf{n}T(\mathbf{1}) + n\log n$

 $T(n) = dn + n \log n$

$$\mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com

$$T(n) = 2^{k}T\left(\frac{n}{2^{k}}\right) + kn$$
$$\frac{n}{2^{k}} = 1$$
$$n = 2^{k}$$
$$n = 2^{k}$$
$$\log n = k$$

 $T(n) = \mathbf{n}T(\mathbf{1}) + n\log n$

 $T(n) = dn + n \log n$

$$\mathbf{O}(\boldsymbol{nlog n}) \qquad \qquad \mathsf{T}(n) = \begin{cases} d, \ n = 1\\ 2T\left(\frac{n}{2}\right) + n, \ n > 1 \end{cases}$$

STUDENTS-HUB.com