

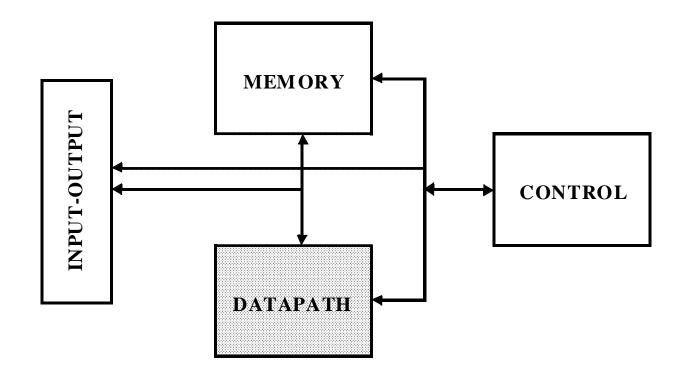
DEPARTMENT OF COMPUTER SYSTEM ENGINEERING

Digital Integrated Circuits - ENCS333

Dr. Khader Mohammad Lecture #13 Adders

Integrated-Circuit Devices and Modeling

A Generic Digital Processor



Building Blocks for Digital Architectures

Arithmetic unit

- Bit-sliced datapath (adder, multiplier, shifter, comparator, etc.)

Memory

- RAM, ROM, Buffers, Shift registers

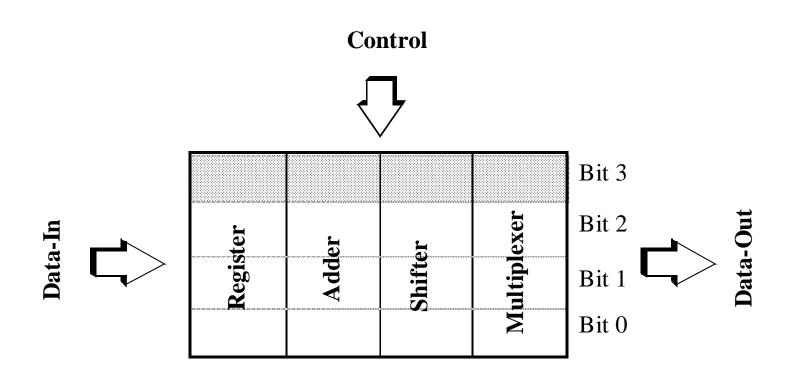
Control

- Finite state machine (PLA, random logic.)
- Counters

Interconnect

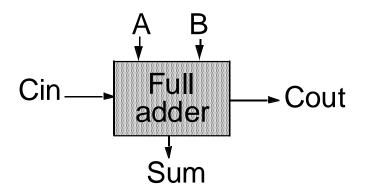
- Switches
- Arbiters
- Bus

Bit-Sliced Design



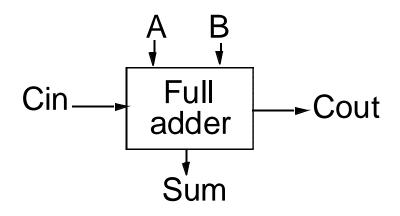
Tile identical processing elements

Full-Adder



A	В	$C_{m{i}}$	S	C_{o}	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

The Binary Adder



$$S = A \oplus B \oplus C_{i}$$

$$= A\overline{B}\overline{C}_{i} + \overline{A}B\overline{C}_{i} + \overline{A}\overline{B}C_{i} + ABC_{i}$$

$$C_{0} = AB + BC_{i} + AC_{i}$$

Express Sum and Carry as a function of P, G, D

Define 3 new variable which ONLY depend on A, B

Generate
$$(G) = AB$$

Propagate
$$(P) = A \oplus B$$

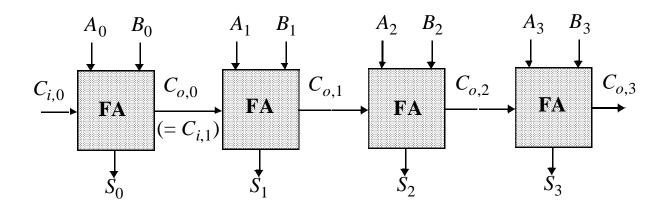
$$Delete = A B$$

$$C_o(G, P) = G + PC_i$$

$$S(G,P) = P \oplus C_i$$

Can also derive expressions for S and C_o based on D and P

The Ripple-Carry Adder

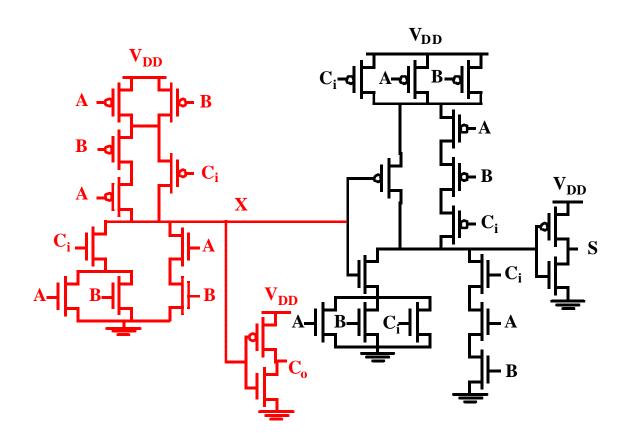


Worst case delay linear with the number of bits $t_d = O(N)$

$$t_{adder} \approx (N-1)t_{carry} + t_{sum}$$

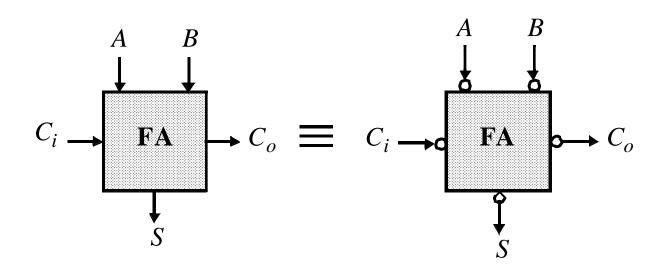
Goal: Make the fastest possible carry path circuit

Complimentary Static CMOS Full Adder



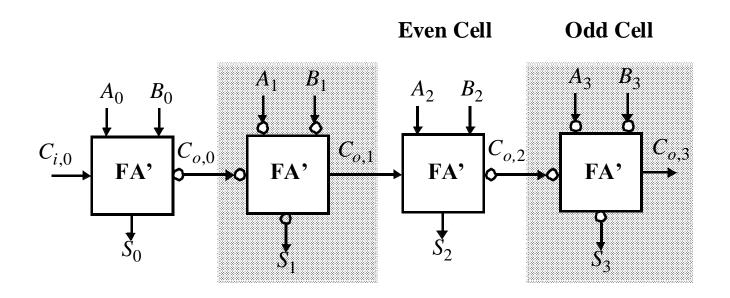
28 Transistors

Inversion Property



$$\begin{split} \bar{S}(A,B,C_{\pmb{i}}) &= S(\bar{A},\bar{B},\overline{C}_{\pmb{i}}) \\ \overline{C}_{\pmb{o}}(A,B,C_{\pmb{i}}) &= C_{\pmb{o}}(\bar{A},\bar{B},\overline{C}_{\pmb{i}}) \end{split}$$

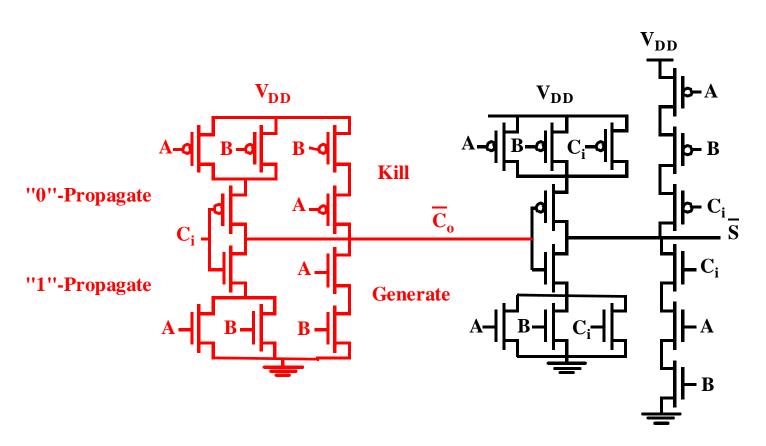
Minimize Critical Path by Reducing Inverting Stages



Exploit Inversion Property

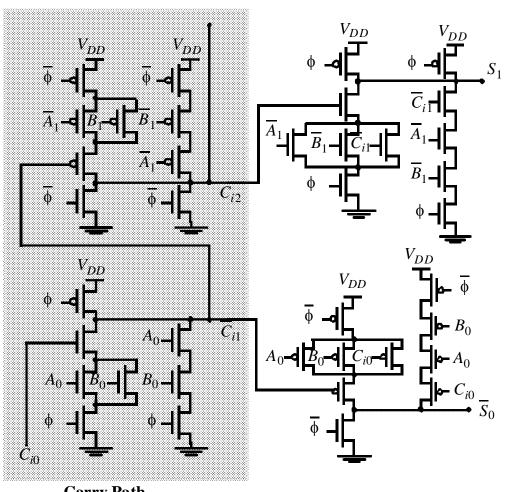
Note: need 2 different types of cells

The better structure: the Mirror Adder



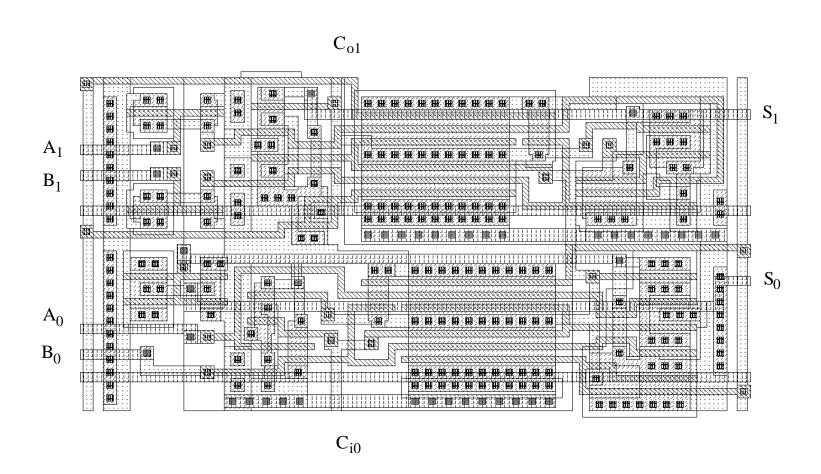
24 transistors

NP-CMOS Adder

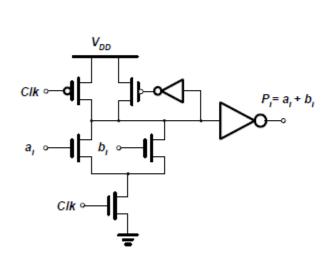


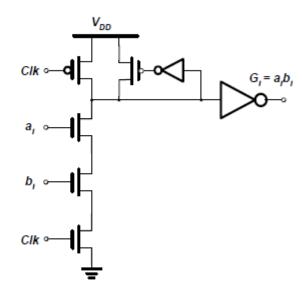
Carry Path

NP-CMOS Adder



Example: Domino Adder





Propagate

Generate

The Binary Multiplication

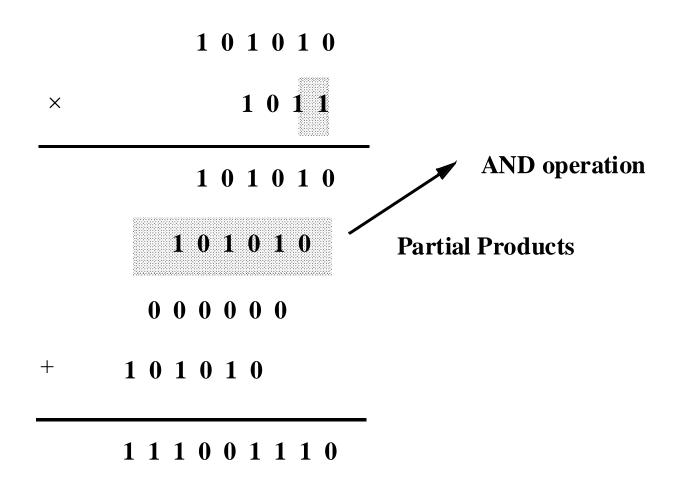
$$\begin{split} Z &= \ddot{X} \times Y = \sum_{k=0}^{M+N-1} Z_k 2^k \\ &= \binom{M-1}{\sum_{i=0}^{N} X_i 2^i} \binom{N-1}{\sum_{j=0}^{N} Y_j 2^j} \\ &= \sum_{i=0}^{M-1} \binom{N-1}{\sum_{j=0}^{N} X_i Y_j 2^{i+j}} \\ &= \sum_{i=0}^{M} \binom{N-1}{j=0} X_i Y_j 2^{i+j} \end{split}$$

with

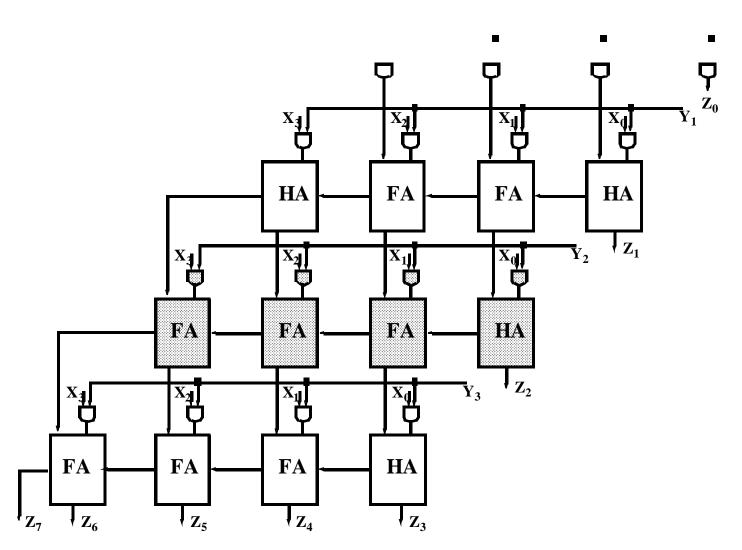
$$X = \sum_{\substack{i=0\\N-1\\j=0}}^{M-1} X_i 2^i$$

$$Y = \sum_{\substack{j=0\\j=0}}^{N-1} Y_j 2^j$$

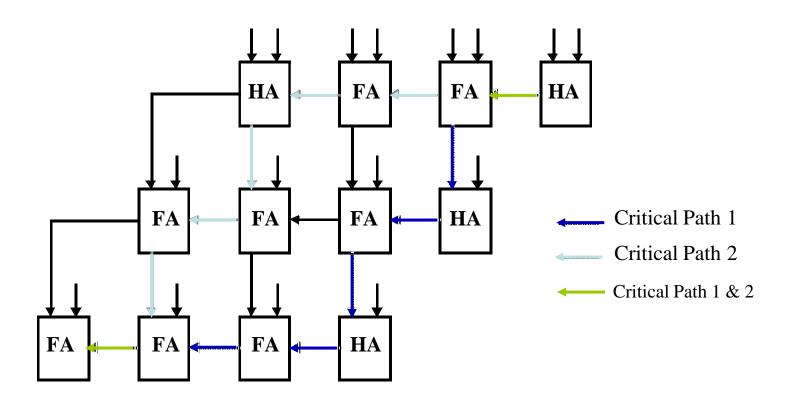
The Binary Multiplication



The Array Multiplier

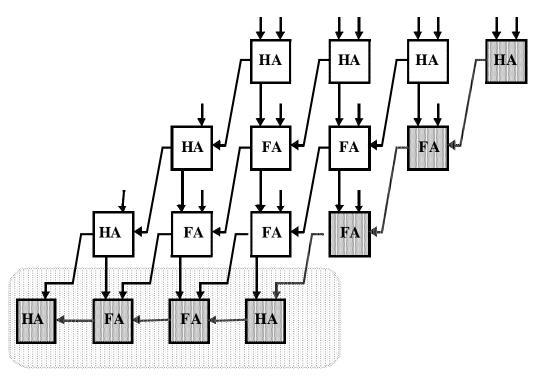


The MxN Array Multiplier — Critical Path



$$t_{mult} = [(M-1) + (N-2)]t_{carry} + (N-1)t_{sum} + (N-1)t_{and}$$

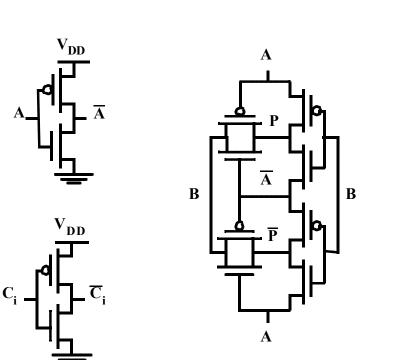
Carry-Save Multiplier

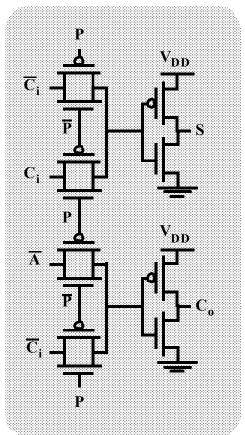


Vector Merging Adder

$$t_{mult} = (N-1)t_{carry} + (N-1)t_{and} + t_{merge}$$

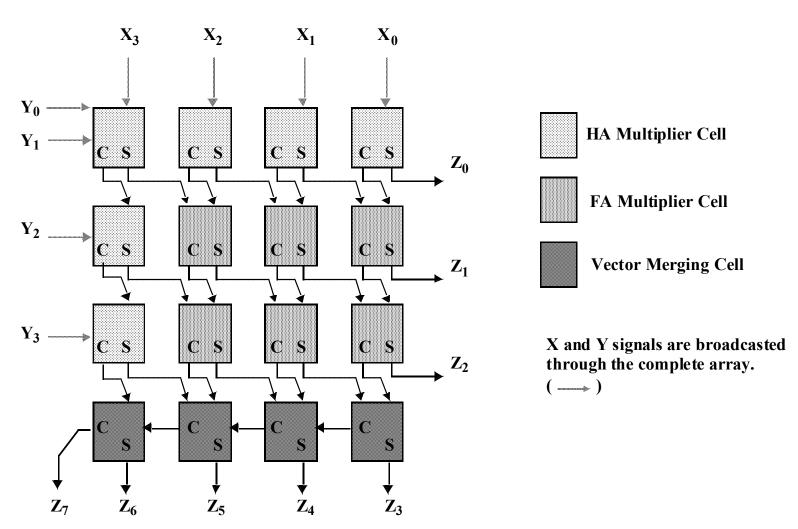
Adder Cells in Array Multiplier



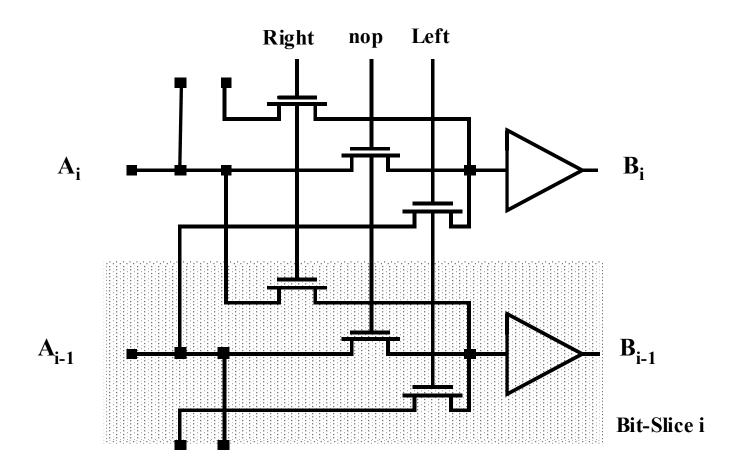


Identical Delays for Carry and Sum

Multiplier Floorplan

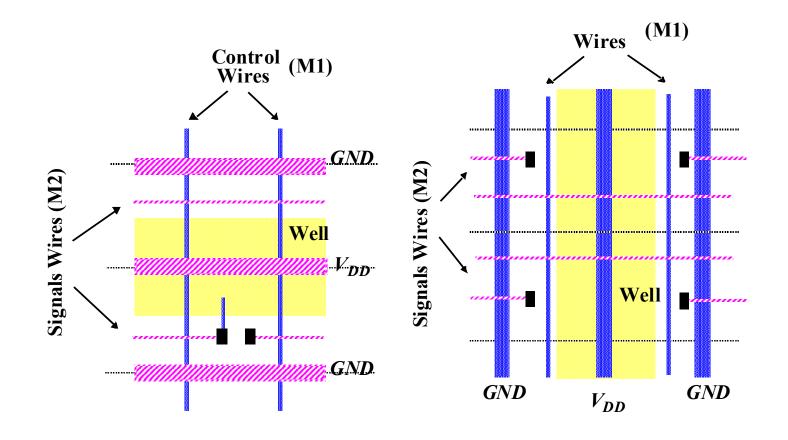


The Binary Shifter



•••

Layout Strategies for Bit-Sliced Datapaths



Approach I — Signal and power lines parallel

Approach II — Signal and power lines perpendicular