
17/05/2025

1

Lecture Slides: PyMongo and FastAPI with Movies
Collection

Instructor: [Ahmad Hamo]
Date: [5-5-2025]

• Official MongoDB driver for Python.

• Enables interaction with MongoDB databases.

• Supports CRUD operations, indexing, and aggregation.

Why PyMongo?
- Simple Python syntax.
- Full MongoDB feature support.

What is PyMongo?

STUDENTS-HUB.com

https://students-hub.com

17/05/2025

2

pip install pymongo

For better performance (optional):

pip install pymongo[srv]

Installing PyMongo

from pymongo import MongoClient

Connect to MongoDB (local or Atlas)
client =
MongoClient("mongodb://localhost:27017/")

Access the "demo" database
db = client["demo"]

Get the "movies" collection
movies = db["movies"]

Connecting to MongoDB

STUDENTS-HUB.com

https://students-hub.com

17/05/2025

3

new_movie = {
"title": "Inception",
"year": 2010,
"directors": ["Christopher Nolan"],
"genres": ["Action", "Sci-Fi", "Thriller"],
"imdb": {"rating": 8.8, "votes": 2000000}

}

Insert one movie
movie_id =
movies.insert_one(new_movie).inserted_id

print(f"Inserted movie with ID: {movie_id}")

Inserting a Movie

Find one movie

movie = movies.find_one({"title": "Inception"})

print(movie)

Find all Sci-Fi movies

scifi_movies = movies.find({"genres": "Sci-Fi"})

for movie in scifi_movies.limit(5):

print(movie["title"])

Find highly-rated movies

top_movies = movies.find({"imdb.rating": {"$gt": 8.5}})

for movie in top_movies:

print(f"{movie['title']} - {movie['imdb']['rating']}")

Querying Movies

STUDENTS-HUB.com

https://students-hub.com

17/05/2025

4

Update one movie
movies.update_one(

{"title": "Inception"},
{"$set": {"imdb.rating": 8.9}}

)

Add a new genre
movies.update_one(

{"title": "Inception"},
{"$push": {"genres": "Mystery"}}

)

Updating Movies

Delete one movie

movies.delete_one({"title": "Inception"})

Delete all movies before 1950

movies.delete_many({"year": {"$lt": 1950}})

Deleting Movies

STUDENTS-HUB.com

https://students-hub.com

17/05/2025

5

from fastapi import FastAPI
from pymongo import MongoClient

app = FastAPI()

client = MongoClient("mongodb://localhost:27017/")
db = client["demo"]
movies = db["movies"]

@app.get("/movies")
def get_movies(genre: str = None, min_rating: float = 0):

query = {}
if genre:

query["genres"] = genre
if min_rating:

query["imdb.rating"] = {"$gt": min_rating}

result = movies.find(query, {"_id": 0}).limit(10)
return {"movies": list(result)}

@app.post("/movies")
def add_movie(movie: dict):

movies.insert_one(movie)
return {"message": "Movie added successfully!"}

FastAPI + PyMongo Movies API

1. Get Sci-Fi movies with rating > 8:
GET /movies?genre=Sci-Fi&min_rating=8

2. Add a new movie:
POST /movies
Body: {

"title": "Interstellar",
"year": 2014,
"directors": ["Christopher Nolan"],
"genres": ["Sci-Fi", "Adventure"],
"imdb": {"rating": 8.6, "votes": 1500000}

}

Examples API Requests

STUDENTS-HUB.com

https://students-hub.com

17/05/2025

6

References:

• Official PyMongo Tutorial

• FastAPI Documentation

CORS and Middleware with FastAPI

STUDENTS-HUB.com

https://www.mongodb.com/resources/languages/pymongo-tutorial
https://fastapi.tiangolo.com/
https://students-hub.com

17/05/2025

7

What is CORS?

Cross-Origin Resource Sharing (CORS) is a security mechanism that restricts web applications
from making requests to a different domain (origin) than the one that served the web page.

Why is CORS Needed?

• Browsers enforce the same-origin policy, blocking requests to different domains by default.

• If your frontend (e.g., http://localhost:3000) tries to call your FastAPI backend
(http://localhost:8000), the browser blocks it unless CORS is properly configured.

CORS Errors You Might See

Access to fetch at 'http://localhost:8000/movies' from origin 'http://localhost:3000' has been
blocked by CORS policy.

No 'Access-Control-Allow-Origin' header is present on the requested resource.

How CORS Works in FastAPI

FastAPI provides built-in support for CORS via CORSMiddleware.

Key CORS Headers

Header Purpose

Access-Control-Allow-Origin Specifies which domains can access the API (*
for all)

Access-Control-Allow-Methods Lists allowed HTTP methods (GET, POST, etc.)

Access-Control-Allow-Headers Defines allowed request headers (Content-
Type, Authorization, etc.)

STUDENTS-HUB.com

https://students-hub.com

17/05/2025

8

Example: CORS Middleware
from fastapi.middleware.cors import CORSMiddleware

app = FastAPI()

CORS Setup
app.add_middleware(

CORSMiddleware,
allow_origins=["*"], # Allows all origins (for development)
allow_methods=["*"], # Allows all methods (GET, POST, etc.)
allow_headers=["*"], # Allows all headers

)

What This Does:
✅ Allows requests from any domain ("*")
✅ Permits all HTTP methods (GET, POST, PUT, etc.)
✅ Accepts all headers (Content-Type, Authorization, etc.)
⚠️Warning:
- allow_origins=["*"] is unsafe for production (only use in development).
- In production, specify exact domains:
python allow_origins=["https://yourfrontend.com", "http://localhost:3000"]

What is Middleware in FastAPI?

Middleware is a layer that processes requests before they reach your route handlers and responses before
they go back to the client.

Common Uses of Middleware

• CORS Handling (as shown above)

• Authentication (checking JWT tokens)

• Logging (tracking request/response data)

• Rate Limiting (preventing API abuse)

How Middleware Works

1. A request comes in.

2. Middleware processes it (e.g., checks CORS headers).

3. If allowed, the request reaches your route (@app.get("/movies")).

4. The response goes back through middleware before being sent to the client.

STUDENTS-HUB.com

https://students-hub.com

17/05/2025

9

Example: Custom Logging Middleware
from fastapi import Request
import time

@app.middleware("http")
async def log_requests(request: Request, call_next):

start_time = time.time()

Process the request
response = await call_next(request)

Log request details
process_time = time.time() - start_time
print(f"Request: {request.method} {request.url} | Time: {process_time:.2f}s")

return response

What This Does:
• Logs every request (GET /movies, POST /movies, etc.)
• Measures response time
• Useful for debugging and monitoring

Summary

Concept Purpose Example

CORS Allows cross-origin requests CORSMiddleware

Middleware Intercepts requests/responses Logging, Auth, CORS

allow_origins Whitelists domains ["http://localhost:3000"

]

allow_methods Permits HTTP methods ["GET", "POST"]

allow_headers Allows request headers ["Content-Type"]

STUDENTS-HUB.com

https://students-hub.com

17/05/2025

10

Further Reading

• FastAPI CORS Docs

• MDN CORS Guide

STUDENTS-HUB.com

https://fastapi.tiangolo.com/tutorial/cors/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://students-hub.com

