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Linear Algebra
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Basic Notation

« Byx € R", we denote a vector with n entries.

« By4A € R™" we denote a matrix with m rows and n columns, where the entries
of A are real numbers.
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The Identity Matrix

* The identity matrix, denoted I € R™ ", is a square matrix with ones on the
diagonal and zeros everywhere else. That is,

o= {Li=
Y0, i #

* It has the property that forall A € R™*",

1 0 0
12=[(1) (1) , 13=[o 1 0]
0 0 1
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Diagonal matrices

* A diagonal matrix is a matrix where all non-diagonal elements are 0. This is typically
denoted D = diag(d4, d,, ..., d;;), with

* For example the identity matrix I = diag (1,1, ...,1)
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Vector-Vector Product

* inner product or dot product

xTyE]R:[xl X2

e outer product

X1

X2
XyT = Ran —
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Matrix-Vector Product

* If we write A by rows, then we can express Ax as,
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Ax =

a]_X
a2X

d X
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Matrix-Vector Product

* If we write A by columns, then we have:

X1
X2

y is a linear combination of the columns of A.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Matrix-Vector Product

* Itis also possible to multiply on the left by a row vector.

* If we write A by columns, then we can express x"A as,

yIT=xTA=xT|a & --- a :[xTa1 x'a® --- xTa”]
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Matrix-Vector Product

* Itis also possible to multiply on the left by a row vector.

e expressing A in terms of rows we have

- ai,. o
T _ T — & —
y :xA: [Xl X2 Xm] :
| — A —
= u[— o —]tne[— d —]+txm[— o —]

y' is a linear combination of the rows of A.
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Matrix-Matrix Multiplication (different views)

1. As a set of vector-vector products (dot product)

— a] — ] _ [ albt ajp? - albP ]
— a] — L ajbt alb? ... albP
C =AB = _ b* b~ --- bP | = _ ,
— al — | © - al bt alp? al bP

I 1= blz — p
_ pT |
C=AB=| al a* ... a° ? =Za’b,-T
' i=1
: - T
| — b —
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Matrix-Matrix Multiplication (different views)

3. As a set of matrix-vector products.

C=AB=A| bl b> .- b" | =| APt Ab> ... Ab"

4. As a set of vector-matrix products

— a/ — ] [ — a/B —
— al — — aJ]B —
C=AB= ? B = ?
| — aL — | — aLB —
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Matrix-Matrix Multiplication (properties)

e Associative: (AB)C = A(BC).
e Distributive: A(B + C) = AB + AC.

* In general, not commutative; that is, it can be the case that AB # BA. (For example,
if A € R™™and B € R™ Y, the matrix product BA does not even exist if m and g
are not equall!)
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The Transpose

* The transpose of a matrix results from “flipping” the rows and columns. Given a
matrix A € R™ ™ its transpose, written AT € R™™  is the n x m matrix whose
entries are given by

(AT); = Aji.

 The following properties of transposes are easily verified:
° (AT)T _
o (AB)T = BTAT
o (A+B)T =AT + BT
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Norms

A norm of a vector [[x]| is informally a measure of the “length” of the vector.

* More formally, a norm is any function f : R™ - R that satisfies 4 properties:

For all x € R", f(x) > 0 (non-negativity).

f(x) = 0 if and only if x = 0 (definiteness).

For all x e R”, t € R, f(tx) = |t|f(x) (homogeneity).

For all x,y € R", f(x+ y) < f(x) + f(y) (triangle inequality).

B W=
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Examples of Norms

The commonly-used Euclidean or ¢, norm,

The ¢1 norm,

n
Ixlli =) Ixi
i=1

The ¢, norm,

|X||co = max; |x;|.
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Ixllz = 4| >
=
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The Inverse of a Square Matrix

@ The inverse of a square matrix A € R™" is denoted A1, and is the unique matrix such
that

A 1A= =AA1

o We say that A is invertible or non-singular if A=! exists and non-invertible or singular
otherwise.

@ In order for a square matrix A to have an inverse A~!, then A must be full rank.

@ Properties (Assuming A, B € R"" are non-singular):
» (A7) 1=A
> (AB)~1 = B~1A~1
» (A~1)T = (AT)~L. For this reason this matrix is often denoted A=
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Eigenvalues and Eigenvectors

Given a square matrix A € R"*", we say that A\ € C is an eigenvalue of A and x € C" is the
corresponding eigenvector if

Ax=AX% X=£0.

Intuitively, this definition means that multiplying A by the vector x results in a new vector that
points in the same direction as x, but scaled by a factor .

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Probability Theory
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Definitions, Axioms, and Corollaries

@ Performing an experiment — outcome

e Sample Space (S): set of all possible outcomes of an experiment
e Event (E): a subset of S (E C S)

e Probability (Bayesian definition)

A number between 0 and 1 to which we ascribe meaning
i.e. our belief that an event E occurs

e Frequentist definition of probability

P(E) = lim "E)

n—o00 n
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Definitions, Axioms, and Corollaries

Axiom 1: 0<PE)L1

Axiom 2: P(S) =1

Axiom 3: If E and F are mutually exclusive (E N F =), then P(E) + P(F) = P(EUF)
Corollary 1: P(E¢)=1—- P(E) (= P(S) — P(E))

Corollary 2: E C F, then P(E) < P(F)

Corollary 3: P(EUF) = P(E)+ P(F) — P(EF) (Inclusion-Exclusion Principle)
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Conditional Probability and Bayes’ Rule

For any events A, B such that P(B) # 0, we define:
P(AN B)
P(B)

Let's apply conditional probability to obtain Bayes' Rule!
P(BNA) P(ANB)
P(A) ~  P(A)
P(B)P(A| B)
P(A)

P(A| B) :=

P(B | A) =

Conditioned Bayes' Rule: given events A, B, C,

p(a| B, c)— PEEIACOP(AIC)

P(B | C)
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Law of Total Probability

Let By, ..., B, be n disjoint events whose union is the entire sample space. Then, for any event A,

P(A) = Z P(AN B;)
i=1

=Y P(A| B)P(B)
=1

We can then write Bayes' Rule as:
P(Bk)P(A | Bk)
P(A)
P(Bk)P(A | Bk)
> i1 P(A| Bi)P(B))

P(Bk | A) =
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Law of Total Probability

Treasure chest A holds 100 gold coins. Treasure chest B holds 60 gold and 40 silver coins.
Choose a treasure chest uniformly at random, and pick a coin from that chest uniformly at
random. If the coin is gold, then what is the probability that you chose chest A? *

Solution:

P(A)P(G | A)
P(AlC) = P(AYP(G | A) + P(B)P(G | B)
_ 05x1
- 0.5%x140.5x0.6
—[0.625
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Chain Rule

For any n events Aq, ..., A,, the joint probability can be expressed as a product of conditionals:

P(A1 NAN...N An)
= P(A1)P(A2 | A1)P(As | AaN A1)...P(An | ApiNAp—2N ... N Ap)
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Independence

Events A, B are independent if
P(AB) = P(A)P(B)
We denote this as A 1 B. From this, we know that if A L B,
P(ANB) P(A)P(B)
P(B) P(B)
Implication: If two events are independent, observing one event does not change the probability

that the other event occurs.
In general: events Ay, ..., A, are mutually independent if

P(()A) =]] P4

i€S i€S

P(A|B) = — P(A)

for any subset S C {1, ..., n}.
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Random Variables

@ A random variable X is a variable that probabilistically takes on different values. It maps
outcomes to real values

@ X takes on values in Val(X) C R or Support Sup(X)

@ X = k is the event that random variable X takes on value k
Discrete RVs:

o Val(X) is a set

@ P(X = k) can be nonzero
Continuous RVs:

e Val(X) is a range

@ P(X =k) =0 forall k. P(a <X < b) can be nonzero.
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Probability Mass Function (PMF)

Given a discrete RV X, a PMF maps values of X to probabilities.
px(x) = p(x) == P(X = x)

For a valid PMF, >, i) Px(x) = 1.
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Cumulative Distribution Function (CDF)

A CDF maps a continuous RV to a probability (i.e. R — [0, 1])
Fx(a) := F(a) := P(X < a)

A CDF must fulfill the following:

@ limy__o Fx(x) =0

@ limy_oo Fx(x) =1

o If a < b, then Fx(a) < Fx(b) (i.e. CDF must be nondecreasing)
Also note: P(a < X < b) = Fx(b) — Fx(a).
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Probability Density Function (PDF)

PDF of a continuous RV is simply the derivative of the CDF.

de(X)

fx(x) := f(x) := ™

Thus,

b
P(a < X < b) = Fx(b) — Fx(a) = / £ (x)dx

A valid PDF must be such that
e for all real numbers x, fx(x) > 0.
o [Z fx(x)dx =1
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Expectation

Let g be an arbitrary real-valued function.
o If X is a discrete RV with PMF px:

Elg(X)]:= ) &(x)px(x)

x€Val(X)
e If X is a continuous RV with PDF fx:
Elg()) = [ g()fi(x)dx

Intuitively, expectation is a weighted average of the values of g(x), weighted by the probability
of x.
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Properties of Expectation

For any constant a € R and arbitrary real function f:
o E[a] = a
o Elaf(X)] = aE[f(X)]

Linearity of Expectation
Given n real-valued functions f1(X), ..., fo(X),

E) fi(X)] =) E[fi(X)]
=1 =1
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Variance

The variance of a RV X measures how concentrated the distribution of X is around its mean.
Var(X) := E[(X — E[X])?]
= E[X?] — E[X]?

Interpretation: Var(X) is the expected deviation of X from E[X].
Properties: For any constant a € R, real-valued function f(X)

o Var[a] =0
o Var[af(X)] = a?Var[f(X)]
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Example Distributions

Distribution PDF or PMF Mean | Variance
Bernoulli(p) p,  ifx=1 (1 p)
P 1—p, ifx=0. P P P
Binomial(n, p) (Z)pk(l —p)"*fork=0,1,...,n np | np(1— p)
Geometric(p) | p(1 —p)<~tfork=1,2,... % lp_—z”
Poisson(\) e_:!)‘k for k=0,1,... A A
Uniform(a, b) - for all x € (a, b) b (bIza)z
Gaussian(p,0°) | —/= e~ 5% forall x € (—00,00) | W o2
Exponential(\) | Ae=** for all x > 0,\ >0 % =
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Joint and Marginal Distributions

e Joint PMF for discrete RV's X, Y:
pxy(x,y) = P(X=x,Y =y)

Note that >, cvaiix) 2oyevar(y) Pxy(X,y) =1
e Marginal PMF of X, given joint PMF of X, Y:

px(x) = 3 pxv(x,¥)
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Joint and Marginal Distributions

e Joint PDF for continuous X, Y:

52FXY(Xa y)
%

fXY(Xay) —

Note that ffooo ffooo fxy(x,y)dxdy =1
e Marginal PDF of X, given joint PDF of X, Y:

e(x) = / " fer(x,y)dy

— 00
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