
Data Structures
COMP242

Ala’ Hasheesh
ahashesh@birzeit.edu

Algorithm Analysis

1Uploaded By: anonymousSTUDENTS-HUB.com

Review

To select best Algorithm, we analyze two factors:

• Time: Function describing the amount of time it takes the given
algorithm to give us the output

• Space/Memory: Function describing the total amount of memory
needed to run our algorithm

2Uploaded By: anonymousSTUDENTS-HUB.com

Review

In this course we will focus on time complexity!

3Uploaded By: anonymousSTUDENTS-HUB.com

Review

Running time depends on:

• Algorithm design (Linear vs Logarithmic)
• Input size (n = 10 vs n = 106)
• Programming language (c vs JAVA)
• Compiler
• OS (windows vs Linux)
• Computer Hardware (CPU, RAM, etc…)

4Uploaded By: anonymousSTUDENTS-HUB.com

Review

• Asymptotic Notation
Asymptotic Notation is a formal notation for discussing and analyzing "classes of functions"

• "Big-O" notation : Ο(𝑁)
• "Big-Omega of n": Ω(𝑁)
• "Theta of n": Θ(𝑁)

5Uploaded By: anonymousSTUDENTS-HUB.com

Review

"Big-O" notation : 𝚶(𝑵)
• 𝑇 𝑁 = Ο(𝑓 𝑁) if there are positive constants c and n0 such that 𝑻 𝑵 ≤ 𝒄𝒇(𝑵) when 𝑵 ≥ 𝒏𝟎
“Upper Bound”

"Big-Omega of n": 𝛀(𝑵)
• 𝑇 𝑁 = Ω(𝑔 𝑁) if there are positive constants c and n0 such that 𝑻 𝑵 ≥ 𝒄𝒈(𝑵) when 𝑵 ≥ 𝒏𝟎
“Lower Bound”

"Theta of n": 𝚯(𝑵)
• 𝑇 𝑁 = Θ(ℎ 𝑁) if and only if 𝑻 𝑵 = 𝑶(𝒉 𝑵) and 𝑻 𝑵 = 𝛀 𝒉 𝑵
“Tight Bound”

6Uploaded By: anonymousSTUDENTS-HUB.com

Review

7Uploaded By: anonymousSTUDENTS-HUB.com

Review
Big-O Name

Ο(1) Constant

Ο(𝑙𝑜𝑔	𝑛) Logarithmic

Ο(log! 𝑛) Log-squared time

Ο(𝑛) Linear

Ο(𝑛𝑙𝑜𝑔	𝑛)
Ο(𝑛!) Quadratic

Ο(𝑛") Cubic

Ο(𝑛#) Polynomial

Ο 𝑐$ 𝑐 > 1 Exponential

8

Time Complexity:
Computational complexity that measures or estimates the time taken for running an algorithm.

Complexity can be viewed as the maximum number of primitive operations that a program may execute.
Uploaded By: anonymousSTUDENTS-HUB.com

Review

Function N=10 N=100 N=1000 N=106

Ο(𝑛) 10 ns 100 ns 1000 ns 1 ms

Ο(𝑛!) 100 ns 10000 ns 1 ms 17 min

Ο(𝑛𝑙𝑜𝑔	𝑛) 35 ns 700 ns 10000 ns 20 ms

Ο(2$) 1000 ns 4 x 1014 years! Too long! Too long!

Ο(𝑛!) 4 ms Too long! Too long! Too long!

9Uploaded By: anonymousSTUDENTS-HUB.com

Review

10

Rules
Assume 𝑻𝟏 𝒏 = 𝚶 𝒇 𝒏 and 𝑻𝟐 𝒏 = 𝚶 𝒈 𝒏 then:

1. 𝑇9 𝑛 + 𝑇: 𝑛 = max(Ο(𝑓 𝑛 , Ο(𝑔(𝑛)))

2. 𝑇9 𝑛 ∗ 𝑇: 𝑛 = Ο(𝑓 𝑛 ∗ 𝑔 𝑛)

Uploaded By: anonymousSTUDENTS-HUB.com

Review

private int add(int x, int y) {
 return x + y; // 1 operation
}

𝑻 𝒏 = 𝒄

private int add(int n) {
 int sum = 0; // 1 operation
 for (int i = 0; i < n; i++) { // 2n
 sum = sum + i; // n
 }

 return sum; // 1
}

𝑻 𝒏 = 𝟑𝐧 + 𝐜
Here d and c are constants

11

= 𝚶(𝟏)

= 𝚶(𝐧)

Uploaded By: anonymousSTUDENTS-HUB.com

Review

12

Rule1

• 𝑇 𝑛 = 1 + 3𝑛 + 5𝑛:

Uploaded By: anonymousSTUDENTS-HUB.com

Review

13

Rule1

• 𝑇 𝑛 = 1 + 3𝑛 + 5𝑛:

𝚶(𝐧𝟐)

Uploaded By: anonymousSTUDENTS-HUB.com

Review

14

Rule1

• 𝑇 𝑛 = 1 + 3𝑛 + 5𝑛:

• 1 + 3𝑛 + 5𝑛: ≤ 𝑛: + 3𝑛: + 5𝑛:
• 1 + 3𝑛 + 5𝑛: ≤ 9𝑛:

Uploaded By: anonymousSTUDENTS-HUB.com

Review

15

Rule1

• 𝑇 𝑛 = 1 + 3𝑛 + 5𝑛:

• 1 + 3𝑛 + 5𝑛: ≤ 𝑛: + 3𝑛: + 5𝑛:
• 1 + 3𝑛 + 5𝑛: ≤ 9𝑛:

𝚶(𝐧𝟐)

Uploaded By: anonymousSTUDENTS-HUB.com

Review

16

Big-O

Ο(1)
Ο(𝑙𝑜𝑔	𝑛)
Ο(log! 𝑛)
Ο(𝑛)
Ο(𝑛𝑙𝑜𝑔	𝑛)
Ο(𝑛!)
Ο(𝑛")

Ο(𝑛#)
Ο 𝑐$ 𝑐 > 1

Better

Worse

For Example:

Ο(𝑙𝑜𝑔	𝑛) is better than Ο(𝑛)

Uploaded By: anonymousSTUDENTS-HUB.com

Review & Examples

17

for (int i = 0; i < n; i++) {

 for (int j = 0; j < n * n; j++) {
 sum += 1;
 }

}

Uploaded By: anonymousSTUDENTS-HUB.com

Review & Examples

18

for (int i = 0; i < n; i++) { // n

 for (int j = 0; j < n*n; j++) { // n2

 sum += 1;
 }

}

Uploaded By: anonymousSTUDENTS-HUB.com

Review & Examples

19

for (int i = 0; i < n; i++) { // n

 for (int j = 0; j < n*n; j++) { // n2

 sum += 1;
 }

}

for (int i = 0; i < n; i++) { // n
 sum += 1;
}

O(n3)

O(n)

O(n3)

Uploaded By: anonymousSTUDENTS-HUB.com

Review & Examples

for (int i = 0; i < n; i++) { // n
 for (int j = n; j < n*n; j++) { // n2 - n

 sum += 1;
 }
}

for (int i = 0; i < n*n; i++) { // n2

 for (int j = i*i; j > 0; j--) { // n4

 for (int k = j; k < j * j; k++) { // n8 - n4

 sum++;
 }
 }
}

20Uploaded By: anonymousSTUDENTS-HUB.com

Review & Examples

for (int i = 0; i < n; i++) { // n
 for (int j = n; j < n*n; j++) { // ≈ n2
 sum += 1;
 }
}

𝑇 𝑛 = Ο 𝑛;

for (int i = 0; i < n*n; i++) { // n2

 for (int j = i*i; j > 0; j--) { // ≈ n4

 for (int k = j; k < j * j; k++) { // ≈ n8

 sum++;
 }
 }
}

𝑇 𝑛 = Ο 𝑛9<

21Uploaded By: anonymousSTUDENTS-HUB.com

If statement & switch

22

if (sum > 10) {
 // O(n)
} else {
 // O(n^2)
}

We usually analyze worse case running time!

O(n2)

Uploaded By: anonymousSTUDENTS-HUB.com

If statement & switch

23

switch (sum % 2) {
 case 1:
 // O(n)
 break;
 case 2:
 // O(n^10)
 break;
 default:
 // O(n^3)
}

O(n3)

Uploaded By: anonymousSTUDENTS-HUB.com

Review & Examples

24

for (int i = 0; i < n; i++) {

 for (int j = n - 1; j < n; j++) {
 sum += 1;
 }

}

Uploaded By: anonymousSTUDENTS-HUB.com

Review & Examples

25

for (int i = 0; i < n; i++) { // n

 for (int j = n - 1; j < n; j++) { // 1
 sum += 1;
 }

}

Uploaded By: anonymousSTUDENTS-HUB.com

Review & Examples

26

for (int i = 0; i < n; i++) { // n

 for (int j = n - 1; j < n; j++) { // 1
 sum += 1;
 }

} O(n)

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Factorial)

27

int fact(int n) {
 if (n == 0) {
 return 1;
 }

 return n * fact(n - 1);
}

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion

28

int fact(int n) {
 if (n == 0) {
 return 1;
 }

 return n * fact(n - 1);
}

𝑓𝑎𝑐𝑡 𝑛 = 5 1, 𝑛 = 0
𝑛 ∗ 𝑓𝑎𝑐𝑡(𝑛 − 1), 𝑛 > 0

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion

29

int fact(int n) {
 if (n == 0) {
 return 1;
 }

 return n * fact(n - 1);
}

𝑓𝑎𝑐𝑡 𝑛 = 5 1, 𝑛 = 0
𝑛 ∗ 𝑓𝑎𝑐𝑡(𝑛 − 1), 𝑛 > 0

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion

30

int fact(int n) {
 if (n == 0) {
 return 1;
 }

 return n * fact(n - 1);
}

𝑓𝑎𝑐𝑡 𝑛 = 5 1, 𝑛 = 0
𝑛 ∗ 𝑓𝑎𝑐𝑡(𝑛 − 1), 𝑛 > 0

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

Multiplication is just one operation that takes constant time c

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

31

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

32

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐

𝑇 𝑛 − 1 = 𝑇 𝑛 − 2 + 𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

33

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐

𝑇 𝑛 − 1 = 𝑇 𝑛 − 2 + 𝑐

𝑇 𝑛 = 𝑻 𝒏 − 𝟏 + 𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

34

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐

𝑇 𝑛 − 1 = 𝑇 𝑛 − 2 + 𝑐

𝑇 𝑛 = 𝑻 𝒏 − 𝟏 + 𝑐

𝑇 𝑛 = [𝑻 𝒏 − 𝟐 + 𝒄] + 𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

35

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐

𝑇 𝑛 − 1 = 𝑇 𝑛 − 2 + 𝑐

𝑇 𝑛 = 𝑻 𝒏 − 𝟏 + 𝑐

𝑇 𝑛 = [𝑻 𝒏 − 𝟐 + 𝒄] + 𝑐

𝑇 𝑛 = 𝑇 𝑛 − 2 + 𝑐 + 𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

36

𝑇 𝑛 = 𝑇 𝑛 − 2 + 𝑐 + 𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

37

𝑇 𝑛 = 𝑇 𝑛 − 2 + 𝑐 + 𝑐

𝑇 𝑛 − 2 = 𝑇 𝑛 − 3 + 𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

38

𝑇 𝑛 = 𝑇 𝑛 − 2 + 𝑐 + 𝑐

𝑇 𝑛 − 2 = 𝑇 𝑛 − 3 + 𝑐

𝑇 𝑛 = 𝑻 𝒏 − 𝟐 + 𝑐 + 𝑐

𝑇 𝑛 = 𝑻 𝒏 − 𝟑 + 𝒄 + 𝑐 + 𝑐

𝑇 𝑛 = 𝑇 𝑛 − 3 + 𝑐 + 𝑐 + 𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

39

𝑇 𝑛 = 𝑇 𝑛 − 3 + 𝑐 + 𝑐 + 𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

40

𝑇 𝑛 = 𝑇 𝑛 − 3 + 𝑐 + 𝑐 + 𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

𝑇 𝑛 = 𝑇 𝑛 − 3 + 3𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

41

𝑇 𝑛 = 𝑇 𝑛 − 3 + 𝑐 + 𝑐 + 𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

𝑇 𝑛 = 𝑇 𝑛 − 3 + 3𝑐

When do we stop???

𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 𝑘𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

42

𝑇 𝑛 = 𝑇 𝑛 − 3 + 𝑐 + 𝑐 + 𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

𝑇 𝑛 = 𝑇 𝑛 − 3 + 3𝑐

When do we stop???

When 𝒏 = 𝟎 or when we reach 𝑻(𝟎)

𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 𝑘𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

43

𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 𝑘𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

We should stop when we reach 𝑻(𝟎)

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

44

𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 𝑘𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

We should stop when we reach 𝑻(𝟎)

Set 𝒌 = 𝒏

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

45

𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 𝑘𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

We should stop when we reach 𝑻(𝟎)

Set 𝒌 = 𝒏

𝑇 𝑛 = 𝑇 𝑛 − 𝑛 + 𝑛𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

46

𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 𝑘𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

We should stop when we reach 𝑻(𝟎)

Set 𝒌 = 𝒏

𝑇 𝑛 = 𝑇 𝑛 − 𝑛 + 𝑛𝑐

𝑇 𝑛 = 𝑇 0 + 𝑛𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

47

𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 𝑘𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

We should stop when we reach 𝑻(𝟎)

Set 𝒌 = 𝒏

𝑇 𝑛 = 𝑇 𝑛 − 𝑛 + 𝑛𝑐

𝑇 𝑛 = 𝑇 0 + 𝑛𝑐

𝑇 𝑛 = 𝑑 + 𝑛𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Substitution Method)

48

𝑇 𝑛 = 𝑇 𝑛 − 𝑘 + 𝑘𝑐

𝑇 𝑛 = 5 𝑑, 𝑛 = 0
𝑇 𝑛 − 1 + 𝑐, 𝑛 > 0

We should stop when we reach 𝑻(𝟎)

Set 𝒌 = 𝒏

𝑇 𝑛 = 𝑇 𝑛 − 𝑛 + 𝑛𝑐

𝑇 𝑛 = 𝑇 0 + 𝑛𝑐

𝑇 𝑛 = 𝑑 + 𝑛𝑐

𝚶(𝐧)

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

49

String toBinary(int n) {
 if (n <= 1) {
 return n + "";
 }

 return toBinary(n / 2) + (n % 2);
}

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

50

String toBinary(int n) {
 if (n <= 1) {
 return n + "";
 }

 return toBinary(n / 2) + (n % 2);
}

𝑓 𝑛 = I
𝑛 + ””, 𝑛 ≤ 1

𝑓
𝑛
2
+ (𝑛%2), 𝑛 > 1

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

51

String toBinary(int n) {
 if (n <= 1) {
 return n + "";
 }

 return toBinary(n / 2) + (n % 2);
}

𝑓 𝑛 = I
𝑛 + ””, 𝑛 ≤ 1

𝑓
𝑛
2
+ (𝑛%2), 𝑛 > 1

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

52

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝑇 𝑛 = 𝑇
𝑛
2 + 𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

53

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝑇 𝑛 = 𝑇
𝑛
2 + 𝑐

𝑇 𝑛 = 𝑇 𝑛	 ∗
1
2 + 𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

54

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝑇 𝑛 = 𝑇
𝑛
2 + 𝑐

𝑇 𝑛 = 𝑇 𝑛	 ∗
1
2 + 𝑐

𝑇
𝑛
2

= 𝑇
𝑛
2
	∗
1
2
+ 𝑐

𝑇
𝑛
2 = 𝑇

𝑛
2 ∗ 2 + 𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

55

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝑇 𝑛 = 𝑇
𝑛
2 + 𝑐

𝑇 𝑛 = 𝑇 𝑛	 ∗
1
2 + 𝑐

𝑇
𝑛
2

= 𝑇
𝑛
2
	∗
1
2
+ 𝑐

𝑇
𝑛
2 = 𝑇

𝑛
2 ∗ 2 + 𝑐

𝑇 𝑛 = 𝑻
𝒏
𝟐 + 𝑐

𝑇 𝑛 = [𝑻
𝒏

𝟐 ∗ 𝟐 + 𝒄] + 𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

56

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝑇 𝑛 = 𝑇
𝑛
2 + 𝑐

𝑇 𝑛 = 𝑇 𝑛	 ∗
1
2 + 𝑐

𝑇
𝑛
2

= 𝑇
𝑛
2
	∗
1
2
+ 𝑐

𝑇
𝑛
2 = 𝑇

𝑛
2 ∗ 2 + 𝑐

𝑇 𝑛 = 𝑻
𝒏
𝟐 + 𝑐

𝑇 𝑛 = [𝑻
𝒏

𝟐 ∗ 𝟐 + 𝒄] + 𝑐

𝑇 𝑛 = 𝑻
𝒏

𝟐 ∗ 𝟐 + 𝒄 + 𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

57

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝑇 𝑛 = 𝑇
𝑛

2 ∗ 2 + 𝑐 + 𝑐

𝑇 𝑛 = 𝑇
𝑛
4
+ 𝑐 + 𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

58

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝑇 𝑛 = 𝑇
𝑛

2 ∗ 2 + 𝑐 + 𝑐

𝑇 𝑛 = 𝑇
𝑛
4
+ 𝑐 + 𝑐

𝑇
𝑛
4 = 𝑇

𝑛
4 	∗

1
2 + 𝑐

𝑇
𝑛
4 = 𝑇

𝑛
4 ∗ 2 + 𝑐

𝑇 𝑛 = 𝑇 𝑛	 ∗
1
2 + 𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

59

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝑇 𝑛 = 𝑇
𝑛

2 ∗ 2 + 𝑐 + 𝑐

𝑇 𝑛 = 𝑇
𝑛
4
+ 𝑐 + 𝑐

𝑇 𝑛 = 𝑻
𝒏
𝟒 + 𝑐 + 𝑐

𝑇 𝑛 = 𝑻
𝒏

𝟒 ∗ 𝟐 + 𝒄 + 𝑐 + 𝑐

𝑇 𝑛 = 𝑻
𝒏

𝟒 ∗ 𝟐 + 𝒄 + 𝑐 + 𝑐

𝑇
𝑛
4 = 𝑇

𝑛
4 	∗

1
2 + 𝑐

𝑇
𝑛
4 = 𝑇

𝑛
4 ∗ 2 + 𝑐

𝑇 𝑛 = 𝑇 𝑛	 ∗
1
2 + 𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

60

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝑇 𝑛 = 𝑇
𝑛

4 ∗ 2 + 𝑐 + 𝑐 + 𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

61

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝑇 𝑛 = 𝑇
𝑛

4 ∗ 2 + 𝑐 + 𝑐 + 𝑐

𝑇 𝑛 = 𝑇
𝑛

2 ∗ 2 ∗ 2
+ 𝑐 + 𝑐 + 𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

62

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝑇 𝑛 = 𝑇
𝑛

4 ∗ 2 + 𝑐 + 𝑐 + 𝑐

𝑇 𝑛 = 𝑇
𝑛

2 ∗ 2 ∗ 2
+ 𝑐 + 𝑐 + 𝑐

𝑇 𝑛 = 𝑇
𝑛
2" + 3𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

63

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝑇 𝑛 = 𝑇
𝑛

4 ∗ 2 + 𝑐 + 𝑐 + 𝑐

𝑇 𝑛 = 𝑇
𝑛

2 ∗ 2 ∗ 2
+ 𝑐 + 𝑐 + 𝑐

𝑇 𝑛 = 𝑇
𝑛
2%

+ 𝑘𝑐

When do we stop???

When 𝒏 ≤ 𝟏 or when we reach 𝑻(𝟏)𝑇 𝑛 = 𝑇
𝑛
2" + 3𝑐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

64

𝑇 𝑛 = 𝑇
𝑛
2% + 𝑘𝑐

We want 𝑇 $
!!

= 𝑇(1)

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

65

𝑇 𝑛 = 𝑇
𝑛
2% + 𝑘𝑐

We want 𝑇 $
!!

= 𝑇(1)

We want
𝒏
𝟐𝒌 = 𝟏

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

66

𝑇 𝑛 = 𝑇
𝑛
2% + 𝑘𝑐

We want 𝑇 $
!!

= 𝑇(1)

We want
𝒏
𝟐𝒌 = 𝟏

𝒏
𝟐𝒌

= 𝟏

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

67

𝑇 𝑛 = 𝑇
𝑛
2% + 𝑘𝑐

We want 𝑇 $
!!

= 𝑇(1)

We want
𝒏
𝟐𝒌 = 𝟏

𝒏
𝟐𝒌

= 𝟏

𝒏 = 𝟐𝒌

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

68

𝑇 𝑛 = 𝑇
𝑛
2% + 𝑘𝑐

We want 𝑇 $
!!

= 𝑇(1)

We want
𝒏
𝟐𝒌 = 𝟏

𝒏
𝟐𝒌

= 𝟏

𝒏 = 𝟐𝒌

𝒍𝒐𝒈𝟐𝒏 = 𝒍𝒐𝒈𝟐𝟐𝒌

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

69

𝑇 𝑛 = 𝑇
𝑛
2% + 𝑘𝑐

We want 𝑇 $
!!

= 𝑇(1)

We want
𝒏
𝟐𝒌 = 𝟏

𝒏
𝟐𝒌

= 𝟏

𝒏 = 𝟐𝒌

𝐥𝐨𝐠𝟐 𝒏 = 𝐥𝐨𝐠𝟐 𝟐𝒌 Rules

1. 𝐥𝐨𝐠𝒙 𝒂𝒃 = 𝒃 𝐥𝐨𝐠𝒙 𝒂𝐥𝐨𝐠𝟐 𝒏 = 𝒌 𝐥𝐨𝐠𝟐 𝟐

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

70

𝑇 𝑛 = 𝑇
𝑛
2% + 𝑘𝑐

We want 𝑇 $
!!

= 𝑇(1)

We want
𝒏
𝟐𝒌 = 𝟏

𝒏
𝟐𝒌

= 𝟏

𝒏 = 𝟐𝒌

𝐥𝐨𝐠𝟐 𝒏 = 𝐥𝐨𝐠𝟐 𝟐𝒌 Rules

1. 𝐥𝐨𝐠𝒙 𝒂𝒃 = 𝒃 𝐥𝐨𝐠𝒙 𝒂
2. 𝐥𝐨𝐠𝒙 𝒙 = 𝟏𝐥𝐨𝐠𝟐 𝒏 = 𝒌 𝐥𝐨𝐠𝟐 𝟐

𝐥𝐨𝐠𝟐 𝒏 = 𝒌

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

71

𝑇 𝑛 = 𝑇
𝑛
2% + 𝑘𝑐

We want 𝑇 $
!!

= 𝑇(1)

We want
𝒏
𝟐𝒌 = 𝟏

𝒏
𝟐𝒌

= 𝟏

𝒏 = 𝟐𝒌

𝐥𝐨𝐠𝟐 𝒏 = 𝐥𝐨𝐠𝟐 𝟐𝒌 Rules

1. 𝐥𝐨𝐠𝒙 𝒂𝒃 = 𝒃 𝐥𝐨𝐠𝒙 𝒂
2. 𝐥𝐨𝐠𝒙 𝒙 = 𝟏𝐥𝐨𝐠𝟐 𝒏 = 𝒌 𝐥𝐨𝐠𝟐 𝟐

𝐥𝐨𝐠𝟐 𝒏 = 𝒌

When dealing with logs we usually use 𝒍𝒐𝒈

𝐥𝐨𝐠	 𝒏 = 𝒌

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

72

𝑇 𝑛 = 𝑇
𝑛
2% + 𝑘𝑐 𝐥𝐨𝐠	 𝒏 = 𝒌

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

73

𝑇 𝑛 = 𝑇
𝒏
𝟐𝒌

+ 𝒌𝑐

𝑇 𝑛 = 𝑇 1 + 𝑐 log	 𝑛

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝒏
𝟐𝒌

= 𝟏

𝒏 = 𝟐𝒌
𝐥𝐨𝐠	 𝒏 = 𝒌

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

74

𝑇 𝑛 = 𝑇
𝑛
2% + 𝑘𝑐 𝐥𝐨𝐠	 𝒏 = 𝒌

𝑇 𝑛 = 𝑇 1 + 𝑐	log	 𝑛

𝑇 𝑛 = 𝑑 + 𝑐	log	 𝑛

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (To Binary)

75

𝑇 𝑛 = 𝑇
𝑛
2% + 𝑘𝑐 𝐥𝐨𝐠	 𝒏 = 𝒌

𝑇 𝑛 = 𝑇 1 + 𝑐	log	 𝑛

𝑇 𝑛 = 𝑑 + 𝑐	log	 𝑛

T 𝑛 = I
𝑑, 𝑛 ≤ 1

𝑇 $
!
+ 𝑐, 𝑛 > 1

𝚶(𝐥𝐨𝐠𝒏)

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

76

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

77

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 2𝑇
𝑛
2 + 𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

78

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 2𝑇
𝑛
2 + 𝑛

𝑇 𝑛 = 2𝑇 𝑛 ∗
1
2 + 𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

79

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 2𝑇
𝑛
2 + 𝑛

𝑇 𝑛 = 2𝑇 𝑛 ∗
1
2 + 𝑛

𝑇
𝑛
2 = 2𝑇

𝑛
2 ∗

1
2 +

𝑛
2

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

80

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 2𝑇
𝑛
2 + 𝑛

𝑇 𝑛 = 2𝑇 𝑛 ∗
1
2 + 𝑛

𝑇
𝑛
2 = 2𝑇

𝑛
2 ∗

1
2 +

𝑛
2

𝑇 𝑛 = 2𝑻
𝒏
𝟐 + 𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

81

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 2𝑇
𝑛
2 + 𝑛

𝑇 𝑛 = 2𝑇 𝑛 ∗
1
2 + 𝑛

𝑇
𝑛
2 = 2𝑇

𝑛
2 ∗

1
2 +

𝑛
2

𝑇 𝑛 = 2𝑻
𝒏
𝟐 + 𝑛

𝑇 𝑛 = 2[𝟐𝑻
𝒏
𝟐 ∗

𝟏
𝟐 +

𝒏
𝟐] + 𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

82

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 2𝑇
𝑛
2 + 𝑛

𝑇 𝑛 = 2𝑇 𝑛 ∗
1
2 + 𝑛

𝑇
𝑛
2 = 2𝑇

𝑛
2 ∗

1
2 +

𝑛
2

𝑇 𝑛 = 2𝑻
𝒏
𝟐 + 𝑛

𝑇 𝑛 = 2[𝟐𝑻
𝒏
𝟐 ∗

𝟏
𝟐 +

𝒏
𝟐] + 𝑛

𝑇 𝑛 = [𝟒𝑻
𝒏
𝟒 + 𝒏] + 𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

83

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 2𝑇
𝑛
2 + 𝑛

𝑇 𝑛 = 2𝑇 𝑛 ∗
1
2 + 𝑛

𝑇
𝑛
2 = 2𝑇

𝑛
2 ∗

1
2 +

𝑛
2

𝑇 𝑛 = 2𝑻
𝒏
𝟐 + 𝑛

𝑇 𝑛 = 2[𝟐𝑻
𝒏
𝟐 ∗

𝟏
𝟐 +

𝒏
𝟐] + 𝑛

𝑇 𝑛 = [𝟒𝑻
𝒏
𝟒 + 𝒏] + 𝑛

𝑇 𝑛 = 4𝑇
𝑛
4 + 𝑛 + 𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

84

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 4𝑇
𝑛
4 + 𝑛 + 𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

85

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 4𝑇
𝑛
4 + 2𝑛

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

86

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 4𝑇
𝑛
4 + 2𝑛

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

𝑇
𝑛
4 = 2𝑇

𝑛
4 ∗

1
2 +

𝑛
4

𝑇 𝑛 = 2𝑇 𝑛 ∗
1
2 + 𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

87

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 4𝑇
𝑛
4 + 2𝑛

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

𝑇
𝑛
4 = 2𝑇

𝑛
4 ∗

1
2 +

𝑛
4

𝑇 𝑛 = 2𝑇 𝑛 ∗
1
2 + 𝑛

𝑇 𝑛 = 4𝑻
𝒏
𝟒 + 2𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

88

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 4𝑇
𝑛
4 + 2𝑛

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

𝑇
𝑛
4 = 2𝑇

𝑛
4 ∗

1
2 +

𝑛
4

𝑇 𝑛 = 2𝑇 𝑛 ∗
1
2 + 𝑛

𝑇 𝑛 = 4𝑻
𝒏
𝟒 + 2𝑛

𝑇 𝑛 = 4[𝟐𝑻
𝒏
𝟖

+
𝒏
𝟒
] + 2𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

89

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 4𝑇
𝑛
4 + 2𝑛

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

𝑇
𝑛
4 = 2𝑇

𝑛
4 ∗

1
2 +

𝑛
4

𝑇 𝑛 = 2𝑇 𝑛 ∗
1
2 + 𝑛

𝑇 𝑛 = 4𝑻
𝒏
𝟒 + 2𝑛

𝑇 𝑛 = 4[𝟐𝑻
𝒏
𝟖

+
𝒏
𝟒
] + 2𝑛

𝑇 𝑛 = [𝟖𝑻
𝒏
𝟖 + 𝒏] + 2𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

90

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 4𝑇
𝑛
4 + 2𝑛

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

𝑇
𝑛
4 = 2𝑇

𝑛
4 ∗

1
2 +

𝑛
4

𝑇 𝑛 = 2𝑇 𝑛 ∗
1
2 + 𝑛

𝑇 𝑛 = 4𝑻
𝒏
𝟒 + 2𝑛

𝑇 𝑛 = 4[𝟐𝑻
𝒏
𝟖

+
𝒏
𝟒
] + 2𝑛

𝑇 𝑛 = [𝟖𝑻
𝒏
𝟖 + 𝒏] + 2𝑛

𝑇 𝑛 = 8𝑇
𝑛
8 + 𝑛 + 2𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

91

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 8𝑇
𝑛
8 + 𝑛 + 2𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

92

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 8𝑇
𝑛
8 + 𝑛 + 2𝑛

𝑇 𝑛 = (2 ∗ 2 ∗ 2)𝑇
𝑛

2 ∗ 2 ∗ 2 + 3𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

93

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 8𝑇
𝑛
8 + 𝑛 + 2𝑛

𝑇 𝑛 = (2 ∗ 2 ∗ 2)𝑇
𝑛

2 ∗ 2 ∗ 2 + 3𝑛

𝑇 𝑛 = 2"𝑇
𝑛
2" + 3𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

94

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 8𝑇
𝑛
8 + 𝑛 + 2𝑛

𝑇 𝑛 = (2 ∗ 2 ∗ 2)𝑇
𝑛

2 ∗ 2 ∗ 2 + 3𝑛

𝑇 𝑛 = 2"𝑇
𝑛
2" + 3𝑛

𝑇 𝑛 = 2%𝑇
𝑛
2%

+ 𝑘𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

95

𝑇 𝑛 = 2%𝑇
𝑛
2% + 𝑘𝑛

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

96

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 2%𝑇
𝑛
2% + 𝑘𝑛

When do we stop?

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

97

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 2%𝑇
𝑛
2% + 𝑘𝑛

When do we stop?

When 𝑻 𝒏
𝟐𝒌 = 𝑻(𝟏)

When 𝒏𝟐𝒌 = 𝟏

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

98

𝑇 𝑛 = 2%𝑇
𝑛
2% + 𝑘𝑛

When do we stop?

When 𝑻 𝒏
𝟐𝒌 = 𝑻(𝟏)

When 𝒏𝟐𝒌 = 𝟏

When 𝐥𝐨𝐠𝟐 𝒏 = 𝒌 (From previous Example)

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

99

𝑇 𝑛 = 2%𝑇
𝑛
2% + 𝑘𝑛 𝒏

𝟐𝒌
= 𝟏

𝒏 = 𝟐𝒌
𝐥𝐨𝐠	 𝒏 = 𝒌

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

100

𝑇 𝑛 = 2%𝑇
𝑛
2% + 𝑘𝑛 𝒏

𝟐𝒌
= 𝟏

𝒏 = 𝟐𝒌
𝐥𝐨𝐠	 𝒏 = 𝒌𝑇 𝑛 = 𝟐𝒌𝑇

𝒏
𝟐𝒌

+ 𝒌𝑛

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

101

𝑇 𝑛 = 2%𝑇
𝑛
2% + 𝑘𝑛 𝒏

𝟐𝒌
= 𝟏

𝒏 = 𝟐𝒌
𝐥𝐨𝐠	 𝒏 = 𝒌𝑇 𝑛 = 𝟐𝒌𝑇

𝒏
𝟐𝒌

+ 𝒌𝑛

𝑇 𝑛 = 𝒏𝑇 𝟏 + 𝑛log	𝑛

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

102

𝑇 𝑛 = 2%𝑇
𝑛
2% + 𝑘𝑛 𝒏

𝟐𝒌
= 𝟏

𝒏 = 𝟐𝒌
𝐥𝐨𝐠	 𝒏 = 𝒌𝑇 𝑛 = 𝟐𝒌𝑇

𝒏
𝟐𝒌

+ 𝒌𝑛

𝑇 𝑛 = 𝒏𝑇 𝟏 + 𝑛log	𝑛

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 𝑑𝑛 + 𝑛𝑙𝑜𝑔	𝑛

Uploaded By: anonymousSTUDENTS-HUB.com

Recursion (Merge Sort)

103

𝑇 𝑛 = 2%𝑇
𝑛
2% + 𝑘𝑛 𝒏

𝟐𝒌
= 𝟏

𝒏 = 𝟐𝒌
𝐥𝐨𝐠	 𝒏 = 𝒌𝑇 𝑛 = 𝟐𝒌𝑇

𝒏
𝟐𝒌

+ 𝒌𝑛

𝑇 𝑛 = 𝒏𝑇 𝟏 + 𝑛log	𝑛

T 𝑛 = I
𝑑, 𝑛 = 1

2𝑇 $
!
+ 𝑛, 𝑛 > 1

𝑇 𝑛 = 𝑑𝑛 + 𝑛𝑙𝑜𝑔	𝑛

𝚶 𝒏𝒍𝒐𝒈	𝒏

Uploaded By: anonymousSTUDENTS-HUB.com

