
Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

Matlab Primer #2 - Programming

Introduction:
Although it has much of the attractive high-level functionality of a software “package”, 
Matlab is  most  definitely  a  bona-fide computer  language  with  its  own programming 
constructs and syntax. It is naturally outside the scope and purpose of this primer centred 
on Matlab image processing to offer a comprehensive treatment of the Matlab language1. 
Rather, our aim here is to offer a brief discussion (with illustrative examples) of the key 
programming constructs within (and features of)  Matlab. Thus, our brief presentation is 
limited to essentials in the belief that mastery of the details and finer points, as with all 
computer languages, will come through a combination of practice and experience.

Matrices and Arrays
Most introductions to the Matlab language begin with a discussion of arrays and matrices. 
This discussion is no exception. The way in which Matlab defines and deals with arrays 
and array operations is a strong distinguishing feature which allows efficient and compact 
code to be written so that grasping the essentials of array handling is one of the most 
important things for the new user to grasp. In fact, it is useful in the beginning to consider 
that every quantity (whether numeric or text) created by Matlab is simply an array2.

Matlab (an amalgam of  MATrix  LABoratory)  was originally designed specifically to 
allow  easy  and  comprehensive  calculation/manipulation  of  matrices.  Mathematically 
speaking,  we need to  be aware  of  the  distinction  between  matrices  and  arrays.  As 
computational  objects,  matrices are simply arrays  – i.e.  ordered rows and columns of 
numerical values. However, matrices are a type of array to which we attach a definite 
mathematical  meaning  and  to  which  certain  operations  (e.g.  matrix  multiplication, 
transpose  etc)  can  be  meaningfully  applied.  Arrays  on  the  other  hand  are  often  just 
convenient  ways  of  storing  and organizing  data  which  can  be  numeric,  textual  or  a 
combination of both and Matlab provides many useful ways of manipulating and dealing 
with these quite  general  arrays.  The key point then is  that  within  Matlab there is no 
distinction between arrays and matrices. Arrays and matrices are identical entities and it 
is only the user who can decide if the quantity he has defined is a “matrix” in the proper 
mathematical  sense  or  simply  an  array.  In  the  following  discussion,  no  attempt  is 
therefore made to distinguish between them and it will generally be clear from context 
whether a given array is a matrix. 

1 A comprehensive treatment is given in Mastering Matlab, Hanselman and Littlefield, Prentice Hall. The 
extensive Matlab documentation provided with the software is also very readable and informative .
2 This is not strictly true but sufficiently close to the truth that it will serve its purpose. 

www.fundipbook.com – Matlab Primer #2 1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

Creating arrays in Matlab

The simplest way of creating small arrays in Matlab is to manually enter the elements in 
the command window, row by row. Try entering the commands given below:–

A vector is just a 1-D array :–

We can turn a row vector into a column vector, by using the transpose operator

or, of course, transpose a 2-D array :–

We can also create ‘string’ arrays which contain text –

All 2-D arrays must be rectangular or square – in other words, to be a legal array each 
row in the array must have the same number of elements3. The same principle applies to 
arrays of higher dimension. Thus a legal 3-D array must comprise a “stack” of 2-D arrays 

3 So-called cell arrays and structures are advanced data structures which can be used to circumvent this 
restriction when needed. We must defer discussion of these data structures for later examples in the book 
but for the impatient reader, typing >> doc struct and >> doc cell at the Matlab prompt for information on 
the basic idea and use. 

www.fundipbook.com – Matlab Primer #2 2

>>A' %Transpose A

Matlab Commands What’s Happening

>>A=[1 2 3; 4 5 6] %Create a 2 x 3 matrix A
>>B=[6 5 4; 3 2 1] %Create a 2 x 3 matrix B

Comments
The enclosing square brackets indicate that the contents form an array. A semi-
colon within the brackets indicates the start of a new row. 

>>vec=[0 1 1] %create 3 element row vector, vec

>> alph=['ab';'cd'] %Create  2x2 array of characters
>> alph(2,2) %Display element in 2nd row, 2nd column (d)

>> vec=vec' %make vec a transposed version of itself

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

of similar dimensions, a legal 4-D array a group of 3-D arrays of similar dimensions and 
so on.

Accessing individual elements in an array

Individual array elements are accessed using subscripts as follows:- 

We can change or correct the values of array elements by indexing them individually:–

Arrays can be 3-D (or have even higher dimensionality) :–

Accessing groups of elements in an array – the colon operator

Matlab has a very important and powerful colon operator ( : ). This can be used to create 
vectors and for subscripting arrays. Here’s a couple of examples of its use in creating 
vectors -

We can also access groups of elements in an array by using the colon operator to specify
the vector indices. Try the following :-

www.fundipbook.com – Matlab Primer #2 3

Matlab Commands What’s Happening
>>vec(2) % vec(2) is the second element of vec
>>A(1,2) % Return element in the 1st row, 2nd column

>>A(1,2)=6 %Set element in 1st row, 2nd column to 6

Matlab Commands What’s Happening
>>C=imread(‘football.jpg’); %Read in RGB (colour) image of football
>>C(128,39,1) %Get R (red) value at given pixel (=32)

Comments
Note the use of the semi-colon after Matlab command to suppress the output of 
the values of the matrix variable C to the screen.

Matlab Commands What’s Happening
>> vec(2:3) %Extract elements 2 and 3 inclusive
>>B=A(1:2,2:3) %Extract sub-array  rows 1- 2, columns 2-3
>>C=A(1,1:2:3)             %Extract 1st and 3rd elements of 1st row

Matlab Commands What’s Happening
>>x=1:10 % x=[1 2 3… 10] Increment is 1
>>y=0:5:100             %y=[0 5 10 ..95 100] Increment is 5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

We can also use the colon operator to extract entire rows or columns of an array:-

When we use the colon operator along one of the array dimensions in this way, we are 
effectively allowing the index to range over the entire length of that dimension. Thus in 
the first example, A(:,1) means we fix the column number equal to 1 and extract all the 
elements in that column (i.e. the row index varies from 1 up to its maximum value). In 
the second example, A(2,:) we fix the row number equal to 2 and extract all the elements 
in that row (i.e. the column index varies from 1 up to its maximum value).

Try the exercise below.

Concatenation of arrays
We can easily concatenate (join together) arrays to make a larger array. In effect, we just 
consider the elements of an array to be arrays themselves. 

The arrays which form the elements of the concatenated array  must be of conformable  
dimension – i.e. the resulting array must be rectangular. For example, trying to form the 
arrays  :–

www.fundipbook.com – Matlab Primer #2 4

Matlab Commands What’s Happening
>>A(:,1) %Extract first column of A (ans=[1 ; 4])
>>A(2,:)             %Extract 2nd row of A (ans=[2 3 4])

Matlab Commands What’s Happening
>> clear; %Clear workspace
>> A=[1 2; 3 4], B=[5 6; 7 8], C=[9 10 11 12] %Create arrays
>> [A B] %A B are the “columns” of new 

%array. Result has dimension 2x4.
>> [A; B] %A B are the “rows” of new 

%array. Result has dimension 4x2.
>> [A B; C]                                                                %Result has dimension 3x4.

>> [A; C]
>> [A B C]

Primer Exercise 2.1
 Read in the Matlab image 'liftingbody.png' (use function imread).
 Extract the central 50% of the image pixels and display the image (use 

imshow).
 Extract the first 64 columns of the image and display them as a new image.
 Extract the rows 33 to 64 inclusive of the image and display them as a new 

image.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

does not work and Matlab responds with the appropriate error message –

??? Error using ==> horzcat
All matrices on a row in the bracketed expression must have the 
same number of rows.

Try the exercises below:-

Creating and Dealing With Larger Arrays
Manual entry as described above is suitable only for relatively small arrays. Larger arrays 
can be created in 2 basic ways.

• Matlab provides a number of built in functions for creating and manipulating simple 
arrays of arbitrary dimension. These are outlined in the table 2.1 below.

www.fundipbook.com – Matlab Primer #2 5

Primer Exercise 2.2
 Read in the Matlab images cameraman.tif and rice.tif (use the imread 

function). 
 Concatenate them to make a single image and display the result (use 

imagesc or imshow function).

Primer Exercise 2.3
 Generate the same result as in exercise 2.2. but this time using the Matlab 

function repmat. (Use the Matlab help facility to find out how this function is 
used).

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

Function Description Simple example
zeros Array of zeros A=zeros(4);
ones Array of ones A=ones(4);
eye Identity matrix A=eye(4);
repmat Make tiled copies of input array A=eye(4); B=repmat(A,1,2);
rand Random array – elements 0 – 1 A=rand(4);
randn Normally distributed random array A=randn(4);
linspace Vector with linear increments A=linspace(0,1,12);
logspace Vector with logarithmic increments A=logspace(0,1,12);
meshgrid Make 2-D array from 2 input vectors [X,Y]=meshgrid(1:16,1:16);

Table 2.1: Matlab functions for creating arrays

By suitable manipulation, we can create large arrays with meaningful contents.
Try the following examples :–

www.fundipbook.com – Matlab Primer #2 6

Matlab Commands What’s Happening
>>A=randn(4) %Create normally distributed random 4 x 4 array. 

>>x=linspace(-1,1,50); y=x %Make vector x of 50 points linearly spaced from -1 to 1
%Make copy y

>>[X,Y]=meshgrid(x,y);             %Produce 2-D grid array for all combinations of x and y.
>>mesh(X.^2+Y.^2) %Surface height display of function X^2+Y^2

>>clear;
>>A=ones(128); surf(A); %Generate array of ones, display as surface height.

>>A=imread(‘rice.tif’);           %Read in rice image
>>B=repmat(A,2,2); imshow(B);        %Make 2 x 2 tiled copy and display
>> thresh=100.*rand(size(A));                %Random array same size as A – range 0-100
>> I=find(thresh>A);                               %Find all pixels at which random array is > A
>> A(I)=0; imshow(A)                             %Set them to zero and display modified image

Primer Exercise 2.4
 Read in the images rice.tif and cameraman.tif. 
 Find all pixels for which the rice image has a value greater than that of the 

cameraman image and copy the corresponding pixel values into the 
cameraman image. (Use the Matlab function find)

 Display the result.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

The last example uses the powerful in-built  find function and so-called linear indexing. 
We’ll discuss this function and the technique of linear indexing shortly, so don’t worry if 
all the last example is not completely transparent. 

Those with some previous programming experience will note from the examples above 
that there are no loop constructs (for, do, while etc) used to build and manipulate the 
arrays. A feature of  Matlab which distinguishes it from many other languages is called 
implicit vectorisation. Namely, if the input to a  Matlab expression is a vector or array, 
Matlab knows to evaluate the expression at every value of the input, producing an output 
that is also a vector or array. 

A second way in which larger arrays can be constructed is through use of appropriate 
loop constructs. This is done in a way similar to most other languages. The following 
example assigns the value 1 to all the elements in column 1, 2 to all the elements in 
column 2 and so on :–

The next example creates an array that randomly allocates values of 0 or 1 to the rows of 
an array by “flipping a coin”:–

As a rule, you should try to avoid loop constructs  in  Matlab where this  is possible - 
especially for large arrays.  Matlab is an interpreted language and this means that loops 
execute slowly compared to compiled code. Loops are sometimes unavoidable and have 
their place in the Matlab language and we shall say more about loop constructs later in 
this section. The example below  achieves the same purpose as the one above but uses 
Matlab’s implicit vectorization capabilities

www.fundipbook.com – Matlab Primer #2 7

Matlab Commands What’s Happening
>>A=zeros(16); %Make 16 x 16 zero matrix
>>for i=1:16; %begin for loop
     A(:,i) = i.*ones(16,1); %Build the columns of A
     End; %End for loop

Matlab Commands What’s Happening
>>A=zeros(16); %Create array of zeros
>>for i=1:16

if rand > 0.5 %Flip a coin with rand (>0.5 == heads)
A(i , :) =ones(1,16) %If  “heads” occurs, assign value 1 to  
end %elements of column i

    end     
>>imshow(A); %Display resulting array

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

Determining the size of arrays
The  function  whos only  prints  information  to  the  screen  about  the  size  and  type  of 
variables currently existing within the workspace.  To determine the size of an array and 
actually assign this information to a variable in the workspace, we must use the in-built 
size function. The basic syntax is [m,n]=size(A) where the number of rows and columns 
in A are assigned to m and n respectively. 

For example :–

Here,  dims is a 2 element  row vector containing the number of rows and number of 
columns. Try the following :–

This time, dims is a 3 element row vector because A is an RGB colour image and RGB 
colour images are a composite of three separate 2-D images, one each for the red, green 
and blue components.

www.fundipbook.com – Matlab Primer #2 8

Matlab Commands What’s Happening
>>A=imread(‘circuit.tif’); dims=size(A);     %Read in image and ascertain size. [280 272]

Matlab Commands What’s Happening
>>A=imread(‘onion.png); dims=size(A) %Read  in  colour  image  and  ascertain  size. 

%[135 198 3]

Matlab Commands What’s Happening
A=zeros(16); %Create 16x16 array of zeros
I=find(rand(16,1)>0.5); A(:,I)=1; %Find indices at which 16 random 

%numbers exceed threshold and assign 
%corresponding columns of A equal to 1

Comments
Note how the Matlab code is very compact and that the output of one function 
can directly constitute the input to another (e.g. find(rand.. etc) )

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

Array Utility functions
Matlab provides some further in-built functions for array manipulation. Some of these are 
summarised in the table below :–

Function Description
reshape Change the shape of an array
fliplr Orders the columns in reverse order
flipud Orders the rows in reverse order
tril Extracts lower triangular part of array
triu Extracts upper triangular part of array
rot90 Rotates array counter-clockwise by o90

Here are some fun examples to try out :–

Relational and logical operators
Comparison of two quantities is fundamental to any language.  Matlab includes all the 
common relational operators, summarized in the table below:-

Relational Operator Description
< Less than
<= Less than or equal to
~= Not equal to
> Greater than
>= Greater than or equal to
== Equal to

Relational operators can be used to compare two arrays or an array to a scalar. The output 
of all relational expressions produces logical arrays with 1 where the expression is True 
and 0 where it is False. Thus, if A = [ 1 3 2 6] and B = [0 4 3 4], then A < B = [0 1 1 0].

www.fundipbook.com – Matlab Primer #2 9

Matlab Commands What’s Happening
>>A=imread(‘cameraman.tif’); imshow(A); %Display original image matrix
>>B=fliplr(A); imshow(B) %Flip left-right and display
>>C=flipud(B); imshow(C); %Flip upside-down and display
>>subplot(1,3,1), imshow(A); 
>>subplot(1,3,2), imshow(B); 
>>subplot(1,3,3), imshow(C);          %Display together in same window

Primer Exercise 2.5
Read in the images rice.png and cameraman.tif . Reflect the rice image about the x axis, 
the cameraman image about the y axis and add them together using Matlab’s ordinary 
addition operator. Display the result using the function imshow

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

Try the examples below :-

Note that comparison takes place on an element by element basis, returning 1 where the 
relation is satisfied and 0 where it is not. Note also the difference between the relational 
equality (==) and the assignment operator (=).

Warning !
 == and = are distinct operators  .   
The relational operator == tests for the equality of quantities; the assignment operator = is used to 
assign the output of an operation to a variable. This is a common source of error,  especially for 
beginners.

Logical operators
Logical operators allow us to combine or negate relational expressions. Applying these 
operators  to  relational  expressions  also  results  in  logical  (0-1)  arrays  having  value  1 
where the expression is TRUE and 0 where it is FALSE. 

The basic logical operators in  Matlab are given in the table below. Some examples of 
their use is illustrated below :-

Matlab Logical Operator Description
& Logical AND
| Logical OR
~ Logical NOT
Matlab Logical function Description
and Logical AND
or Logical OR
xor Logical exclusive OR
any Logical TRUE if any element is TRUE
all Logical TRUE if all elements TRUE
isempty Logical TRUE if matrix is empty
isequal Logical TRUE if matrices are identical
ismember

www.fundipbook.com – Matlab Primer #2 10

Matlab Commands What’s Happening
>> A=1; B=2; tf = A<B %tf assigned value 1 because A is less than B
>>A=[1 2 3]; B=[0 2 4]; tf = A>=B %tf=[1 1 0] - first two elements of A are >=those in B
>>A=3; B=[2 4 0 3 1]; tf = A==B %tf=[0 0 0 1 0] because 4th element is the same as A

Matlab Commands What’s Happening
>>A=[1 2 3]; B=[0 2 4]; C=[1 3 2]; %Assign matrices
>>B>A & B>C %ans=[0 0 1] – only last element of B satisfies both 

%conditions
>>~( B>A & B>C) %ans=[1 1 0] – Logical NOT of previous example
>>A<C | B~=C %ans=[1 1 1] – All elements of B are different from C

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

Try some of these basic examples –

Note from the last example how the output from the function find can directly form the 
input  to the function  isempty. This is possible in this specific case because the output 
from  find  is  a  single  array/matrix  and the  required  input  to  isempty is  also  a  single 
array/matrix. The reader should consult the online help facility for further details of the 
logical functions described above . 

Matlab Flow Control
Matlab  provides  flow  control  statements  in  a  way  very  similar  to  most  other 
programming languages. Conditional statements where certain operations are carried out 
only if certain conditions are satisfied can be constructed in two basic ways -  if and 
switch statements.

If statements
Matlab supports these variants of the if construct -

if …(statement)... end
if …(statement)... else …(statement)... end
if …(statement)... elseif …(statement)... else …(statement)... end

A single example of each variant is sufficient to illustrate its use :-

www.fundipbook.com – Matlab Primer #2 11

Matlab Commands What’s Happening
>> A=[1 2 3]; B=[0 2 4]; C=[1 3 2]; %Assign matrices
>> and(A<B,C<B) %Logical AND between logical arrays A<B and C<B: ans=[0 

0 1]
>> xor(A<B , B<C) %Exclusive OR between arrays A<B and C<B: 

%ans=[1 1 1]
>> isempty(find(A>4)) %A has no elements > 4. Find function returns the empty 

%array. isempty tests for this. ans=1
>> any(B>A) %if any elements of B>A returns logical true. ans=1

Matlab Commands What’s Happening
>> d = b^2 - 4*a*c; %Define d
>> if d<0 %Begin conditional if
>> disp('warning: discriminant negative, roots imag'); %Statement
>> end %End if

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

Note 
 no semicolon is needed to suppress output at the end of lines containing if, else,  

elseif or end. 
 The operator == (is equal to) is used for logical comparison. It is quite distinct 

from the single = sign which assigns a value to a variable.
 Indentation of  if  blocks is not required, but considered good style.

www.fundipbook.com – Matlab Primer #2 12

Matlab Commands What’s Happening
>> d = b^2 - 4*a*c;
>> if d<0 %Begin conditional if
>> disp('warning: discriminant negative, roots imag');
>> else %single alternative (else) clause
>> disp('OK: roots are real, but may be repeated');
>> end %End if

Matlab Commands What’s Happening
>>d = b^2 - 4*a*c;
>>if d<0 %Begin conditional if
>>disp('warning: discriminant negative, roots imag');
>>elseif d==0 %1st alternative (elseif) clause
>>disp('discriminant is zero, roots are repeated');
>>else %Last alternative (else) clause
>>disp('OK: roots are real and distinct');
>>end %End if

Primer Exercise 2.6
Write a Matlab function which takes a single 2-D matrix input argument (an image) and

 Scales the matrix so that the maximum pixel value is = 1.
 Calculates the mean pixel value of the scaled matrix
 Conditionally prints the following strings to the monitor -

“Image is dark” if the mean x<0.5
“Image is normal” if the mean x=0.5
“Image is bright” if the mean x>0.5

Test your function on one or two of the Matlab images to make sure it operates properly.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

Switch-case constructs
A switch-case construct is similar in basic purpose to an  if  construct. If a sequence of 
commands must be conditionally evaluated  based on the equality of a single common 
argument, a switch-case construct is often easier. Here is an example :–

In the example above, Matlab responds with 
>> Queried file is TIF format

Thus the generic form for a switch statement is

switch the switch expression
case a case expression

corresponding statements….
case another case expression
otherwise

corresponding statements….
end

Thus the corresponding group of legal Matlab statements will be executed if the case 
expression matches the switch expression.

www.fundipbook.com – Matlab Primer #2 13

Matlab Commands What’s Happening
info=imfinfo('cameraman.tif');                                 %assign image information to structure info
switch info.Format                                                 %switch construct depends on Format field
case {'tif'}                                                             %execute statement if Format ==’tif’
    disp('Queried file is TIF format')
case {'jpg','jpeg'}
    disp('Queried file is JPG format')                      %execute statement if Format ==’jpg’
end

Comments
• The Matlab function imfinfo attempts to infer the contents of the image 

cameraman.tif. It assigns the results to a structure called info (a structure is 
essentially a collection of numeric and string variables each of which can be 
accessed using the same basic name but a different specific field). 
Type >> help struct at the Matlab prompt for further information

• One of the fields in this particular structure is the Format field. The switch statement 
effectively registers/records the string contained in the format field.

• This is compared for equality with each of the strings contained within the curly 
braces { } that are part of the case clauses.

•  If equality occurs, the commands following the case clause are executed.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

Loop Constructs  for and while
for loops allow a set of statements to be executed a fixed number of times. The syntax 
is :– 

for x = array
statements..

end

The for loop basically works by assigning the loop variable x to the next column of the 
vector  array at  each iteration.  Consider the following simple  for loop to sum all  the 
integers from 1 to 10 :–

Thus, in this  for loop the variable i takes on the next value in the array (1,2,..10) on each 
successive iteration.  The next example shows a slightly more advanced piece of code 
involving  some  new  Matlab functions  -  we  include  it  now  to  show  that  the  basic 
construction of the for loop is exactly the same :–

The following example creates a vector with the first 16 terms of the Fibonacci series 
1 1n n nx x x+ −= + using a for loop. Another for loop is then used to cyclically permute the 

terms to form the rows of the image :–

www.fundipbook.com – Matlab Primer #2 14

Matlab Commands What’s Happening

sum=0; %Initialise sum
for i = 1:10 %Create 10 element array i=[1 2 3…10]. Begin loop

sum=sum + i; %Calculate cumulative sum
end                                                            %End Loop

cumsum(1:10)                                          %NB. This is the easy way to do this in Matlab…

Matlab Commands What’s Happening
A=imread('cameraman.tif'); B=imread('moon.tif');           %Read in two images assign to arrays ay
B=imresize(B,size(A),'bilinear');                                       %Resize B to match dimensions of A
for i=1:size(A,1)                                                                 %Begin looping through columns of A
rvals=rand(size(A,1),1); indices=find(rvals>0.5);              %Randomly sample for pixel 

locations %in columns
   A(i,indices)=B(i,indices);                                                %At selected pixel locations, copy B    

                                                 %values into A  
end                                             %End loop
imshow(A);

      %Display modified image

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

while loops
The syntax of the while loop is very simple -

while expression
statements

end

In the while loop,  expression is  a logical  expression and the  statements  following are 
repeatedly executed until the expression in the while statement becomes logically false. 
Here are a couple of simple examples :-

This example successively generates sets of 4 random numbers in the interval 0-1. The 
loop stops when we obtain a set of 4 numbers all of which are less than 0.25.

www.fundipbook.com – Matlab Primer #2 15

Matlab Commands                                                   What’s Happening
>>i = 2; %Initialise i=2
>>while i<8 %logically true if i<8
>>i = i + 2 %increment I by 2 each iteration
>>end %End loop

Matlab Commands                                                    What’s Happening
vec=ones(1,16);                                                                    %16 element vector all =1
for i=2:15                                                     %Begin Loop
vec(i+1)=vec(i)+vec(i-1)                                                      %Build Fibonacci terms
end                                                  %End Loop

A(1,:)=vec;                                                                            %First column of A Fibonacci series
for i=1:15                                                      %Begin Loop
    A(i+1,:)=[vec(17-i:16) vec(1:16-i)]                                  %Cycle elements for each new col  
End                                                  %End Loop
imagesc(log(A))                                                                  %Display on log scale

Matlab Commands                                                   What’s Happening
A=ones(4,1); k=0; %Initialise A and counter k
while any(A) %False if ALL elements of A =0
    A=rand(4,1)>0.25 %A is 4 element logical array

%Element = 1 if rand > 0.5
k=k+1; %Increment counter
end %End loop
k %Show final number of trials

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

More on Arrays and Indexing

We end this primer with an overview of some of the more advanced aspects of indexing 
into arrays. Indexing into an array is a means of selecting a subset of elements from the 
array. Indexing is also closely related to another term we mentioned in passing early on: 
vectorization.  Vectorization  means  using  Matlab  language  constructs  to  eliminate 
program loops, usually resulting in programs that run faster and are more readable. Try 
out the following examples which illustrate a number of powerful indexing techniques. 

Indexing Vectors
Let's start with the simple case of a vector and a single subscript. The vector is:-

  

Or the subscript can itself be another vector :–

  

Matlab's colon notation ( : ) provides an easy way to extract a range of elements from v:-

  

You can swap the two halves of v to make a new vector :–

     

The special end operator is an easy short-hand way to refer to the last element of v -
  

The end operator can be used in a range – 

You can even do arithmetic using end –

  

www.fundipbook.com – Matlab Primer #2 16

>> v = [16 5 9 4 2 11 7 14];    
>> v(3)     % The subscript can be a single value – 

%“Extract the % third element”  ans =  9 

>> v([1 5 6])      % Extract the first, fifth, and sixth elements 
    % ans = 16   2   11 

>> v(3:7)     % Extract elements 3 to 7 inclusive. 
          % ans =   9   4   2   11   7 

>> v(end)     % Extract the last element 
     % ans =   14  

v(5:end)     % Extract elements 5 to last inclusive
% ans =   2   11   7   14 

v(2:end-1)     % Extract second to penultimate element
    % ans = 5   9   4   2   11   7 

>> v2 = v([5:8 1:4])     % Extract and swap the halves of v 
    % v2 =    2   11   7   14   16   5   9   4 

       

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

The colon operator is very powerful and can be used to achieve a variety of effects :–

     

By using an indexing expression on the left side of the equal sign, you can replace certain 
elements of the vector.:-

    
     

Usually the number of elements on the right must be the same as the number of elements 
referred to by the indexing expression on the left. You can always, however, use a scalar 
on the right side. 

This form of indexed assignment is called scalar expansion. 

Indexing Arrays with Two Subscripts
Now consider indexing into an array. We'll use a magic square for our experiments. 

Most often, indexing in arrays is done using two subscripts - one for the rows and one for 
the columns. The simplest form just picks out a single element :–

More generally, one or both of the row and column subscripts can be vectors. 

     
     

www.fundipbook.com – Matlab Primer #2 17

     v(end:-1:1)   % Reverse the order of elements 
     %ans = 14   7   11   2   4   9   5   16  

>> v([2 3 4]) = [10 15 20]   % Replace selected elements of v 
     %v =  16   10   15   20   2   11   7   14 

      

>>v([2 3]) = 30   % Replace second and third elements by 30       
     %v =  16   30   30   20   2   11   7 1  4 

>>A = magic(4) %Create a 4 x %4 magic square using in-built 
%function magic 

>>A(2,4)   % Extract the element in row 2, column 4      
% ans =  8

>>A(2:4,1:2) %Extract rows 2 to 4, columns 1 to 2

>> v(1:2:end)   %extract every k-th element – k=2 here
% ans = 16   9   2   7 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

A single semi-colon ( : ) in a subscript position is short-hand notation for "1:end" and is 
often used to select entire rows or columns. 

The diagram below illustrates a trickier use of  two-subscript indexing. The expression 
A([2 3 4], [1 2 4]) does NOT extract elements A(2,1), A(3,2) and A(4,4) as one might, at 
first glance think, but rather extracts the elements shown on the right :–

                                                       
Selecting scattered elements from an array
Suppose you do want to extract the (2,1), (3,2), and (4,4) elements from A ?  As we have 
just shown, the expression  A([2 3 4], [1 2 4]) doesn’t do this.

There is often confusion over how to select scattered elements from an array. To 
do this requires the use of linear indexing and that brings us to our next topic. 

     
Linear Indexing
We begin with a question. What exactly does this expression A(14) do ?
    
When you index into the array A using only one subscript,  MATLAB treats A as if its  
elements  were  strung  out  in  a  long  column  vector  by  going  down  the  columns 
consecutively, as in :–

        16
         5
         9

         …..

www.fundipbook.com – Matlab Primer #2 18

>> A(3,:)   % Extract third row 
% ans =          9   7   6   12 

>> A(:,end)   % Extract last column 
% ans = 13 8 12 1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

         8
        12
         1

 The expression A(14) simply extracts the 14th element of the implicit column vector. 
   
Here are the elements of the matrix A along with their linear indices in the top left corner 
of each square:-

    

                              
The linear index of each element is shown in the upper left. From the diagram you can 
see that A(14) is the same as A(2,4) – i.e. Linear index = (column number – 1) x (number  
of rows in array) + row number
     
The single subscript can be a vector containing more than one linear index, as in: 

    
Let’s consider again the problem of extracting just the (2,1), (3,2), and (4,4) elements of 
A. You can use linear indexing to extract those elements: 

    

www.fundipbook.com – Matlab Primer #2 19

>>A([6 12 15]) %Extract “linear” elements 6,12,15
     %ans = 11   15   12

>>A([2 7 16]) %ans = 5   7   1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

It’s easy to see the corresponding linear indices for this example, but how do we compute 
linear  indices  in  general  ?   provides  a  function  called  sub2ind that  provides  the 
appropriate linear indices corresponding to the given row and column subscripts –

     
The in-built Matlab function  ind2sub does precisely the reverse, providing the row and 
column indices given the linear index and the size of the array.

The find function
The  find  function  was  introduced  earlier  but  is  very  useful  and  so  deserves  special 
mention. It can be used to extract the indices of all those elements of an array satisfying a 
stated condition. For example, consider first creating a vector :-

It can also be used on 2-D arrays to return the row-column indices :–

Or it can extract the linear indices of the 2-D array :-

In the following example we take two images A and B (of equal size) and compare them 
on a pixel by pixel basis to see whether image A has the greater intensity. If so, we copy 
the value in A to B.

Logical Indexing
Another  indexing  variation,  logical  indexing,  has  proved  to  be  both  useful  and 
expressive. In logical indexing, you use a single, logical array for the matrix subscript. 
Matlab extracts the matrix elements corresponding to the nonzero values of the logical 
array.  The output is always in the form of a column vector. For example, A(A > 12) 
extracts all the elements of A that are greater than 12. 

www.fundipbook.com – Matlab Primer #2 20

>>idx = sub2ind(size(A), [2 3 4], [1 2 4]) % idx =  2   7   16

>>A(idx) %display values referenced by these indices      
%ans =  5   7   1

>> clear; A=1:10;  i=find(A>5) % i = [6 7 8 9 10] 

A=imread('cameraman.tif'); B=imread('rice.png'); %Read in images
I=find(A>B); B(I)=A(I); imshow(B); %get linear indices for A>B. Copy over original.

>> clear; A=[1 2 3; 0 1 2; -1 1 1]; [i,j]=find(A<=0) % i=[2 3] j=[1 1]

>> i=find(A<=0) % i=[2 3] 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

Many Matlab functions that start with "is" (isnan, isreal, isempty..) return logical arrays 
and are very useful for logical indexing. For example, you could replace all the NaNs4 in 
an array with another value by using a combination of isnan, logical indexing, and scalar 
expansion. To replace all NaN elements of the matrix B with zero, use:- 

Or you could replace all the spaces in a string matrix str with underscores:-

Logical  indexing  is  closely related  to  the  find function.  The  expression A(A > 5)  is 
equivalent to A(find(A > 5)). Which form you use is mostly a matter of style and your 
sense of the readability of your code, but it also depends on whether or not you need the 
actual index values for something else in the computation.  For example,  suppose you 
want to temporarily replace NaN values with zeros, perform some computation, and then 
put the NaN values back in their original locations. In this example, the computation is 
two-dimensional filtering using filter2. You do it like this :-

  

The Matlab indexing variants illustrated above give you a feel for ways we can create 
compact and efficient code. You will certainly not need them all right away but learning 
to include these techniques and related functions in your Matlab programs helps to write 
and create efficient, readable, vectorized code. 

4 NaN is the I.E.E.E. representation for  Not-a-number. A NaN results from mathematically undefined 
operations such as 0/0 or inf/inf.  Any arithmetic operation involving a NaN and a legal mathematical entity 
results in a NaN. They ca, however, sometimes be useful to identify and/or label locations at which data is 
missing.

www.fundipbook.com – Matlab Primer #2 21

>>A(A > 12) %ans = 16 14 15 13 (as column vector)

>> B=0./linspace(5,0,6)
>> B(isnan(B)) = 0

>>str='A stitch in time'
>>str(isspace(str)) = '_'

>>nan_locations = find(isnan(A));
>>A(nan_locations) = 0;
>>A = filter2(ones(3,3), A);
>>A(nan_locations) = NaN;

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

Further Help in Learning Matlab

In this brief introduction, we have tried to give an indication and some simple examples 
of some of Matlab’s key programming constructs – hopefully enough to get you off the 
ground. There are now many good core Matlab books (non image processing specific) 
and  a  significant  amount  of  web-based  material  specifically  aimed  at  helping  users 
develop their knowledge of the Matlab language and we refer the reader to a selected 
sub-set of this material on the book website (with these primers).  

We must also make mention of the excellent on-line help resources and comprehensive 
documentation available to Matlab users. In the authors' experience it is clearly written, 
well organized and both quick and easy to use – it almost (but we hope not quite) makes 
the  these  two  supporting  Matlab  primers  for  this  book  superfluous.  We  hasten  to 
recommend this material to the reader. 

As  a  rather  keen  DIYer,  I  cannot  help  but  compare  programming  in  Matlab  with 
undertaking some task of physical construction such as building a house. It is a simple 
but accurate analogy. Building a basic house can actually be done with a bare minimum 
of essential  tools but it  tends to be long-winded and hard work. I have often had the 
experience of beginning or even completing a particular task in building or carpentry 
only then to discover that there is actually a much easier way to do it, given the right tool 
and approach.  If only one had known beforehand, how much time and effort could have 
been saved ! 
I  look  upon  the  basic  knowledge  of  variable  types,  arrays  and  indexing  and  key 
programming constructs such as  for  and  while loops, conditional  if clauses etc that we 
have discussed as the essential tools.  However, many of Matlab’s in-built functions are 
very much akin to specialist tools – they make easy that which is much harder if you try 
to do it all yourself. These days, when I am in a hardware store, I often just browse the 
tool section to see what’s available just in case I should ever encounter a future job which 
could make good use of some specialist tool I encounter. In this spirit, we finish this very 
brief introduction by providing the reader with a selected but large list (by category) of 
Matlab functions together with a brief description of their purpose. Please browse at your 
leisure.  The  completely  comprehensive  list  is,  of  course,  available  in  Matlab’s 
documentation and the help facility.

This  is  a  book  about  image  processing  so,  finally,  note  that  the  specialist  functions 
associated with the Matlab image processing toolbox are not yet given here. The use of 
many of these specialist image processing functions is discussed and demonstrated in the 
remaining chapters of this book. A comprehensive list of functions available is available 
in the Matlab image processing toolbox documentation.

www.fundipbook.com – Matlab Primer #2 22

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

ELEMENTARY 
MATRICES

Matlab function Description

zeros Zeros array

ones Ones array

eye Identity matrix

repmat Replicate and tile array

rand Uniformly distributed random numbers

randn Normally distributed random numbers

linspace Linearly spaced vector

logspace Log spaced vector

freqspace Frequency spacing for frequency response

meshgrid X and Y arrays for 3-D plots

accumarray Construct an array with accumulation

BASIC ARRAY 
INFORMATION

size Size of array

length Length of vector

ndims Number of dimensions

numel Number of elements

disp Display matrix or text

isempty True for empty array

isequal True if arrays numerically equal

isequalwithequalnans True if arrays numerically equal

MULTI-DIMENSIONAL 
ARRAY FUNCTIONS

ndgrid Generate arrays for N-D functions and interpolation

permute Permute array dimensions

ipermute Inverse permute array dimensions

shiftdim Shift dimensions

circshift Shift array circularly

squeeze Remove singleton dimensions

www.fundipbook.com – Matlab Primer #2 23

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

MATRIX MANIPULATION

cat Concatenate arrays

reshape Change size

diag Diagonal matrices and diagonals of matrix

blkdiag Block diagonal concatenation

tril Extract lower triangular part

triu Extract upper triangular part

fliplr Flip matrix in left/right direction

flipud Flip matrix in up/down direction

flipdim Flip matrix along specified dimension

rot90 Rotate matrix 90 degrees

: Regularly  spaced  vector  and  index  into 
matrix

find Find indices of nonzero elements

end  

sub2ind Last index

ind2sub Linear index from multiple subscripts

ARRAY UTILITY FUNCTIONS

compan  Companion matrix

gallery  Higham test matrices.

hadamard  Hadamard matrix.

hankel  Hankel matrix.

hilb  Hilbert matrix.

invhilb  Inverse Hilbert matrix.

magic  Magic square.

pascal  Pascal matrix.

rosser  eigenvalue test matrix.

toeplitz  Toeplitz matrix.

vander  Vandermonde matrix.

wilkinson  Wilkinson's eigenvalue test matrix

www.fundipbook.com – Matlab Primer #2 24

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

 SPECIAL VARIABLES AND 
CONSTANTS

ans Most recent answer

eps Floating point relative accuracy

realmax Largest positive floating point number

realmi Smallest positive floating point number

pi 3.1415926535897

i, j Imaginary unit

inf Infinity

NaN Not-a-Number

INTERPOLATION AND GRIDDING

pchip 1-D interpolation (table lookup).

interp1 Quick 1-D linear interpolation

interp1q 1-D interpolation using FFT method

interpft 2-D interpolation (table lookup).

interp2 3-D interpolation (table lookup).

interp3 N-D interpolation (table lookup).

interpn Data gridding and surface fitting.

griddata Data gridding and hyper-surface fitting for 
3-dimensional data.

griddata3 Data  gridding  and  hyper-surface  fitting 
(dimension >= 2).

griddatan 1-D interpolation (table lookup).

 SPLINE INTERPOLATION

spline Cubic spline interpolation.

ppval Evaluate piecewise polynomial.

www.fundipbook.com – Matlab Primer #2 25

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

GEOMETRIC ANALYSIS

delaunay Delaunay triangulation.

delaunay3 3_D Delaunay tessellation.

delaunayn N_D Delaunay tessellation.

dsearch Search  Delaunay triangulation  for  nearest 
point.

dsearchn Search  N_D  Delaunay  tessellation  for 
nearest point.

tsearch Closest triangle search.

tsearchn N_D closest triangle search.

convhull Convex hull.

convhulln N_D convex hull.

voronoi Voronoi diagram.

voronoin N_D Voronoi diagram.

inpolygon True for points inside polygonal region.

rectint Rectangle intersection area.

polyarea Area of polygon.

POLYNOMIALS

roots Find polynomial roots.

poly Convert roots to polynomial.

polyval Evaluate polynomial.

polyvalm Evaluate polynomial with matrix argument.

residue Partial-fraction expansion (residues).

polyfit Fit polynomial to data.

polyder Differentiate polynomial.

polyint Integrate polynomial analytically.

conv Multiply polynomials.

deconv Divide polynomials.

www.fundipbook.com – Matlab Primer #2 26

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

MATRIX ANALYSIS

norm Matrix or vector norm.

normest Estimate the matrix 2 norm.

rank Matrix rank.

det Determinant.

trace Sum of diagonal elements.

null Null space.

orth Orthogonalization.

rref Reduced row echelon form.

subspace Angle between two subspaces.

LINEAR EQUATIONS

\ and / Linear equation solution; use "help slash".

linsolve Linear equation solution with extra control.

inv Matrix inverse.

rcond LAPACK reciprocal condition estimator

cond Condition  number  with  respect  to 
inversion.

condest 1_norm condition number estimate.

normest1 1_norm estimate.

chol Cholesky factorization.

cholinc Incomplete Cholesky factorization.

lu LU factorization.

luinc Incomplete LU factorization.

qr Orthogonal

lsqnonneg Linear  least  squares  with  nonnegativity 
constraints.

pinv Pseudoinverse.

lscov Least squares with known covariance.

www.fundipbook.com – Matlab Primer #2 27

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Fundamentals of Digital Image Processing – A Practical Approach with Examples in Matlab
Chris Solomon  & Toby Breckon

EIGENVALUES AND SINGULAR VALUES

eig Eigenvalues and eigenvectors.

svd Singular value decomposition.

gsvd Generalized singular value decomposition.

eigs A few eigenvalues.

svds A few singular vales.

poly Characteristic polynomial.

polyeig Polynomial eigenvalue problem.

condeig Condition  number  with  respect  to 
eigenvalues.

hess Hessenberg form.

qz QZ  factorization  for  generalized 
eigenvalues.

ordqz Reordering  of  eigenvalues  in  QZ 
factorization.

schur Schur decomposition.

ordschur Reordering  of  eigenvalues  in  Schur 
decomposition.

FACTORIZATION UTILITIES

expm Matrix exponential.

logm Matrix logarithm.

sqrtm Matrix square root.

funm Evaluate general matrix function.

qrdelete Delete  a  column  or  row  from  QR 
factorization.

qrinsert Insert  a  column  or  row  into  QR 
factorization.

rsf2csf Real  block  diagonal  form  to  complex  diagonal 
form.

cdf2rdf Complex diagonal form to real block diagonal form.

balance Diagonal scaling to improve eigenvalue accuracy.

planerot Givens plane rotation.

cholupdate rank 1 update to Cholesky factorization.

qrupdate rank 1 update to QR factorization.

www.fundipbook.com – Matlab Primer #2 28

Uploaded By: Jibreel BornatSTUDENTS-HUB.com


	>>C=flipud(B); imshow(C);				%Flip upside-down and display	
	Creating arrays in Matlab

	Accessing individual elements in an array
	Accessing groups of elements in an array – the colon operator
	Concatenation of arrays
	Creating and Dealing With Larger Arrays
	Function
	Description
	Simple example
	Determining the size of arrays

	Relational and logical operators
	Relational Operator
	Description

	Warning !
	Logical operators
	>> Queried file is TIF format

	Loop Constructs  for and while
	More on Arrays and Indexing
	Indexing Vectors
	Indexing Arrays with Two Subscripts
	Selecting scattered elements from an array
	Linear Indexing
	Logical Indexing



