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Chapter 4

Two or more Random Variables
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Regression Techniques
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The speed of a vehicle, measured at different times, is given in the table
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We suspect that the data follow a linear function of the form y = ax + £.
a. Set up the necessary equations needed to determine a and f3.
b. Solve the equations in Part a for & and £,
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Question#4 [16 Points]

The data of an experiment is collected and found to be as shown in the table below. For these values find the best
fitting curve equation y = e“* that describes the experiment results (y) versus the input (x).

X; -1 -12 | 06 | 09 0S5 | 01 | 08 1 €02 | 13
33 1.8 04 0.6 11 22 03 12 0.2
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Hint: For the linear model y = ax + ﬂ , we have
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Cenlral l_imit Theorem
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A lot of evumpror =
Exemple 1

An electronic company manufactures resistors that have a mean resistance of 100 Q and a

standard deviation of 10 Q. Find the probability that a random sample of n = 25 resistors will
have an average resistance less than 95 Q.

SOLUTION:

[, is approximately normal with:

mean = E(f1, )= 100 Q. A

2 2

(o} 10

Var(i,)=62 =—X ="
(”x) X - 25

o =\/S’i=\/£=2
= n 25

SR 100

A\ 4
=
>

P{fiy <95} =P{Z<

b

= ®(-2.5)=0.00621

95 100
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Exomple 2

Let X; and X be two independent Gaussian random variables such that: 4 =0, o] =4,
1, =10, o; =9. Define Y = 2X1 +3X>

c. Find the mean and variance of Y
d. Find P(Y<35).

SOLUTION:
My =244, +34,=2(0) +3(10) = 30
o, =40] +90; = =4(4)+9(9)=97

2250 )= D(0.5077) = 0.6942.
Jo7

P(Y <35)=d(

Exomple. 3

Soft-drink cans are filled by an automated filling machine. The mean fill volume is 330 ml
and the standard deviation 1s 1.5 ml. Assume that the fill volumes of the cans are independent

Gaussian random variables. What is the probability that the average volume of 10 cans
selected at random from this process is less than 328 ml.

SOLUTION:

=X+ X, 1.4 Jin

E{a=(u+upu+..u)/ n=pu=330

Var(f) =0’ /n=(1.5)>/10=0.225

4 1s Gaussian with mean 330 and variance 0.225.

328-330
P(1<328)=®( ——= )=D(-4.21)= 1.2769¢-005.
(4 = o )=@(-4.21)

Exomple. Y

Let Xi and X: be two Gaussian random variables such that: g =0, 0'12 =4, u,=10,
o =9, p, =025 Define Y = 2X; + 3X;

a. Find the mean and variance of Y
b. Find P(Y<3)5).

SOLUTION:
Hy =244 +3,=2(0) +3(10) =30

oy =407 +90; +2(2)3)0,)(0,)p1, =44)+9(9)+2(2)(3)(2)(3)(0.25)= 115

P(Y <35)=®d( & \5/1_1_3;0 ) = @(0.466) = 0.6794
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Exomple_ 5

Suppose that X is a discrete distribution which assumes the two values 1 and 0 with equal
probability. A random sample of size 50 is drawn from this distribution.
a. Find the probability distribution of the sample mean /s,

b. Find P(f,) < 0.6

SOLUTION:

Since n=50 > 30, then we can approximate the sample mean by a normal distribution with:
E(lix)=EX)=0*1/2 + 1*1/2 =1/2.
oy (0-1/2)**1/2+(1-1/2)>*1/2 1
- 50 200

L= d(1.414) = 0.92073

Var(gy) = 6-)2( =

0.6-0.5

P{[iy <0.6} =P{Z < —
B J1/200

Exomple 6

The lifetime of a special type of battery is a random variable with mean 40 hours and standard
deviation 20 hours. A battery is used until it fails, then it is immediately replaced by a new
one. Assume we have 25 such batteries, the lifetime of which are independent, approximate
the probability that at least 1100 hours of use can be obtained.

SOLUTION:

Let X, Xo, ..., X25 be the lifetimes of the batteries.
LetY=X1+Xo+...... + X25 be the overall lifetime of the system
Since X are independent, then Y will be approximately normal with mean and variance:

My = 1+ Wy +.o+ lys =254 =25%40 =1000
o, =0, +0; +..+05 =250 =25%(20)* =10000

1100 —1000
v/10000

P(Y >1100) = P(Z > )=P(Z > 1)=1-®(1)=0.158655
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