Chapter 7.1, Problem 34E

Problem

Student C tries to define a function $h: \mathbf{Q} \to \mathbf{Q}$ by the rule $h\left(\frac{m}{n}\right) = \frac{m^2}{n}$, for all integers m and n with $n \neq 0$. Student D claims that h is not well defined. Justify student D's claim.

Step-by-step solution

Step 1 of 1

$$h\left(\frac{m}{n}\right) = \frac{m^2}{n}$$
 where $h: Q \to Q$, $n \neq 0$, m are integers

Suppose that
$$\frac{m_1}{n_1} = \frac{m_2}{n_2}$$

Then,
$$\frac{{m_1}^2}{n_1} \neq \frac{{m_2}^2}{n_2}$$
 for instance $\frac{3}{2} = \frac{6}{4} \Longrightarrow \frac{3^2}{2} = \frac{6^2}{4}$,

i.e.,
$$h\left(\frac{m_1}{n_1}\right) \neq h\left(\frac{m_2}{n_2}\right)$$

$$\therefore \frac{m_1}{n_1} = \frac{m_2}{n_2} \Longrightarrow h\left(\frac{m_1}{n_1}\right) = h\left(\frac{m_2}{n_2}\right)$$

: h is not well defined