Flat-Belts (1)

Thursday, June 17, 2021 8:01 PM

-> Skeps in analyizing flat belts: (Find exp(F\$) from flat belt drive:

 $\phi = T - 2 \sin^{-1} \left(\frac{D - d}{2C} \right)$ (ϕ is for the driving pulley)

| Table 17-2 To Find f:

Properties of Some Flat- and Round-Belt Materials. (Diameter = d, thickness = t, width = w)

 Leather	1 ply	$t = \frac{11}{64}$ $t = \frac{13}{64}$	3 3 ¹ / ₂	Ibf/in (Fa)	0.035-0.045	0.4
			31			
			52	33	0.035-0.045	0.4
	2 ply	$t = \frac{18}{64}$	4 <u>1</u>	41	0.035-0.045	0.4
		$t = \frac{20}{64}$	6^a	50	0.035-0.045	0.4
		$t = \frac{23}{64}$	9 ^a	60	0.035-0.045	0.4
Polyamide ^b	F-0 ^c	t = 0.03	0.60	10	0.035	0.5
,	F-1 ^c	t = 0.05	1.0	35	0.035	0.5
	$F-2^c$	t = 0.07	2.4	60	0.051	0.5
	$A-2^c$	t = 0.11	2.4	60	0.037	0.8
	A-3 ^c	t = 0.13	4.3	100	0.042	0.8
	$A-4^c$	t = 0.20	9.5	175	0.039	0.8
	A-5 ^c	t = 0.25	13.5	275	0.039	0.8
Urethaned	w = 0.50 in	t = 0.062	See	5.2 ^e	0.038-0.045	0.7
	w = 0.75 in	t = 0.078	Table	9.8 ^e	0.038-0.045	0.7
	w = 1.25 in	t = 0.090	17-3	18.9 ^e	0.038-0.045	0.7
	Round	$d = \frac{1}{4}$	See	8.3 ^e	0.038-0.045	0.7
		$d = \frac{3}{8}$	Table	18.6 ^e	0.038-0.045	0.7
		$d = \frac{1}{2}$	17-3	33.0 ^e	0.038-0.045	0.7
		$d = \frac{3}{4}$		74.3 ^e	0.038-0.045	0.7

 $V = \pi dn$ [ft/min] $F_{c} = \frac{\gamma_{v}}{9} \left(\frac{V}{60}\right)^{2} = \frac{\gamma_{v}}{32 \cdot 17} \left(\frac{V}{60}\right)^{2}$ (If here is given in the question) T = 63025 How Ks Nd (If here is given in the question) (Assume nd=1 if not given in question)

STUDENTS-HUB.com

Uploaded By: anonymous

(2)

Tuesday, June 22, 2021 1:35 PM

To find (Ks): Table 17-15

Suggested Service Factors K_S for V-Belt Drives

	Sourc	e of Power
Driven Machinery	Normal Torque Characteristic	High or Nonuniform Torque
Uniform	1.0 to 1.2	1.1 to 1.3
Light shock	1.1 to 1.3	1.2 to 1.4
Medium shock	1.2 to 1.4	1.4 to 1.6
Heavy shock	1.3 to 1.5	1.5 to 1.8

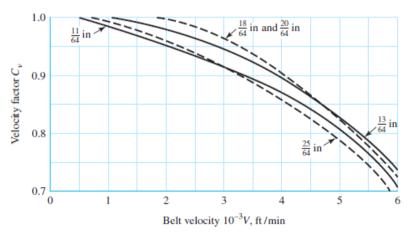
(Find (Fig) using =

Fia = b Fa Cp Cv

To find (Fe) -> table (17-2)

To find Cp: Table 17-4

Pulley Correction Factor C_P for Flat Belts*


				Small-Pulle	y Diameter,	in	
Vse (Cp = 1) For urethane	Material	1.6 to 4	4.5 to 8	9 to 12.5	14, 16	18 to 31.5	Over 31.5
	Leather	0.5	0.6	0.7	0.8	0.9	1.0
for usethane	Polyamide, F-0	0.95	1.0	1.0	1.0	1.0	1.0
1 11	F-1	0.70	0.92	0.95	1.0	1.0	1.0
belts	F-2	0.73	0.86	0.96	1.0	1.0	1.0
	A-2	0.73	0.86	0.96	1.0	1.0	1.0
	A-3		0.70	0.87	0.94	0.96	1.0
	A-4	<u></u>	27 <u></u>	0.71	0.80	0.85	0.92
	A-5	<u></u>	20 <u></u> 2	<u></u>	0.72	0.77	0.91

*Average values of C_P for the given ranges were approximated from curves in the *Habasit Engineering Manual*, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

To find (Cv): (for leather belts only use higure (17-9))

Figure 17-9

Velocity correction factor C_v for leather belts for various thicknesses. (*Data source:* Machinery's Handbook, 20th ed., *Industrial Press, New York, 1976, p. 1047.*)

+ For polyamide & Urethane belts, use Cv=1

STUDENTS-HUB.com

Uploaded By: anonymous

(3)
Treader, June 22, 2021 235 PM
(3)
Freeder, June 22, 2021 235 PM
(3)
Fr = Find (Fi) using :
Fr = Find + Fz - Fr
2
(3)
Check the Brickian development where : (f' < f)
F' =
$$\frac{1}{2} \ln \left(\frac{Fin}{Fin} - \frac{Fin}{Fin} \right)$$

(3)
F' = $\frac{1}{2} \ln \left(\frac{Fin}{Fin} - \frac{Fin}{Fin} \right)$
(3)
F' = $\frac{1}{2} \ln \left(\frac{Fin}{Fin} - \frac{Fin}{Fin} \right)$
(3)
F' = $\frac{1}{2} \ln \left(\frac{Fin}{Fin} - \frac{Fin}{Fin} \right)$
(3)
Find the factor of subty fron: $Nin = \frac{1}{1000}$
(3)
(4)
The transmitted horse power is :
 $H_{n} = \left(\frac{Fin}{Fin} - \frac{Fin}{Fin} \right) V = \frac{Tin}{Gin fin}$
(17-1)
Where $P = dimensional damples erce:
 $P_{n} = \frac{1}{2} \sin^{2} \frac{10}{22}$
(17-2)
(17-2)$

STUDENTS-HUB.com

Uploaded By: anonymous

Tuesday, June 22, 2021 2:12 PM

(4)

+ For crossed belt drives + The contact engle for both pulleys is the same, hence: $\theta = \pi + 2\sin^{-1}\frac{D+d}{2C}$ (17 - 3)+ The length of the crossed belt is: $L = [4C^{2} - (D + d)^{2}]^{1/2} + \frac{1}{2}(D + d)\theta$ (17 - 4)& Note: When the question requires a flat belt design, assume (d) & the type of belt only (do not assume (b)) -> Use the previous sheps to find (Fig, Fi, Fc) in terms of (b) -> Substitue (Fig, Fr, Fe) in the friction equation in step (7) to find (b), the equation will be cone: $b = \frac{1}{a_0 - a_2} \cdot \frac{2T}{d} \cdot \frac{exp(f\phi)}{exp(f\phi) - 1}$ where: ao = Fa Cp Cv $\alpha_{1} = \frac{12 \mathcal{S} \ell}{32.17} \left(\frac{1}{60}\right)^{2}$ -> hence for any value chosen >b => F'<F -> Resolve and find (Fin, Fr, Fr, Fr, F')

STUDENTS-HUB.com

Uploaded By: anonymous

V-Belts (1)

Thursday, June 17, 2021 8:01 PM

+ The analysis of	V-belts a	cn l	oe	6	<u>nsis</u>	لحط	in the cheps below:
() Find V. Lo.	C, ϕ	ind	e	XDO	0	517	in <u>He (teps below</u> : 23 Ø)
C							
V= Idn	Eft Imin]						
12							
	$L_p = 2C + \pi$	·(D -	+ d)	/2 +	- (D	- d	(17-16a)
	_ 1						12
$C = 0.25 \left\{ \left\lfloor L_p - \right. \right. \right.$	$\frac{\pi}{2}(D+d) \right] +$	$\sqrt{ }$	L_p -	$-\frac{\pi}{2}$	(D +	- <i>d</i>)	$-2(D-d)^{2}$ (17–16b)
$\phi = \Theta_{J} = \pi$	-2Sin	<u> </u>	D-	<u>J)</u>			
			20				
To find (Lp):	Table 17-10	Se	ection				Circumference, in
		А					16, 48, 51, 53, 55, 57, 60, 62, 64, 66, 68, 71, 75, 78, 80,
L	of Standard V Belts	В		35, 38,	42, 46,	48, 51, 5	53, 55, 57, 60, 62, 64, 65, 66, 68, 71, 75, 78, 79, 81, 83,
		С		195, 2	10, 240,	270, 300)
		D		120, 12	28, 144,	158, 162	2, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390,
		Е					
	Table 17-11						
$C = 0.25 \left\{ \left[L_p - \frac{\pi}{2} (D+d) \right] + \sqrt{\left[L_p - \frac{\pi}{2} (D+d) \right]^2 - 2(D-d)^2} \right\} (17-16b)$ $(17-16b)$ $(D-d) = 0 = T - 2 \sin^{-1} (D-d) = 2c$ $T_0 find (L_p)^{\circ} Table 17-10$ Inside Circumferences of Standard V Belts $S_{5,90,96,105,112,120,128}$ $B_{5,38,42,46,48,51,53,55,57,60,62,64,66,68,71,75,78,79,81,83,85,90,96,105,112,120,128,134,158,162,173,180,195,210,240,270,300,330,360,390,420$ $C_{5,1,60,68,75,81,85,90,96,105,112,120,128,134,144,158,162,173,180,195,210,240,270,300,330,360,390,420$ $D_{120,128,144,158,162,173,180,195,210,240,270,300,330,360,390,420$							
$C = 0.25 \left\{ \left[L_p - \frac{\pi}{2} (D+d) \right] + \sqrt{\left[L_p - \frac{\pi}{2} (D+d) \right]^2 - 2(D-d)^2} \right\} (17-16b)$ $(17-16b)$ $P = OJ = TT - 2 Sin^{-1} (D-J) 2C$ $To find (Lp) $ $Inside Circumferences of Standard V Belts$ $Inside Circumferences of Standard V Belts$ $Iso (95, 210, 240, 270, 300, 330, 360, 590, 420, 480, 540, 660, 680)$ $C = 180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 660, 680)$ $Inside Circumference to obtain the pitch length in inches).$ $Inside Circumference to obtain the pitch length in inches).$).						
-	Quantity to be added	1.3	1.8	2.9	3.3	4.5	

STUDENTS-HUB.com

(2)

Tuesday, June 22, 2021 1:36 PM

$$H_d = H_{\rm nom} K_s n_d$$

 $H_a = K_1 K_2 H_{\text{tab}}$

where H_a = allowable power, per belt

 K_1 = angle-of-wrap (ϕ) correction factor, Table 17–13

 K_2 = belt length correction factor, Table 17–14

$$N_b \ge \frac{H_d}{H_a}$$
 N

 $N_b = 1, 2, 3, \ldots$

To find Htab:

17-12	Belt	Sheave Pitch		Belt	Speed, ft	/min	
power Ratings of	Section	Diameter, in	1000	2000	3000	4000	5000
rd V Belts	A	2.6	0.47	0.62	0.53	0.15	
		3.0	0.66	1.01	1.12	0.93	0.38
		3.4	0.81	1.31	1.57	1.53	1.12
		3.8	0.93	1.55	1.92	2.00	1.71
		4.2	1.03	1.74	2.20	2.38	2.19
		4.6	1.11	1.89	2.44	2.69	2.58
		5.0 and up	1.17	2.03	2.64	2.96	2.89
	В	4.2	1.07	1.58	1.68	1.26	0.22
		4.6	1.27	1.99	2.29	2.08	1.24
		5.0	1.44	2.33	2.80	2.76	2.10
		5.4	1.59	2.62	3.24	3.34	2.82
		5.8	1.72	2.87	3.61	3.85	3.45
		6.2	1.82	3.09	3.94	4.28	4.00
		6.6	1.92	3.29	4.23	4.67	4.48
		7.0 and up	2.01	3.46	4.49	5.01	4.90
	C	6.0	1.84	2.66	2.72	1.87	
		7.0	2.48	3.94	4.64	4.44	3.12
		8.0	2.96	4.90	6.09	6.36	5.52
		9.0	3.34	5.65	7.21	7.86	7.39
		10.0	3.64	6.25	8.11	9.06	8.89
		11.0	3.88	6.74	8.84	10.0	10.1
		12.0 and up	4.09	7.15	9.46	10.9	11.1
	D	10.0	4.14	6.13	6.55	5.09	1.35
	2	11.0	5.00	7.83	9.11	8.50	5.62
		12.0	5.71	9.26	11.2	11.4	9.18
		13.0	6.31	10.5	13.0	13.8	12.2
		14.0	6.82	11.5	14.6	15.8	14.8
		15.0	7.27	12.4	15.9	17.6	17.0
		16.0	7.66	13.2	17.1	19.2	19.0
		17.0 and up	8.01	13.9	18.1	20.6	20.7
	E	16.0	8.68	14.0	17.5	18.1	15.3
		18.0	9.92	16.7	21.2	23.0	21.5
		20.0	10.9	18.7	24.2	26.9	26.4
		22.0	11.7	20.3	26.6	30.2	30.5
		24.0	12.4	21.6	28.6	32.9	33.8
		26.0	13.0	22.8	30.3	35.1	36.7
		28.0 and up	13.4	23.7	31.8	37.1	39.1

STUDENTS-HUB.com

(3)

Tuesday, June 22, 2021 2:30 PM

To find (Ki): | Table 17-13

Construction of the Construction of the	
Angle of Contact	
Correction Factor K_1 for	(
VV* and V-Flat Drives	0
	0
	1

D-d			<i>K</i> ₁
C	θ, deg	vv	V Flat
0.00	180	1.00	0.75
0.10	174.3	0.99	0.76
0.20	166.5	0.97	0.78
0.30	162.7	0.96	0.79
0.40	156.9	0.94	0.80
0.50	151.0	0.93	0.81
0.60	145.1	0.91	0.83
0.70	139.0	0.89	0.84
0.80	132.8	0.87	0.85
0.90	126.5	0.85	0.85
1.00	120.0	0.82	0.82
1.10	113.3	0.80	0.80
1.20	106.3	0.77	0.77
1.30	98.9	0.73	0.73
1.40	91.1	0.70	0.70
1.50	82.8	0.65	0.65

*A curve fit for the VV column in terms of θ is $K_1 = 0.143543 + 0.007468\theta - 0.000015052\theta^2$

in the range $90^\circ \le \theta \le 180^\circ$.

To find (K2):

Table 17-14 Belt-Length Correction Factor K_2^*

		Nomir	nal Belt Leng	th, in	
Length Factor	A Belts	B Belts	C Belts	D Belts	E Belts
0.85	Up to 35	Up to 46	Up to 75	Up to 128	
0.90	38-46	48-60	81–96	144-162	Up to 195
0.95	48-55	62-75	105-120	173-210	210-240
1.00	60-75	78–97	128-158	240	270-300
1.05	78–90	105-120	162-195	270-330	330-390
1.10	96-112	128-144	210-240	360-420	420480
1.15	120 and up	158-180	270-300	480	540-600
1.20		195 and up	330 and up	540 and up	660

*Multiply the rated horsepower per belt by this factor to obtain the corrected horsepower.

To find $(k_s) \rightarrow (table (17-15))$

STUDENTS-HUB.com

(4)

Tuesday, June 22, 2021 1:36 PM

3 Find FC, DF, Fi, Fz, Fi and Mfs. $F_c = K_c \left(\frac{V}{1000}\right)^2$ $F_2 = F_1 - \Delta F$ $F_i = \frac{F_1 + F_2}{2} - F_c$ $\Delta F = \frac{63\ 025H_d/N_b}{n(d/2)}$ $F_1 = F_c + \frac{\Delta F \exp(f\phi)}{\exp(f\phi) - 1}$ $n_{fs} = \frac{H_a N_b}{H_{\rm nom} K_s}$

Belt Section	Кь	Kc
А	220	0.561
В	576	0.965
С	1 600	1.716
D	5 680	3.498
E	10 850	5.041
3V	230	0.425
5V	1098	1.217
8V	4830	3.288

*Data courtesy of Gates Rubber Co., Denver, Colo.

(4) Find Up and \in if possible $\left(N_P = \left[\left(\frac{K}{T_1}\right)^{-b} + \left(\frac{K}{T_2}\right)^{-b}\right]^{-1}\right]$ $t = \frac{N_P L_p}{720V}$

 $T_1 = F_1 + \frac{K_b}{d} \qquad T_2 = F_1 + \frac{K_b}{D}$

To find (Kb) -> use (fable (17-16))

To Find (Kc): Table 17-16 Some V-Belt Parameters*

To find (K) & (b):

Table 17–17 Durability Parameters	Belt		to 10 ⁹ Peaks		o 10 ¹⁰ Peaks	Minimum Sheave
for Some V-Belt Sections	Section	K	Ь	K	Ь	Diameter, in
Source: M. E. Spotts, Design	А	674	11.089			3.0
of Machine Elements, 6th ed.	В	1193	10.926			5.0
Prentice Hall, Englewood Cliffs, N.J., 1985.	С	2038	11.173			8.5
	D	4208	11.105			13.0
	E	6061	11.100			21.6
	3V	728	12.464	1062	10.153	2.65
	5V	1654	12.593	2394	10.283	7.1
	8V	3638	12.629	5253	10.319	12.5

STUDENTS-HUB.com

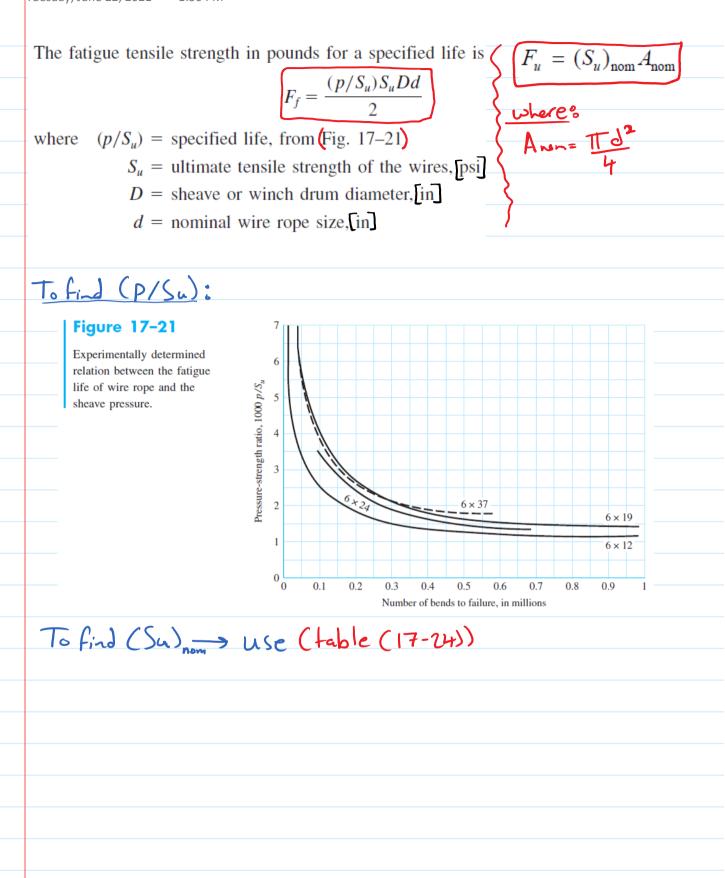
Belts and Ropes Page 8

Wire Ropes (1)

Sunday, June 20, 2021 12:46 AM

The wire rope tension F_t due to load and acceleration

$$F_{t} = \left(\frac{W}{m} + wl\right)\left(1 + \frac{a}{g}\right)$$
(17-47)
where W = weight at the end of the rope (cage and load),[lbf]
 m = number of wire ropes supporting the load
 w = weight/foot of the wire rope,[lbf/ft] \rightarrow {able (17-24)
 l = maximum suspended length of rope,[ft]
 a = maximum acceleration/deceleration experienced, [ft/s²]
 g = acceleration of gravity,[ft/s²]
To find (W):


Table 17-24

Wire-Rope Data Source: Compiled from American Steel and Wire Company Handbook. (d = rope dimeter)

Modulus (い) Minimum (Su) Weight Standard Size of of Sheave per Foot, Elasticity,* Diameter, Sizes Outer Strength,[†] lbf d, in Material Rope Wires kpsi in Mpsi $1.50d^{2}$ d/9 6×7 haulage 42d $\frac{1}{4} - 1\frac{1}{2}$ Monitor steel 14 100 d/9 14 Plow steel 88 Mild plow steel d/914 76 6×19 standard $1.60d^{2}$ 26d - 34d $\frac{1}{4} - 2\frac{3}{4}$ Monitor steel d/13 - d/1612 106 hoisting Plow steel d/13 - d/1612 93 Mild plow steel 12 80 d/13-d/16 6×37 special $1.55d^{2}$ 18d $\frac{1}{4} - 3\frac{1}{2}$ Monitor steel d/2211 100 flexible Plow steel d/2288 11 8×19 extra $1.45d^{2}$ 21d - 26d $\frac{1}{4} - 1\frac{1}{2}$ Monitor steel d/15 - d/1910 92 flexible Plow steel d/15 - d/1910 80 7×7 aircraft $1.70d^{2}$ $\frac{1}{16} - \frac{3}{8}$ Corrosion-resistant 124 steel Carbon steel 124 $\frac{1}{8} - 1\frac{3}{8}$ 7×9 aircraft $1.75d^{2}$ Corrosion-resistant 135 steel Carbon steel 143 19-wire aircraft $2.15d^2$ $\frac{1}{32} - \frac{5}{16}$ Corrosion-resistant 165 steel Carbon steel 165

STUDENTS-HUB.com

(2) Tuesday, June 22, 2021 1:36 PM

STUDENTS-HUB.com

Uploaded By: anonymous

(3) Tuesday, June 22, 2021 2:42 PM

The equivalent bending load F_b is

$$F_b = \frac{E_r d_w A_m}{D} \tag{17-41}$$

where $E_r =$ Young's modulus for the wire rope, Table (17–24) or (17–27) psi

- d_w = diameter of the wires, [in]
- A_m = metal cross-sectional area, (Table 17–27) [in²]
- D = sheave or winch drum diameter, [in]

To find (Er) & use table (17-24)

OC Table 17-27

Some Useful Properties of 6 \times 7, 6 \times 19, and 6 \times 37 Wire Ropes

_	Wire Rope	(U) Weight per Foot w, lbf/ft	Weight per Foot Including Core w, Ibf/ft	Minimum Sheave Diameter D, in	Better Sheave Diameter D, in	Cdw) Diameter of Wires dw, in	(Am) Area of Metal A _m , in ²	Rope Young's Modulus E,, psi
	6 imes 7	$1.50d^{2}$		42d	72 <i>d</i>	0.111 <i>d</i>	$0.38d^2$	$13 imes 10^6$
	6 imes 19	$1.60d^2$	$1.76d^{2}$	30 <i>d</i>	45 <i>d</i>	0.067 <i>d</i>	$0.40d^2$	$12 imes 10^{6}$
	6 imes 37	$1.55d^{2}$	$1.71d^2$	18d	27 <i>d</i>	0.048d	$0.40d^{2}$	$12 imes 10^{6}$

The static factor of safety n_s is

$$n_s = \frac{F_u - F_b}{F_t} \tag{17-46}$$

sometimes defined as F_u/F_t . The fatigue factor of safety n_f is

$$n_f = \frac{F_f - F_b}{F_t} \tag{17-45}$$

STUDENTS-HUB.com

Uploaded By: anonymous

151

(4)

Tuesday, June 22, 2021 2:43 PM

+ The allowable pressure is:

P = 2F, where: F: tensile force on rope dD d: rope dianeter D: Sheave d'aneter

Table 17-26

Maximum Allowable Bearing Pressures of Ropes on Sheaves (in psi) *Source:* Wire Rope Users Manual, AISI, 1979.

(To find Prex)

			Sheave	Material	-	
Rope	Wood®	Cast Iron ^b	Cast Steel ^c	Chilled Cast Irons ^d	Manganese Steel°	
Regular lay:						
6×7	150	300	550	650	1470	
6×19	250	480	900	1100	2400	
6×37	300	585	1075	1325	3000	
8×19	350	680	1260	1550	3500	
Lang lay:						
6×7	165	350	600	715	1650	
6×19	275	550	1000	1210	2750	
6×37	330	660	1180	1450	3300	

^aOn end grain of beech, hickory, or gum.

 b For $H_{B}(\min.) = 125$.

 c 30–40 carbon; H_{B} (min.) = 160.

^dUse only with uniform surface hardness.

"For high speeds with balanced sheaves having ground surfaces.

+ Recommended FOS for applications:

Table 17-25

Minimum Factors of Safety for Wire Rope* Source: Compiled from a variety of sources, including ANSI A17.1-1978.

Track cables	3.2	Passenger elevators, ft/	min:	
Guys	3.5	50	7.60	
Mine shafts, ft: Up to 500 1000–2000 2000–3000	8.0 7.0 6.0	300 800 1200 1500	9.20 11.25 11.80 11.90	
Over 3000	5.0	Freight elevators, ft/mi		
Hoisting	5.0	50 300	6.65 8.20	
Haulage	6.0	800	10.00	
Cranes and derricks	6.0	1200	10.50	
Electric hoists	7.0	1500	10.55	
Hand elevators	5.0	Powered dumbwaiters, ft/min: 50 4.8		
Private elevators	7.5	300	6.6	
Hand dumbwaiter	4.5	500	8.0	
Grain elevators	7.5			

*Use of these factors does not preclude a fatigue failure.

STUDENTS-HUB.com