Bevel Gear Geometry:

Bevel gears are used to connect non parallel shafts.

pitch cones (Analogous to pitch cylinder of spur gears) are tangent along the elements, with a pexes at the interse clion of shafts.

Tooth profile at the back cone is the same of spur gear with pitch radius rp = peveloped

back come radius (rb)

No. of teeth in the imaginary circles ;-

$$N_{g}^{\prime} = \frac{2\pi V_{bp}}{p}$$

$$N_{g}^{\prime} = \frac{2\pi V_{bg}}{p}$$

N' = virtual no, of teelh P = circular pitch Efor imaginory spurand bevel gears].

$$N_{p}' = 2 r_{bp} P$$

 $N_{g}' = 2 r_{bg} P$

pitch dia of Bevel gears is measured at the large end of tooth. Circultur pitch and pitch dia is measured as spur gears. Geour rates:

Geore value =
$$\frac{w_p}{w_g} = \frac{N_g}{N_p} = \frac{d_g}{d_p} = tor(\gamma_g) = cot(\gamma_p)$$

th: practice imposed two limits on face width:

$$b \leq \frac{10}{P}$$
 and $b \leq \frac{L}{3}$, $[L = pitch cone length].$

Sinky 2020/3/28 11:26

STUDENTS-HUB.com

Uploaded By: anonymous

7

Spint and be of based gen =
$$0$$

Spint hand gen normally have, $y = 35^{\circ}$
have gen normally have, pressure angle, $y = 20^{\circ}$
Spint Bad gen :
used for
1 - high speed
2 - Queer operation
(low notes lead)
Each gen force analysis:
Force compounds;
Force

E. Cast = Et tand Cost T

Uploaded By: anonymous

D

$$\frac{12-32}{12}: \quad A^{h}_{2} = 16 \quad, \quad A^{h}_{3} = 32 \quad, \quad \beta = 20 \quad, \quad hp = 2.5 \quad hp \quad, \quad w_{p} = 240 \text{ spm} \\ determine reaction at A, B. Bearing A tarkes axial reaction.$$

$$\frac{56000}{1000}$$

$$Wav = \frac{1}{12}$$

$$Wav = \frac{1}{12}$$

$$\frac{1}{12}$$

$$Wav = \frac{1}{12}$$

$$\frac{1}{12}$$

STI

S

For spiral based year:

$$F_{a} = \frac{F_{a}}{C_{a}} \left[f \tan \beta_{a} \ Gar Y \mp \sin 4 \ Gar Y \end{bmatrix} -(0)$$

$$F_{a} = \frac{F_{b}}{C_{a}} \left[f \tan \beta_{a} \ Gar Y \mp \sin 4 \ Gar Y \end{bmatrix} -(0)$$

$$F_{a} = \frac{F_{b}}{C_{a}} \left[f \tan \beta_{a} \ Gar Y \mp \sin 4 \ Gar Y \end{bmatrix} -(0)$$

$$F_{a} = \frac{F_{b}}{C_{a}} \left[f \tan \beta_{a} \ Gar Y \mp \sin 4 \ Gar Y \end{bmatrix} -(0)$$

$$F_{a} = \frac{F_{b}}{C_{a}} \left[f \tan \beta_{a} \ Gar Y \mp \sin 4 \ Gar Y \end{bmatrix} -(0)$$

$$F_{a} = \frac{F_{b}}{C_{a}} \left[f \tan \beta_{a} \ Gar Y \mp \sin 4 \ Gar Y \end{bmatrix} -(0)$$

$$F_{a} = \frac{F_{b}}{C_{a}} \left[f \tan \beta_{a} \ Gar Y \mp \sin 4 \ Gar Y \end{bmatrix} -(0)$$

$$F_{a} = \frac{F_{b}}{C_{a}} \left[f \tan \beta_{a} \ Gar Y \mp \sin 4 \ Gar Y \end{bmatrix} -(0)$$

$$F_{a} = \frac{F_{b}}{C_{a}} \left[f \tan \beta_{a} \ Gar Y \mp f \sin 4 \ Gar Y \mp f \pi + f \sin 4 \ Gar Y \mp f \pi + f \sin 4 \ Gar Y \mp f \pi + f \pi +$$

= Velocity factor, Fig. (15-5) (A+JV) E U.S. KU= (A+ J200) B A= 50+ 56(1-B), B=(2-QU) factor , Table [15-2] mounting factor, depends on type of shaft mouting. Straddle mounting [between two bearings] Overhung I E out board of both bearing]. Degree of mounting rigidity. Empto .0036 b2 (US) Km = Kmb + 5.6×10 b2 (SI) Both gears Stradalle mounted on year straddle and the other overhung Both years 1Cmb = 1.1 OVERNAN Bending endurance limit: Se = St KL Kms Kt Kr (15 - 6)Dt = AGMA bending strength of bevel gears -> Table (15-2) Fig [15-13] Kms = mean stress factor. Kms=1.0 for two way bending gear (Idler) = 1.41 for one way bendine gear (Input, out put). Kt = tempreture factor. S-710, E, >250 Fo, 393, t>120 460+T, 273+T, t>120 T= lubricant temp. KL= life factor Fig. [13-9], Kt= Kr = Reliability factor eq[15-15] $-1.0, \leq \frac{25020}{3} = \frac{1}{2020} = \frac{1}{3} = \frac{1}{2020} = \frac{1}{3} = \frac{1}{3$ Table [14-7] Table [15-3]

A catalog rating of based gent = hp = 5.2, at up = 1200 ppm.
of straight based gents
$$Mp = 20$$
, $Mp = 40$, $g = 20^{\circ}$, $b = 0.71$ in
 $P = 10$ tech/in, $Z = 90^{\circ}$, uniform drive - oniform driven.
- General Industrial applications, beth gents of board mounted.
- Bhn = 250. hardened tech both gents). grade 1.
- Calting quality correspond to \Rightarrow $Pv = 5$, Life = 1810³, $R = 99\%$
What do you think about power rating? Uncreased tech
Solution: Since (K_{L}) prime $>(K_{L})$ grav \Rightarrow Design based on Prime
($M_{L} = 0.71$
 $D_{L} = 440$ Hg + 2100 = 13.1 Kps. FgT15-133 grade 1.
 $V_{av} = \frac{Tr(dp)_{av}vp}{12}$
 $dg = \frac{Mp}{10} = \frac{20}{10} = 2^{10}$
 $dg = \frac{Mp}{10} = \frac{20}{10} = 4^{10}$
 $Sp = ton^{-1} \frac{dp}{dg} = 26.56^{\circ}$
 $\Rightarrow (daw)_{p} = 2 - 0.71 \sin (26.56) = 1.68^{10}$
 $V_{av} = \frac{Tr(1.68)(1200)}{V_{2}} = 528.56$ ft/min.
 $Tr p = \frac{F_{L} Vaw}{33.000} \Rightarrow F_{L} = \frac{5.2 \times 33.000}{528.56} = 324.65$ Ib

$$S_{b} = \frac{F_{b}}{b_{J}} \quad \text{Ke Km Kv K}_{S}$$

$$S_{b} = \frac{F_{b}}{b_{J}} \quad \text{Ke Km Kv K}_{S}$$

$$S_{c} = (2 - 9x)^{2/3} = 0.915 \quad \text{R} = 50 + 56(1-6) = 54.977 \\ \text{Kw} = (1-5) \quad \text{Kw} = (1-5)^{2} = 0.915 \quad \text{R} = 50 + 56(1-6) = 54.977 \\ \text{Kw} = (1-25)^{2} + 1.2 + 1.$$

Bevel gear contact Stress $\delta_c^2 = c_P \sqrt{\frac{F_E c_o c_m c_v c_s c_c}{p T_e c_o c_m c_v c_s c_c}}$, $\delta_c^2 = c_P \sqrt{\frac{F_E c_o c_m c_v c_s c_c}{p T_e c_o c_m c_v c_s c_c}}$ Cp = clastic coefficient for bend gears For steel, Cp = 190 JMPa = 2290 Jpsi $C_{P} = \sqrt{\frac{1}{\pi \left[\left(1 - \mathcal{V}_{P}^{2} \right) + \left(\frac{1 - \mathcal{V}_{D}^{2}}{F_{D}} \right) \right]}$ (I = geometry factor, Fig. [15-6] I be straight bened gear Co = Ko -> Overload factor Cm = mounting factor = Km $C_{5} = 5ize factor (q, c, 15-1)$ $C_{5} = \begin{cases} 0.5, & b < 0.5^{\circ}, \\ 0.125b + 0.4375, & 0.5 \le b \le 4.5^{\circ} = \\ 1.0, & b > 4.5^{\circ}, \\ 1.0, & b > 4.5^{\circ}, \\ 1.0, & b > 114.3 \text{ mm} \end{cases}$ Ce = arow minay factor Cc = { 2.0; Un arowned teeth Contact fatigue strength: Sfe = Sc CLCt CH Sc = AGMA contact strength. -> Fig. [15-12] $S_{c} = A G M A$ contact strength. $C_{L} = 1i fe$ factor $\rightarrow Fig [15-8]$ $C_{L} = \begin{cases} 2 & 10^{3} \leq N \leq 10^{4} \\ 3.4822 & N \end{cases}$, $10 \leq N \leq 10^{10}$ CH = hardness ratio -> FigE15-10], E15-11] CH = I + B(Ng - I) / B = 0:00898 [HBP] - 0:02020/3/28 B 11:35

STUDENTS-HUB.com

(b) Based on contact stress

$$S_{11} = C_{P} \sqrt{\frac{F_{E}}{1 d_{P} b}} = 0.52, 0.5\% b \leq 4.5$$

$$C_{n} = 1.2518 \qquad C_{c} = 2.0 \qquad \text{Un crowned.}$$

$$C_{n} = 1.2518 \qquad C_{c} = 2.0 \qquad \text{Un crowned.}$$

$$C_{n} = 1.2518 \qquad C_{c} = 2.0 \qquad \text{Un crowned.}$$

$$C_{n} = 1.2518 \qquad C_{c} = 2.0 \qquad \text{Un crowned.}$$

$$C_{n} = 1.2518 \qquad C_{c} = 2.0 \qquad \text{Un crowned.}$$

$$C_{n} = 1.2518 \qquad C_{c} = 2.0 \qquad \text{Un crowned.}$$

$$C_{n} = 1.2518 \qquad C_{c} = 2.0 \qquad \text{Un crowned.}$$

$$C_{n} = 1.2518 \qquad C_{c} = 2.0 \qquad \text{Un crowned.}$$

$$C_{n} = 1.2518 \qquad C_{c} = 2.0 \qquad \text{Un crowned.}$$

$$C_{n} = 1.2518 \qquad C_{c} = 2.0 \qquad \text{Un crowned.}$$

$$C_{n} = 2.0 \sqrt{32.4.65 \times 1.61.210.52 \times 1.2518} = 169. \qquad \text{Ksi}$$

$$S_{11} = 5.078 \times 0.718 \times 0.7182$$

$$S_{11} = 5.0 \qquad S_{11} = 10.6 \qquad S_{11} = 10.6 \qquad S_{12} \qquad S_{12} \qquad S_{12} \qquad S_{12} \qquad S_{12} = 10.6 \qquad S_{12} \qquad S_{12} \qquad S_{12} \qquad S_{12} \qquad S_{12} \qquad S_{12} \qquad S_{13} \qquad S_{14} \qquad S_{14} = 10.6 \qquad S_{12} \qquad S_{14} = 10.6 \qquad S_{12} \qquad S_{14} = 10.6 \qquad S_{12} \qquad S_{14} = 10.6 \qquad S_{14} \qquad S_{14} = 10.6 \qquad S_{15} \qquad S_{16} = 10.6 \qquad S_{15} \qquad S_{15$$

 $\Rightarrow Sfe = 892.445 \text{ Ft} \Rightarrow Ft_{R} = \frac{5f}{K}$ based on hp = 5.2 $\Rightarrow (6\pi)^{2} = K \text{ Ft} \Rightarrow Ft = \frac{6\pi}{K}$ $\Rightarrow \text{Roked power}(H) = \frac{Ft_{R} \text{ Vav}}{33,000} \Rightarrow Ft_{R} = Ft \left(\frac{5fe}{2020+33/28} + 28\frac{5f11}{35}\right)^{2}$

STUDENTS-HUB.com

Uploaded By: anonymous

(14)