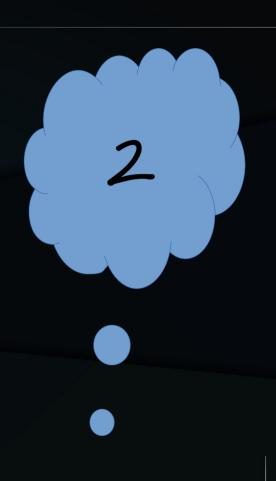
COMPUTER SCIENCE DEPARTMENT FACULTY OF ENGINEERING AND TECHNOLOGY ADVANCED PROGRAMMING COMP231

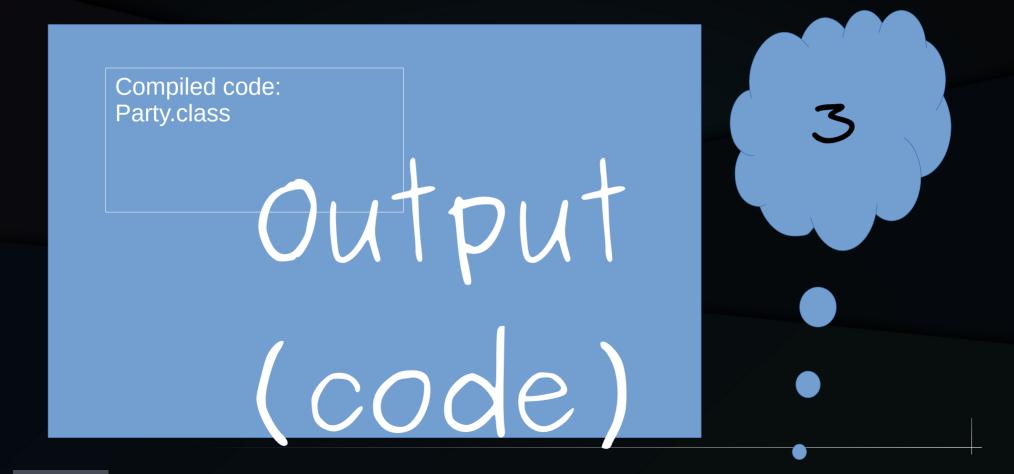
Instructor: Farid Mohammad

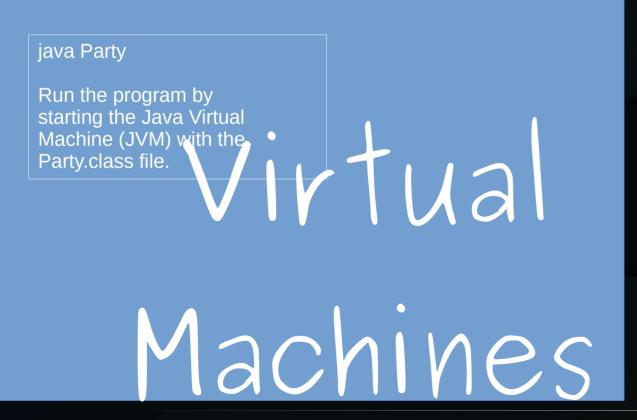
Top 10 Reasons to Learn Java

- 1. Java's Popularity and High Salary
- 2. Java is Easy to Learn
- 3. Java has a Large Community
- 4. Java has an abundant API
- 5. Java has multiple Open Source Libraries
- 6. Java has Powerful Development Tools
- 7. Java is Free of Cost
- 8. Java is Platform Independent
- 9. Java has great Documentation Support
- 10. Java is Versatile

Reference:

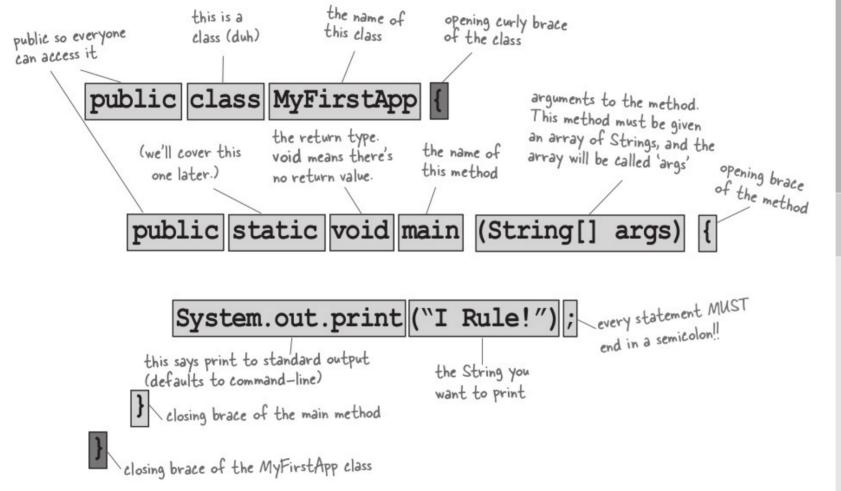

https://www.geeksforgeeks.org/top-10-reasons-to-learn-java/




```
import java.awt.*;
import java.awt.event.*;
class Party {
public void buildInvite() {
Frame f = new Frame();
Label I = new Label("Party at
Tim's"):
Button b = new Button("You bet");
Button c = new Button("Shoot
me");
Panel p = new Panel();
p.add(l);
} // more code here...
                       SOURCE
```


%javac Party.java

Compiler



<u>Anatomy of a class</u>

When the JVM starts running, it looks for the class you give it at the command line

starts looking for main

Next, the JVM runs everything between the curly braces { } of your main

Writing a Simple Program

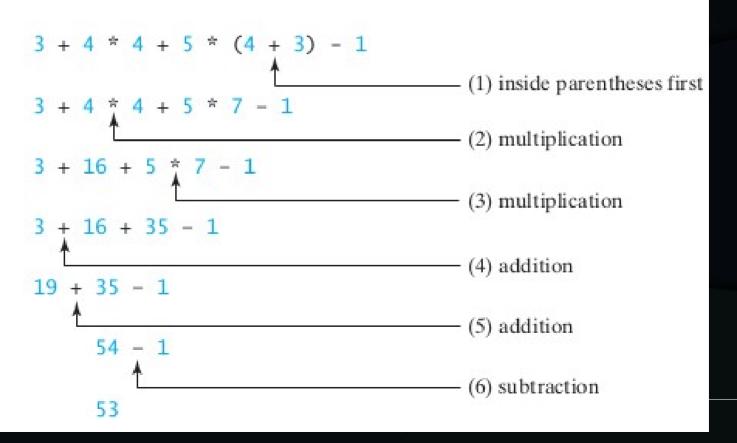
```
public class ComputeArea {
public static void main(String[] args) {
double radius: // Declare radius
double area: // Declare area
// Assign a radius
radius = 20; // radius is now 20
// Compute area
area = radius * radius * 3.14159;
// Display results
System.out.println("The area for the circle of radius " +
radius + " is " + area);
```

1- Save asComputeArea.java2- Complie by:Javac ComputeArea.java3- Run by:java ComputeArea

Reading Input from the Console

```
use the Scanner class to create an object to read input
from System.in
Scanner input = new Scanner(System.in);
double radius = input.nextDouble();
import java.util.Scanner;
 public class ComputeAreaWithConsoleInput {
public static void main(String[] args) {
II Create a Scanner object
Scanner input = new Scanner(System.in); create a
Scanner
// Prompt the user to enter a radius
System.out.print("Enter a number for radius: ");
double radius = input.nextDouble();
// Compute area
```

Named Constants


- The value of a variable may change during the execution of a program, but a named constant, or simply constant, represents permanent data that never changes
- Syntax:
 - **final** datatype CONSTANTNAME = value;
- Ex: final double PI = 3.14159; // Declare a constant

Numeric Types

TABLE 2.1	Numeric Data Types		
Name	Range	Storage Size	
byte	-2^7 to $2^7 - 1$ (-128 to 127)	8-bit signed	byte type
short	-2^{15} to $2^{15} - 1$ (-32768 to 32767)	16-bit signed	short type
int	-2^{31} to $2^{31} - 1$ (-2147483648 to 2147483647)	32-bit signed	int type
long	-2^{63} to $2^{63}-1$	64-bit signed	long type
	(i.e., -9223372036854775808 to 9223372036854775807)		
float	Negative range: $-3.4028235E + 38 \text{ to } -1.4E - 45$	32-bit IEEE 754	float type
	Positive range: 1.4E - 45 to 3.4028235E + 38		
double	Negative range: -1.7976931348623157E + 308 to -4.9E - 324	64-bit IEEE 754	double type
	Positive range: 4.9E - 324 to 1.7976931348623157E + 308		

Operator Precedence

Here is an example of how an expression is evaluated:

Augmented Assignment Operators

TABLE 2.4 Augmented Assignment Operators

Operator	Name	Example	Equivalent
+=	Addition assignment	i += 8	i = i + 8
-=	Subtraction assignment	i -= 8	i = i - 8
*=	Multiplication assignment	i *= 8	i = i * 8
/=	Division assignment	i /= 8	i = i / 8
% =	Remainder assignment	i %= 8	i = i % 8

Numeric Type Conversions

```
int i = 1:
byte b = i; // Error because explicit casting is required
Fix:
byte b = (byte)i;
Division example:
int num = 5;
int denom = 7;
double d = num / denom;
the value of d is 0.0
FIX
double d = ((double) num) / denom;
```

<u>Strings</u>

- Java strings are sequences of Unicode characters
- String e = ""; // an empty string
 String greeting = "Hello";

Substrings

```
String greeting = "Hello";
```

String s = greeting.substring(0, 3);

Concatenation

```
String expletive = "Expletive";
String PG13 = "deleted";
```

String message = expletive + PG13;

Logical Operators

The logical operators!, &&, ||, and ^ can be used to create a compound Boolean

Expression.

int age=24;

!(age > 18) is false

(age > 28) <u>&&</u> (weight <= 140) is true

(age > 34) || (weight >= 150) is false

I ABLE 3.3	Boolean Operators			
Operator	Name	Description		
!	not	logical negation		

Roolean Operators

and logical conjunction

or logical disjunction

exclusive or logical exclusion

(age > 34) ^ (weight > 140) is false , because (age > 34) and (weight > 140) are both false .

Truth table summarized:

!: true if false

&&: true if both are true

||: true if one is true

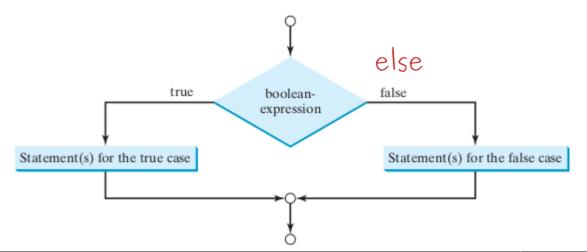
^: true if one is false and one is true

<u>TestBooleanOperators.java</u>

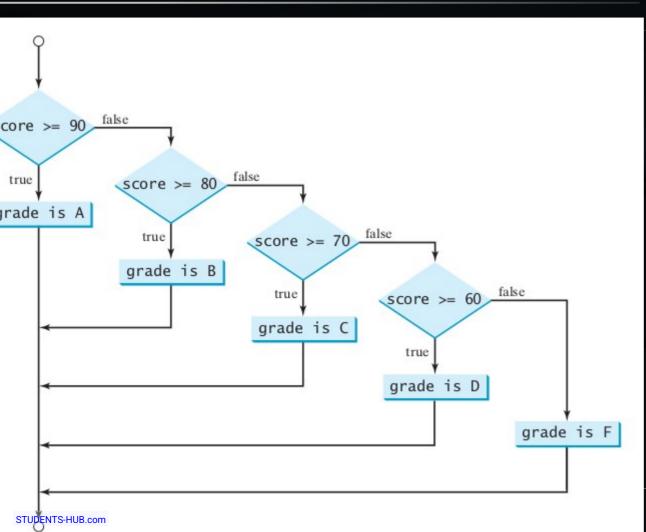
```
import java.util.Scanner;
public class TestBooleanOperators {
public static void main(String[] args) {
// Create a Scanner
Scanner input = new Scanner(System.in);
// Receive an input
System.out.print("Enter an integer: ");
int number = input.nextInt();
if (number \% 2 == 0 \&\& number \% 3 == 0)
System.out.println(number + " is divisible by 2 and 3.");
if (number % 2 == 0 || number % 3 == 0)
System.out.println(number + " is divisible by 2 or 3.");
if (number % 2 == 0 ^ number % <math>3 == 0)
System.out.println(number +
 is divisible by 2 or 3, but not both."); exclusive or
```

boolean Data Type

- The boolean data type declares a variable with the value either <u>true or false</u>
- boolean isLarge=(radius < 0) false
- boolean isZero=(radius==0) false
- Boolean isNotZero=(radius!=0) true


If statement

 An if statement is a construct that enables a program to specify alternative paths of execution


```
if (boolean-expression) {
                                                 if (radius >= 0) {
                                                 area = radius * radius * PI;
statement(s);
                                                 System.out.println("The area for the circle of
                                                 radius "+
                                                 radius + " is " + area);
                          false
                                                                           false
             boolean-
                                                          (radius >= 0)
            expression
                                                             true
            true
                                       area = radius * radius * PI:
           Statement(s)
                                       System.out.println("The area for the circle of" +
                                           radius " + radius + " is " + area);
```

if-else Statements

```
if (radius >= 0) {
    area = radius * radius * PI;
    System.out.println("The area for the circle of radius " +
    radius + " is " + area);
}
else {
    System.out.println("Negative input");
}
```


If inside If

Generating Random Numbers

You can use Math.random() to obtain a random double value between 0.0 and 1.0, Excluding 1.0

Generating a random number between zero and 10: int randInt1=Math.random()*10;

Generating a random integer number in a range:

```
(int)(Math.random() * ((max - min) + 1)) + min
```

Ex between 6 and 15: (int)(Math.random() * ((9) + 1)) + 6

switch Statements

```
int tax=3;
switch (tax) {
  case 0: compute tax for single filers;
  break;
  case 1: compute tax for married jointly or qualifying widow(er);
  break;
  case 2: compute tax for married filing separately;
  break:
  case 3: compute tax for head of household;
  break;
  default: System.out.println("The default action");
```

3.14 Conditional Expressions

- Short if statement=replace if
- Ex: x=1; y = (x > 0) ? 10 :_-1; value of y is 10