which do not contain pores (unlike capillaries elsewhere in the body). Moreover, the capillaries are coated with a fatty layer formed from nearby cells, providing an extra fatty barrier through which drugs have to cross. Therefore, drugs entering the brain have to dissolve through the cell membranes of the capillaries and also through the fatty cells coating the capillaries. As a result, polar drugs, such as **penicillin**, do not enter the brain easily.

The existence of the blood-brain barrier makes it possible to design drugs that will act at various parts of the body (e.g. the heart) and have no activity in the brain, thus reducing any central nervous system (CNS) side effects. This is done by increasing the polarity of the drug such that it does not cross the blood-brain barrier. However, drugs that are intended to act in the brain must be designed such that they are able to cross the blood-brain barrier. This means that they must have a minimum number of polar groups or have these groups masked temporarily (see prodrugs; section 14.6). Having said that, some polar drugs can cross the blood-brain barrier with the aid of carrier proteins, while others (e.g. insulin) can cross by the process of pinocytosis described previously. The ability to cross the blood-brain barrier has an important bearing on the analgesic activity of opioids (section 24.5). Research is also being carried out to find ways of increasing the permeability of the blood-brain barrier using techniques such as ultrasound or drugs such as sildenafil.

11.4.6 Placental barrier

The placental membranes separate a mother's blood from the blood of her fetus. The mother's blood provides the fetus with essential nutrients and carries away waste products, but these chemicals must pass through the placental barrier. As food and waste products can pass through the placental barrier, it is perfectly feasible for drugs to pass through as well. Drugs such as alcohol, nicotine, and cocaine can all pass into the fetal blood supply. Fat-soluble drugs will cross the barrier most easily, and drugs such as barbiturates will reach the same levels in fetal blood as in maternal blood. Such levels may have unpredictable effects on fetal development. They may also prove hazardous once the baby is born. Drugs and other toxins can be removed from fetal blood by the maternal blood and detoxified. Once the baby is born, it may have the same levels of drugs in its blood as the mother, but it does not have the same ability to detoxify or eliminate them. As a result, drugs will have a longer lifetime and may have fatal effects.

11.4.7 Drug-drug interactions

Drugs such as warfarin and methotrexate are bound to albumin and plasma proteins in the blood, and are unavailable to interact with their targets. When another drug is taken which can compete for plasma protein binding (e.g. **sulphonamides**), then a certain percentage of previously bound drug is released, increasing the concentration of the drug and its effect.

KEY POINTS

- Pharmacodynamics is the study of how drugs interact with a molecular target to produce a pharmacological effect, whereas pharmacokinetics is the study of how a drug reaches its target in the body and how it is affected on that journey.
- The four main issues in pharmacokinetics are: absorption, distribution, metabolism, and excretion.
- Orally taken drugs have to be chemically stable to survive the acidic conditions of the stomach, and metabolically stable to survive digestive and metabolic enzymes.
- Orally taken drugs must be sufficiently polar to dissolve in the GIT and blood supply, but sufficiently fatty to pass through cell membranes.
- Most orally taken drugs obey Lipinski's rule of five and have no more than seven rotatable bonds.
- Highly polar drugs can be orally active if they are small enough to pass between the cells of the gut wall, are recognized by carrier proteins, or are taken across the gut wall by pinocytosis.
- Distribution around the blood supply is rapid. Distribution to the interstitial fluid surrounding tissues and organs is rapid if the drug is not bound to plasma proteins.
- Some drugs have to enter cells in order to reach their target.
- A certain percentage of a drug may be absorbed into fatty tissue and/or bound to macromolecules.
- Drugs entering the CNS have to cross the blood-brain barrier.
 Polar drugs are unable to cross this barrier unless they make use of carrier proteins or are taken across by pinocytosis.
- Some drugs cross the placental barrier into the fetus and may harm development or prove toxic in newborn babies.

11.5 **Drug metabolism**

When drugs enter the body, they are subject to attack from a range of metabolic enzymes. The role of these enzymes is to degrade or modify the foreign structure, such that it can be more easily excreted. As a result, most drugs undergo some form of metabolic reaction, resulting in structures known as **metabolites**. Very often, these metabolites lose the activity of the original drug, but, in some cases, they may retain a certain level of activity. In exceptional cases, the metabolite may even be more active than the parent drug. Some metabolites can possess a

different activity from the parent drugs, resulting in side effects or toxicity. A knowledge of drug metabolism and its possible consequences can aid the medicinal chemist in designing new drugs which do not form unacceptable metabolites. Equally, it is possible to take advantage of drug metabolism to activate drugs in the body. This is known as a prodrug strategy (see section 14.6). It is now a requirement to identify all the metabolites of a new drug before it can be approved. The structure and stereochemistry of each metabolite has to be determined and the metabolite must be tested for biological activity (section 15.1.2).

11.5.1 Phase I and phase II metabolism

The body treats drugs as foreign substances and has methods of getting rid of such chemical invaders. If the drug is polar, it will be quickly excreted by the kidneys (section 11.6). However, non-polar drugs are not easily excreted and the purpose of drug metabolism is to convert such compounds into more polar molecules that *can* be easily excreted.

Non-specific enzymes (particularly **cytochrome P450 enzymes** in the liver) are able to add polar functional groups to a wide variety of drugs. Once the polar functional group has been added, the overall drug is more polar and water soluble, and is more likely to be excreted when it passes through the kidneys. An alternative set of enzymatic reactions can reveal masked polar functional groups which might already be present in a drug. For example, there are enzymes which can demethylate a methyl ether to reveal a more polar hydroxyl group. Once again, the more polar product (metabolite) is excreted more efficiently.

These reactions are classed as phase I reactions and generally involve oxidation, reduction, and hydrolysis (see Figs 11.3–11.9). Most of these reactions occur in the liver, but some (such as the hydrolysis of esters and amides) can also occur in the gut wall, blood plasma, and other tissues. Some of the structures most prone to oxidation are *N*-methyl groups, aromatic rings, the terminal positions of alkyl chains, and the least hindered positions of alkyl chains, and the least hindered positions of alicyclic rings. Nitro, azo, and carbonyl groups are prone to reduction by **reductases**, while amides and esters are prone to hydrolysis by peptidases and esterases respectively. For many drugs, two or more metabolic reactions might occur, resulting in different metabolites; other drugs may not be metabolized at all. A knowledge of the metabolic reactions that are possible for different functional groups allows the

medicinal chemist to predict the likely metabolic products for any given drug, but only drug metabolism studies will establish whether these metabolites are really formed.

Drug metabolism has important implications when it comes to using chiral drugs, especially if the drug is to be used as a racemate. The enzymes involved in catalysing metabolic reactions will often distinguish between the two enantiomers of a chiral drug, such that one enantiomer undergoes different metabolic reactions from the other. As a result, both enantiomers of a chiral drug have to be tested separately to see what metabolites are formed. In practice, it is usually preferable to use a single enantiomer in medicine or design the drug such that it is not asymmetric (section 13.3.8).

A series of metabolic reactions classed as phase II reactions also occur, mainly in the liver (see Figs 11.10–11.16). Most of these reactions are **conjugation reactions**, whereby a polar molecule is attached to a suitable polar 'handle' that is already present on the drug or has been introduced by a phase I reaction. The resulting conjugate has greatly increased polarity, thus increasing its excretion rate in urine or bile even further.

Both phase I and phase II reactions can be species-specific, which has implications for *in vivo* metabolic studies. In other words, the metabolites formed in an experimental animal may not necessarily be those formed in humans. A good knowledge of how metabolic reactions differ from species to species is important in determining which test animals are relevant for drug metabolism tests. Both sets of reactions can also be regio-selective and stereoselective. This means that metabolic enzymes can distinguish between identical functional groups or alkyl groups located at different parts of the molecule (regioselectivity), as well as between different stereoisomers of chiral molecules (stereoselectivity).

11.5.2 Phase I transformations catalysed by cytochrome P450 enzymes

The enzymes that constitute the cytochrome P450 family are the most important metabolic enzymes and are located in liver cells. They are **haemoproteins** (containing haem and iron) and they catalyse a reaction that splits molecular oxygen, such that one of the oxygen atoms is introduced into the drug and the other ends up in water (Fig. 11.3). As a result, they belong to a general class of enzymes called the **monooxygenases**.

```
\begin{array}{c} \text{Cytochrome P450} \\ \text{Drug} - \text{H} + \text{O}_2 + \text{NADPH} + \text{H}^+ \end{array} \xrightarrow{\text{enzymes}} \text{Drug} - \text{OH} + \text{NADP} + \text{H}_2\text{O} \end{array}
```

FIGURE 11.3 Oxidation by cytochrome P450 enzymes.

There are at least 33 different cytochrome P450 (CYP) enzymes, grouped into four main families: CYP1–CYP4. Within each family there are various subfamilies designated by a letter, and each enzyme within that subfamily is designated by a number. For example, CYP3A4 is enzyme 4 in the subfamily A of the main family 3. Most drugs in current use are metabolized by five primary CYP enzymes (CYP3A, CYP2D6, CYP2C9, CYP1A2, and CYP2E1). The isozyme CYP3A4 is particularly important in drug metabolism and is responsible for the metabolism of most drugs. The reactions catalysed by cytochrome P450 enzymes are shown in Figs 11.4 and 11.5, and can involve the oxidation of carbon, nitrogen, phosphorus, sulphur, and other atoms.

Oxidation of carbon atoms can occur if the carbon atom is either exposed (i.e. easily accessible to the enzyme) or

activated (Fig. 11.4). For example, methyl substituents on the carbon skeleton of a drug are often easily accessible and are oxidized to form alcohols, which may be oxidized further to carboxylic acids. In the case of longer-chain substituents, the terminal carbon and the penultimate carbon are the most exposed carbons in the chain, and are both susceptible to oxidation. If an aliphatic ring is present, the most exposed region is the part most likely to be oxidized.

Activated carbon atoms next to an sp² carbon centre (i.e. allylic or benzylic positions) or an sp carbon centre (i.e. a propynylic position) are more likely to be oxidized than exposed carbon atoms (Fig. 11.4). Carbon atoms which are alpha to a heteroatom are also activated and prone to oxidation. In this case, hydroxylation results in an unstable metabolite that is immediately hydrolysed

$$RCH_3 \longrightarrow RCH_2OH \longrightarrow RCH_2 \longrightarrow RCO_2H$$

$$RCH_2CH_3 \longrightarrow RCH_2CH_2OH \longrightarrow RCH_2CH_2OH \longrightarrow RCH_2CO_2H$$

$$RCH_2CH_3 \longrightarrow RCH_2CH_3 \longrightarrow RCH_3 \longrightarrow RCH_2CH_3 \longrightarrow RCH_2OH \longrightarrow RCH_2CH_2R' \longrightarrow$$

FIGURE 11.4 Oxidative reactions catalysed by cytochrome P450 enzymes on saturated carbon centres.

resulting in the dealkylation of amines, ethers, and thioethers, or the dehalogenation of alkyl halides. The aldehydes which are formed from these reactions generally undergo further oxidation to carboxylic acids by aldehyde dehydrogenases (section 11.5.4). Tertiary amines are found to be more reactive to oxidative dealkylation than secondary amines because of their greater basicity, while *O*-demethylation of aromatic ethers is faster than *O*-dealkylation of larger alkyl groups. *O*-Demethylation is important to the analgesic activity of codeine (section 24.5).

Cytochrome P450 enzymes can catalyse the oxidation of unsaturated sp² and sp carbon centres present in alkenes, alkynes, and aromatic rings (Fig. 11.5). In the case of alkenes, a reactive epoxide is formed which is deactivated by the enzyme **epoxide hydrolase** to form a diol. In some cases, the epoxide may evade the enzyme. If this happens, it can act as an alkylating agent and react with nucleophilic groups present in proteins or nucleic acids, leading to toxicity. The oxidation of an aromatic ring results in a similarly reactive epoxide intermediate which can have several possible fates. It may undergo a rearrangement reaction involving a hydride transfer to form a phenol, normally at the para position. Alternatively, it may be deactivated by epoxide hydrolase to form a diol or react with glutathione S-transferase to form a conjugate (section 11.5.5). If the epoxide intermediate evades these enzymes it may act as an alkylating agent and prove toxic. Electron-rich aromatic rings are likely to be epoxidized more quickly than those with electronwithdrawing substituents—this has consequences for drug design.

Tertiary amines are oxidized to N-oxides as long as the alkyl groups are not sterically demanding. Primary and secondary amines are also oxidized to N-oxides, but these are rapidly converted to hydroxylamines and beyond. Aromatic primary amines are also oxidized in stages to aromatic nitro groups—a process which is related to the toxicity of aromatic amines, as highly electrophilic intermediates are formed which can alkylate proteins or nucleic acids. Aromatic primary amines can also be methylated in a phase II reaction (section 11.5.5) to a secondary amine which can then undergo phase I oxidation to produce formaldehyde and primary hydroxylamines. Primary and secondary amides can be oxidized to hydroxylamides. These functional groups have also been linked with toxicity and carcinogenicity. Thiols can be oxidized to disulphides. There is evidence that thiols can be methylated to methyl sulphides, which are then oxidized to sulphides and sulphones.

For additional material see Web article 5: the design of a serotonin antagonist as a possible anxiolytic agent.

11.5.3 Phase I transformations catalysed by flavin-containing monooxygenases

Another group of metabolic enzymes present in the endoplasmic reticulum of liver cells consists of the **flavin-containing monooxygenases**. These enzymes are chiefly responsible for metabolic reactions involving oxidation at nucleophilic nitrogen, sulphur, and phosphorus atoms, rather than at carbon atoms. Several examples are given in Fig. 11.6. Many of these reactions are also catalysed by cytochrome P450 enzymes.

11.5.4 Phase I transformations catalysed by other enzymes

There are several oxidative enzymes in various tissues around the body that are involved in the metabolism of endogenous compounds, but can also play a role in drug metabolism (Fig. 11.7). For example, **monoamine oxidases** are involved in the deamination of catecholamines (section 23.5), but have been observed to oxidize some drugs. Other important oxidative enzymes include alcohol dehydrogenases and aldehyde dehydrogenases. The aldehydes formed by the action of alcohol dehydrogenases on primary alcohols are usually not observed as they are converted to carboxylic acids by aldehyde dehydrogenases.

Reductive phase I reactions are less common than oxidative reactions, but reductions of aldehyde, ketone, azo, and nitro functional groups have been observed in specific drugs (Fig. 11.8). Many of the oxidation reactions described for heteroatoms in Figs 11.5–11.7 are reversible and are catalysed by reductase enzymes. Cytochrome P450 enzymes are involved in catalysing some of these reactions. Remember: enzymes can catalyse a reaction in both directions, depending on the nature of the substrate. So, although cytochrome P450 enzymes are predominantly oxidative enzymes, it is possible for them to catalyse some reductions.

The hydrolysis of esters and amides is a common metabolic reaction, catalysed by **esterases** and **peptidases** respectively (Fig. 11.9). These enzymes are present in various organs of the body, including the liver. Amides tend to be hydrolysed more slowly than esters. The presence of electron-withdrawing groups can increase the susceptibility of both amides and esters to hydrolysis.

11.5.5 Phase II transformations

Most phase II reactions are **conjugation reactions** catalysed by transferase enzymes. The resulting conjugates are usually inactive, but there are exceptions to this rule.

FIGURE 11.5 Oxidative reactions catalysed by cytochrome P450 enzymes on heteroatoms and unsaturated carbon centres.

$$R-NMe_{2} \longrightarrow R-NMe_{2}$$

$$OH \\ R_{2}CH-NR' \longrightarrow R_{2}C=NR'$$

$$R_{2}N-NHR' \longrightarrow R_{2}N-NHR'$$

$$2RSH \longrightarrow RS-SR$$

$$R-NHR' \longrightarrow R-NR'$$

$$R+N \longrightarrow R+NR'$$

$$R+NR' \longrightarrow R+NR'$$

$$R+N \longrightarrow R+NR'$$

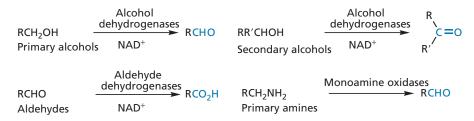
$$R+NR' \longrightarrow R+NR'$$

$$R+NR$$

FIGURE 11.6 Phase I reactions catalysed by flavin monooxygenases.

Glucuronic acid conjugation is the most common of these reactions. Phenols, alcohols, hydroxylamines, and carboxylic acids form *O*-glucuronides by reaction with UDFP-glucuronate such that a highly polar glucuronic acid molecule is attached to the drug (Fig. 11.10). The resulting conjugate is excreted in the urine, but may also be excreted in the bile if the molecular weight is over 300.

A variety of other functional groups, such as sulphonamides, amides, amines, and thiols (Fig. 11.11) can react to form *N*- or *S*-glucuronides. *C*-glucuronides are also possible in situations where there is an activated carbon centre next to carbonyl groups.


Another form of conjugation is sulphate conjugation (Fig. 11.12). This is less common than glucuronation and is restricted mainly to phenols, alcohols, arylamines, and *N*-hydroxy compounds. The reaction is catalysed by

sulphotransferases using the cofactor **3'-phosphoadenosine 5'-phosphosulfate** as the sulphate source. Primary and secondary amines, secondary alcohols, and phenols form stable conjugates, whereas primary alcohols form reactive sulphates, which can act as toxic alkylating agents. Aromatic hydroxylamines and hydroxylamides also form unstable sulphate conjugates that can be toxic.

Drugs bearing a carboxylic acid group can become conjugated to amino acids by the formation of a peptide link. In most animals, glycine conjugates are generally formed, but L-glutamine is the most common amino acid used for conjugation in primates. The carboxylic acid present in the drug is first activated by formation of a coenzyme A thioester which is then linked to the amino acid (Fig. 11.13).

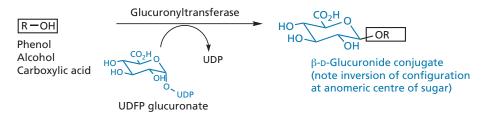
Electrophilic functional groups, such as epoxides, alkyl halides, sulphonates, disulphides, and radical species, can react with the nucleophilic thiol group of the tripeptide **glutathione** to give glutathione conjugates which can be subsequently transformed to **mercapturic acids** (Fig. 11.14). The glutathione conjugation reaction can take place in most cells, especially those in the liver and kidney, and is catalysed by **glutathione transferase**. This conjugation reaction is important in detoxifying potentially dangerous environmental toxins or electrophilic alkylating agents formed by phase I reactions (Fig. 11.15). Glutathione conjugates are often excreted in the bile, but are more usually converted to mercapturic acid conjugates before excretion.

Not all phase II reactions result in increased polarity. Methylation and acetylation are important phase II reactions which usually *decrease* the polarity of the drug (Fig. 11.16). An important exception is the methylation of pyridine rings, which leads to polar quaternary salts. The functional groups that are susceptible to methylation are phenols, amines, and thiols. Primary amines are also susceptible to acetylation. The enzyme cofactors involved in contributing the methyl group or acetyl group are **S-adenosyl methionine** and **acetyl SCoA** respectively. Several methyltransferase enzymes are involved in the methylation reactions. The most important enzyme for *O*-methylations is **catechol O-methyltransferase**, which preferentially methylates the *meta* position of catechols (section 23.5). It should be pointed out, however, that

FIGURE 11.7 Phase I oxidative reactions catalysed by miscellaneous enzymes.

FIGURE 11.8 Phase I reductive reactions.

FIGURE 11.9 Hydrolysis of esters and amides.


methylation occurs less frequently than other conjugation reactions and is more important in biosynthetic pathways or the metabolism of endogenous compounds.

It is possible for drugs bearing carboxylic acids to become conjugated with **cholesterol**. Cholesterol conjugates can also be formed with drugs bearing an ester group by means of a transesterification reaction. Some drugs with an alcohol functional group form conjugates with fatty acids by means of an ester link.

11.5.6 Metabolic stability

Ideally, a drug should be resistant to drug metabolism because the production of metabolites complicates drug therapy (see Box 11.1). For example, the metabolites formed will usually have different properties from the original drug. In some cases, activity may be lost. In others, the metabolite may prove to be toxic. For example, the metabolites of **paracetamol** cause liver toxicity, and the carcinogenic properties of some polycyclic hydrocarbons are due to the formation of epoxides.

Another problem arises from the fact that the activity of metabolic enzymes varies from individual to individual. This is especially true of the cytochrome P450 enzymes, with at least a 10-fold variability for the most important isoform, CYP3A4. Individuals may even lack particular isoforms. For example, 8% of Americans lack the CYP2D6 isoform, which means that drugs normally metabolized by this enzyme can rise to toxic levels.

FIGURE 11.10 Glucuronidation of alcohols, phenols, and carboxylic acids.

BOX 11.1 Metabolism of an antiviral agent

Indinavir is an antiviral agent used in the treatment of HIV and is prone to metabolism, resulting in seven different metabolites (Fig. 1). Studies have shown that the CYP3A subfamily of cytochrome P450 enzymes is responsible for six of these metabolites. The metabolites concerned arise from *N*-dealkylation of the piperazine ring, *N*-oxidation of the pyridine ring, *para*-hydroxylation of the phenyl ring, and hydroxylation of the indane ring. The seventh metabolite is a glucuronide conjugate of the pyridine ring. All these reactions occur individually to produce five separate metabolites. The remaining two metabolites arise from two or more metabolic reactions taking place on the same molecule.

The major metabolites are those resulting from dealkylation. As a result, research has been carried out to try and design indinavir analogues that are resistant to this reaction. For example, structures having two methyl substituents on

the activated carbon next to pyridine have been effective in blocking dealkylation (Fig. 2).

FIGURE 2 Analogue of indinavir resistant to *N*-dealkylation.

Examples of drugs that are normally metabolized by this isozyme are **desipramine**, **haloperidol**, and **tramadol**. Some prodrugs require metabolism by CYP2D6 in order to be effective. For example, the analgesic effects of **codeine** are due to its metabolism by CYP2D6 to morphine. Therefore, codeine is ineffective in patients lacking this isozyme. The profile of these enzymes in different

patients can vary, resulting in a difference in the way a drug is metabolized. As a result, the amount of drug that can be administered safely also varies.

Differences across populations can be quite significant, resulting in different countries having different recommended dose levels for particular drugs. For example, the rate at which the antibacterial agent **isoniazid** is

FIGURE 11.11 Glucuronidation of miscellaneous functional groups.

FIGURE 11.12 Examples of sulphoconjugation phase II reactions.

FIGURE 11.13 Formation of amino acid conjugates.

FIGURE 11.14 Formation of glutathione and mercapturic acid conjugates from an alkyl halide.

FIGURE 11.15 Formation of glutathione conjugates (Glu-Cys-Gly) with electrophilic groups.

FIGURE 11.16 Methylation and acetylation.

acetylated and deactivated varies among populations. Asian populations acylate the drug at a fast rate, whereas 45–65% of Europeans and North Americans have a slow rate of acylation. **Pharmacogenomics** is the study of genetic variations between individuals and the effect that has on individual responses to drugs. In the future, it is possible that 'fingerprints' of an individual's genome may allow better prediction of which drugs would be suitable for that individual and which drugs might produce unacceptable side effects—an example of **personalized medicine**. This, in turn, may avoid drugs having to be withdrawn from the market as a result of rare toxic side effects.

Another complication involving drug metabolism and drug therapy relates to the fact that cytochrome P450 activity can be affected by other chemicals. For example, certain foods have an influence. Brussels sprouts and cigarette smoke enhance activity, whereas grapefruit juice inhibits activity. This can have a significant effect on the activity of drugs metabolized by cytochrome P450 enzymes. For example, the immunosuppressant drug **ciclosporin** and the dihydropyridine hypotensive agents are more efficient when taken with grapefruit juice, as their metabolism is reduced. However, serious

toxic effects can arise if the antihistamine agent **ter-fenadine** is taken with grapefruit juice. Terfenadine is actually a prodrug and is metabolized to the active agent **fexofenadine** (Fig. 11.17). If metabolism is inhibited by grapefruit juice, terfenadine persists in the body and can cause serious cardiac toxicity. As a result, fexofenadine itself is now favoured over terfenadine and is marketed as **Allegra**.

Certain drugs are also capable of inhibiting or promoting cytochrome P450 enzymes, leading to a phenomenon known as **drug-drug interactions** where the presence of one drug affects the activity of another. For example, several antibiotics can act as cytochrome P450 inhibitors and will slow the metabolism of drugs metabolized by these enzymes. Other examples are the drugdrug interactions that occur between the anticoagulant **warfarin** and the barbiturate **phenobarbital** (Fig. 11.17), or between warfarin and the anti-ulcer drug **cimetidine** (section 25.2.7.3).

Phenobarbital stimulates cytochrome P450 enzymes and accelerates the metabolism of warfarin, making it less effective. In contrast, cimetidine inhibits cytochrome P450 enzymes, thus slowing the metabolism of warfarin.

FIGURE 11.17 Drugs which are metabolized by cytochrome P450 enzymes or affect the activity of cytochrome P450 enzymes.

Such drug-drug interactions affect the plasma levels of warfarin and could cause serious problems if the levels move outwith the normal therapeutic range.

Herbal medicine is not immune from this problem either. **St. John's wort** is a popular remedy used for mild-to-moderate depression. However, it promotes the activity of cytochrome P450 enzymes and decreases the effectiveness of contraceptives and warfarin.

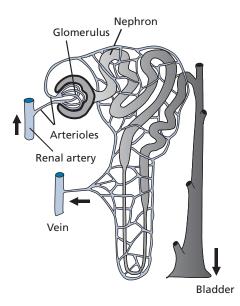
Because of the problems caused by cytochrome P450 activation or inhibition, new drugs are usually tested to check whether they have any effect on cytochrome P450 activity, or are, themselves, metabolized by these enzymes. Indeed, an important goal in many projects is to ensure that such properties are lacking.

Drugs can be defined as hard or soft with respect to their metabolic susceptibility. In this context, **hard drugs** are those that are resistant to metabolism and remain unchanged in the body. **Soft drugs** are designed to have a predictable, controlled metabolism where they are inactivated to non-toxic metabolites and excreted. A group is normally incorporated which is susceptible to metabolism, but will ensure that the drug survives for a sufficiently long period to achieve what it is meant to do before it is metabolized and excreted. Drugs such as these are also called **antedrugs**.

11.5.7 The first pass effect

Drugs that are taken orally pass directly to the liver once they enter the blood supply. Here, they are exposed to drug metabolism before they are distributed around the rest of the body, and so a certain percentage of the drug is transformed before it has the chance to reach its target. This is known as the **first pass effect**. Drugs that are administered in a different fashion (e.g. injection or inhalation) avoid the first pass effect and are distributed around the body before reaching the liver. Indeed, a certain proportion of the drug may not pass through the liver at all, but may be taken up in other tissues and organs en route.

11.6 Drug excretion


Drugs and their metabolites can be excreted from the body by a number of routes. Volatile or gaseous drugs are excreted through the lungs. Such drugs pass out of the capillaries that line the air sacs (alveoli) of the lungs, then diffuse through the cell membranes of the alveoli into the air sacs, from where they are exhaled. Gaseous general anaesthetics are excreted in this way and move down a concentration gradient from the blood supply into the lungs. They are also administered through the lungs, in which case the concentration gradient is in the opposite direction and the gas moves from the lungs to the blood supply.

The **bile duct** travels from the liver to the intestines and carries a greenish fluid called **bile** which contains bile acids and salts that are important to the digestion process. A small number of drugs are diverted from the blood supply back into the intestines by this route. As this happens from the liver, any drug eliminated in this way has not been distributed round the body. Therefore, the amount of drug distributed is less than that absorbed. However, once the drug has entered the intestine, it can be reabsorbed, so it has another chance.

It is possible for as much as 10–15% of a drug to be lost through the skin in sweat. Drugs can also be excreted through saliva and breast milk, but these are minor excretion routes compared with the kidneys. There are concerns, however, that mothers may be passing on drugs such as **nicotine** to their baby through breast milk.

The **kidneys** are the principal route by which drugs and their metabolites are excreted (Fig. 11.18). The kidneys filter the blood of waste chemicals and these chemicals are subsequently removed in the urine. Drugs and their metabolites are excreted by the same mechanism.

Blood enters the kidneys by means of the **renal artery**. This divides into a large number of capillaries, each one of which forms a knotted structure called a **glomerulus**

FIGURE 11.18 Excretion by the kidneys.

that fits into the opening of a duct called a **nephron**. The blood entering these glomeruli is under pressure, and so plasma is forced through the pores in the capillary walls into the nephron, carrying with it any drugs and metabolites that might be present. Any compounds that are too big to pass through the pores, such as plasma proteins and red blood cells, remain in the capillaries with the remaining plasma. Note that this is a filtration process, so it does not matter whether the drug is polar or hydrophobic: all drugs and drug metabolites will be passed equally efficiently into the nephron. However, this does not mean that every compound will be *excreted* equally efficiently, because there is more to the process than simple filtration.

The filtered plasma and chemicals now pass through the nephron on their route to the bladder. However, only a small proportion of what starts that journey actually finishes it. This is because the nephron is surrounded by a rich network of blood vessels carrying the filtered blood away from the glomerulus, permitting much of the contents of the nephron to be reabsorbed into the blood supply. Most of the water that was filtered into the nephron is quickly reabsorbed through pores in the nephron cell membrane which are specific for water molecules and bar the passage of ions or other molecules. These pores are made up of protein molecules called aquaporins. As water is reabsorbed, drugs and other agents are concentrated in the nephron and a concentration gradient is set up. There is now a driving force for compounds to move back into the blood supply down the concentration gradient. However, this can only happen if the drug is sufficiently hydrophobic to pass through the cell membranes of the nephron. This means that hydrophobic compounds are efficiently reabsorbed back into the blood, whereas polar compounds remain in the nephron and are excreted. This process of excretion explains the importance of drug metabolism to drug excretion. Drug metabolism makes a drug more polar so that it is less likely to be reabsorbed from the nephrons.

Some drugs are actively transported from blood vessels into the nephrons. This process is called **facilitated transport** and is important in the excretion of penicillins (section 19.5.1.9).

KEY POINTS

- Drugs are exposed to enzyme-catalysed reactions which modify their structure. This is called drug metabolism and can take place in various tissues. However, most reactions occur in the liver.
- Orally taken drugs are subject to the first pass effect.
- Drugs administered by methods other than the oral route avoid the first pass effect.
- Phase I metabolic reactions typically involve the addition or exposure of a polar functional group. Cytochrome P450 enzymes present in the liver carry out important phase I oxidation reactions. The types of cytochrome P450 enzymes present vary between individuals, leading to varying rates of drug metabolism.
- The activity of cytochrome P450 enzymes can be affected by food, chemicals, and drugs, resulting in drug-drug interactions and possible side effects.
- Phase II metabolic reactions involve the addition of a highly polar molecule to a functional group. The resulting conjugates are more easily excreted.
- Drug excretion can take place through sweat, exhaled air, or bile, but most excretion takes place through the kidneys.
- The kidneys filter blood such that drugs and their metabolites enter nephrons. Non-polar substances are reabsorbed into the blood supply, but polar substances are retained in the nephrons and excreted in the urine.

11.7 Drug administration

There are a large variety of ways in which drugs can be administered and many of these avoid some of the problems associated with oral administration. The main routes are: oral, sublingual, rectal, epithelial, inhalation, and injection. The method chosen will depend on the target organ and the pharmacokinetics of the drug.