17/05/2025

Lecture Slides: PyMongo and FastAPIl with Movies
Collection

Instructor: [Ahmad Hamo]
Date: [5-5-2025]

What is PyMongo?

* Official MongoDB driver for Python.

* Enables interaction with MongoDB databases.

* Supports CRUD operations, indexing, and aggregation.
Why PyMongo?

- Simple Python syntax.
- Full MongoDB feature support.

STUDENTS-HUB.com 1

https://students-hub.com

Installing PyMongo

pip install pymongo

For better performance (optional):
pip install pymongo[srv]

Connecting to MongoDB

from pymongo import MongoClient

Connect to MongoDB (local or Atlas)
client =

MongoClient ("mongodb://localhost:27017/")

Access the "demo" database
db = client["demo"]

Get the "movies" collection
movies = db["movies"]

STUDENTS-HUB.com

17/05/2025

https://students-hub.com

STUDENTS-HUB.com

17/05/2025

Inserting a Movie

new movie = {
“"title": "Inception",
"year": 2010,
"directors": ["Christopher Nolan"],
"genres": ["Action", "Sci-Fi", "Thriller"],

"imdb": {"rating": 8.8, "votes": 2000000}
}

Insert one movie
movie id =
movies.insert one (new movie) .inserted id

print (f"Inserted movie with ID: {movie id}")

Querying Movies

Find one movie
movie = movies.find one({"title": "Inception"})

print (movie)

Find all Sci-Fi movies
scifi movies = movies.find({"genres": "Sci-Fi"})
for movie in scifi movies.limit (5):

print (movie["title"])

Find highly-rated movies

top movies = movies.find({"imdb.rating": {"Sgt": 8.5}})
for movie in top movies:
print (f"{movie['title']} - {movie['imdb']['rating']}")

https://students-hub.com

17/05/2025

Updating Movies

Update one movie
movies.update_one (
{"title": "Inception"},
{"$set": {"imdb.rating": 8.9}}

)

Add a new genre
movies.update_ one (
{"title": "Inception"},
{"Spush": {"genres": "Mystery"}}

Deleting Movies

Delete one movie
movies.delete one ({"title": "Inception"})

Delete all movies before 1950
movies.delete many ({"year": {"Slt": 1950}})

STUDENTS-HUB.com

https://students-hub.com

17/05/2025

from fastapi import FastAPI FastAPI + PyMongo Movies API

from pymongo import MongoClient

app = FastAPI()

client = MongoClient ("mongodb://localhost:27017/")
db = client["demo"]
movies = db["movies"]

@app.get ("/movies")

def get movies(genre: str = None, min rating: float = 0):
query = {}
if genre:
query["genres"] = genre
if min rating:
query["imdb.rating"] = {"Sgt": min rating}
result = movies.find(query, {" id": 0}).limit(10)
return {"movies": list (result)}

@app.post ("/movies")
def add movie (movie: dict):
movies.insert one (movie)
return {"message": "Movie added successfully!"}

Examples API Requests

1. Get Sci-Fi movies with rating > 8:
GET /movies?genre=Sci-Fi&min rating=8

2. Add a new movie:

POST /movies

Body: {
"title": "Interstellar",
"year": 2014,
"directors": ["Christopher Nolan"],
"genres": ["Sci-Fi", "Adventure"],
"imdb": {"rating": 8.6, "votes": 1500000}

STUDENTS-HUB.com 5

https://students-hub.com

17/05/2025

References:
e QOfficial PyMongo Tutorial

* FastAPl Documentation

CORS and Middleware with FastAPI

STUDENTS-HUB.com 6

https://www.mongodb.com/resources/languages/pymongo-tutorial
https://fastapi.tiangolo.com/
https://students-hub.com

17/05/2025

What is CORS?

Cross-Origin Resource Sharing (CORS) is a security mechanism that restricts web applications
from making requests to a different domain (origin) than the one that served the web page.

Why is CORS Needed?
* Browsers enforce the same-origin policy, blocking requests to different domains by default.

* If your frontend (e.g., http://localhost:3000) tries to call your FastAPI backend
(http://localhost:8000), the browser blocks it unless CORS is properly configured.

CORS Errors You Might See

Access to fetch at 'http://localhost:8000/movies' from origin 'http://localhost:3000' has been
blocked by CORS policy.

No 'Access-Control-Allow-Origin' header is present on the requested resource.

How CORS Works in FastAPI

FastAPI provides built-in support for CORS via CORSMiddleware.

Key CORS Headers

Access-Control-Allow-Origin Specifies which domains can access the API (*
for all)

Access-Control-Allow-Methods Lists allowed HTTP methods (GET, POST, etc.)

Access—-Control-Allow-Headers Defines allowed request headers (Content-
Type, Authorization, etc.)

STUDENTS-HUB.com 7

https://students-hub.com

17/05/2025

Example: CORS Middleware

from fastapi.middleware.cors import CORSMiddleware

app = FastAPI ()

app.add middleware (
CORSMiddleware,
allow origins=["*"],
allow methods=["*"],
allow headers=["*"],

What This Does:

M Allows requests from any domain (" *")
b Permits all HTTP methods (GET, POST, PUT, etc.)
M Accepts all headers (Content-Type, Authorization, etc.)

/\ Warning:
-allow origins=["*"] is unsafe for production (only use in development).

- In production, specify exact domains:
python allow origins=["https://yourfrontend.com", "http://localhost:3000"]

What is Middleware in FastAPI?

Middleware is a layer that processes requests before they reach your route handlers and responses before
they go back to the client.

Common Uses of Middleware

* CORS Handling (as shown above)

* Authentication (checking JWT tokens)

* Logging (tracking request/response data)
* Rate Limiting (preventing APl abuse)

How Middleware Works

1. Arequest comesin.

2. Middleware processes it (e.g., checks CORS headers).

3. If allowed, the request reaches your route (@app.get("/movies")).

4. The response goes back through middleware before being sent to the client.

STUDENTS-HUB.com

https://students-hub.com

17/05/2025

Example: Custom Logging Middleware

from fastapi import Request
import time

@app.middleware ("http")
async def log requests(request: Request, call next):
start _time = time.time ()

Process the request
response = await call next (request)

Log request details
process _time = time.time() - start time
print (f"Request: {request.method} {request.url} | Time: {process_time:.2f}s”)

return response

What This Does:

* Logs every request (GET /movies, POST /movies, etc.)
* Measures response time

* Useful for debugging and monitoring

Summary
[Concept ________Jeupose ___________JBample

CORS Allows cross-origin requests CORSMiddleware

Middleware Intercepts requests/responses Logging, Auth, CORS

allow origins Whitelists domains ["http://localhost:3000"
]

allow methods Permits HTTP methods ["GET", "POST"]

allow headers Allows request headers ["Content-Type"]

STUDENTS-HUB.com 9

https://students-hub.com

Further Reading

STUDENTS-HUB.com

FastAPl CORS Docs

MDN CORS Guide

17/05/2025

10

https://fastapi.tiangolo.com/tutorial/cors/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://students-hub.com

