Chapter 1
Introduction and Background g E |
o

Nature of the Course /,(’Hg =014
There are 4 different views to teach the programming languages course:

1- How to program in several programming languages. .~
2- Survey of the history and nature of several programming languages. \~

3- How to implement programming languages. +~
—\{ g\ PV o Fronsiaiex Ccemprex)
4- The conceptual issues of programming languages ™ (concepts &y~

paradigms).

v v
We will study the nature of PL, What they can do and what they should do,

Instead of what they are and how to use them.

Simply, we will study the structural issues of PL, in two words:
“Concepts & Paradigms”

- Concepts: The basic structure of PL, syntax, semantics, data types, control
By e o SR YOSy LN
structures, ...etc.

- Paradigms: the model, an approach or the way of reasoning to solve the problem.

Programming Languages Views

1-‘The_ inventor of the language)
mThe one who build the compiler or the interpreter)

3-! (The one writes programs in the language) P

,/ e,

The course deals with all 3 views with a little emphasis on (3).

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Reasons to study Programming Language Concepts

1) To increase the capacnty to express programmlng ideas.

’2) Knowing the structure of a programming language makes it easier to leamand
~ understand programming languages.

3\ To increase the ability to design new languages. for example it is known that
the if...else structure is ambiguous. This means that the compiler does not
know which direction to take when parsing it. In a case like this, the designer

must take into consideration ambiguity when putting down production rules

[4) It is an overall advancement in computing

What is a Programming Lanquage?

A language is a system of signs used to communicate.

(This definition also includes spoken language). All languages have grammar
and vocabulary.

. Grammar is how we express a language. It is a specific set of rules(with some
S‘exceptlons in some cases).

Programming languages are the same, they have a set of rules, called
Production rules, which are its grammar. The main difference between spoken
languages and written languages is that the rules are strict, that is, there are
‘o exceptions to rules.

This leads us to a general definition:

A Programmmg language is a system of signs used by a person to

comm computer machine.

Or a more specific definition:

A Programming language is a_notational system jpr_dgs_cribing
* COMPUTATION inM,l_\ﬂE READABLE and H‘UI\MN‘REAQAB;LE
form. : e (2

N

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

——

There are three Key concepts in this definition:

1. Computation

All what computers about. This is everything that happens in a computer on
a low level regardless of the application. Everything we know in
programming is eventually simplified into small computational
operations(Arithmetic operations).

- (< 0 \ € /
> AN Lt > CHVRX).\,‘ X

— Interpriex —> MieX {HRSGY ALl

2. Machine Readable ={» A aulad ey AGNEX ‘e Mg lan A \

There must be an algorithm to translate the programming language code in an
unambiguous and finite way. The algorithm must be simple and straight-
forward, and usually takes time proportional to the size of the program. Machine

Readability is ensured by restricting the structure of the programmlng
(Cu\\\i_k T’

language(syntax) to a context-free grammar(CFG) which is a system/model to
express the syntax of the programmlng Ianguage Because of such a system

we can create algorithms for translators in a way that produce something

machine readable. T he 5\\\\\ (< \\'\\\\\\\N\ ¥ PL s expresse 3 &x\j CGF
whidh's \\‘—\\\\\\,,rk\ o q\\‘t\\ e 5\&\“\0{ \ Hhe PL

3. Human Readable

A Very important aspect of a program is to be readable. This began with high-
level languages. A Programming Language must provide abstraction as -Data
Abstraction : Which means giving variables and data types such names.

(a)Data abstraction:

¢ Simple : such as "integer" or "int" or "char”
3¢ Structured : such as arrays or strings

(b) Control Abstraction :

- Simple: assignment statement, X =X + 3; meaning:
Fetch memory location X, add 3 to it, and store the result back to X.
All this in one simple statement.

_ Structured divide the program into groups of instructions such as,

If...else stmt case stmt, while stmt, procedures, functions,
blocks, ...

For a more precise and complete definition of programming languages,
instead of a variable definition, N (v‘f’/‘ ‘!

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Yiwo parts:

1.Syntax, or the structure.

2.Semantics, or the meaning.

This is considered a concrete definition of a programming language.

Programming Language Concepts

Syntax

The Syntax is the grammar of the programming language. It describes the
WL LS ar Of the progre
different structures such as expressions, statements, and blocks.

The Syntax is formally described using a Context Free Grammar (CFG), which is
a set of static algorithms and frameworks.

Semantics

The Semantics describe or gives the Syntax structure a meaning. It is more
complex and difficult to describe precisely unlike syntax. For example, the
meaning of the "iflelse" statement must be programmed correctly by the
implementer so that the compiler generates the correct code.

Unfortunately, there is no clear formal to describe Semantics analysis unlike

Syntax. However, there is a framework called Syntax Directed
\

Translation(SDT) which is used to express the semantic analysis.

< L

Code -> Scanner(Lexical Structure) -> Tokens -> Syntax analyzer -> Object Code

the Scanner takes the statements and analyzes them, creating tokens, Then the
Syntax analyzer takes the tokens and tries to create Syntax structures. If a
group of tokens creates a valid expression, it moves to the next set of tokens.

For example, let us look at this small segment of code:

4'/,
’_,\/ vi{v‘q\
if (x1=1) ‘l*,
{ n++ 2 .
> \ 8\ e .“-\
\') Codd 14"/
the tokens in this code would be
llif"’l'("'llxll’"!=ll’|l)vl,'l{ll,l'n"’ll++ll,l';"'ll}" . This is very important for Q*;

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

as tokenized the statement in the

parsing. After the Scanner h

above section, the Syntax analyzer first checks:

If(: 10) \‘ Q@ \.—' \&,)\ > \\‘.\) e D I\
X{= -
TN)L AR I p l
if it is correct, then ' _‘;‘ \ § Nyolyd) Sroliany
: ‘_\\ E\Su{
ey “ =)

it checks n++; ==Y

ore statement to see if the whole if statement

if it is correct, then it checks the wh

is correct.

Paradigms of Programming Languages

There are 4 paradigms of programing languages

Imperative or Procedural Paradigm

ed Von-Neumann model of computing which is based on Single

This is call
instructions. A programming

Processor Sequential Execution of
Language that is based on this model is characterized by:

1. Sequential Execution of Instructions.

2. Using Variables to Represent Me cations.
3. Using Assignment Statements to Change the Value of a Variable.

An example of a programming language designed with this paradigm is Pascal

and C. This is an example function (Greatest Common Divisor):
yox

function gch;,y:integer):integer;
Begin

If (x = y) then

gcd:=x
else
if (x > y) then

gcd:=gcd (x-y,y)
else
gcd:=ged (x, y-X) ;
End

STUDENTS-
S-HUB.com Uploaded By: Jibreel Bornat

The Same program in C is:
int gcd(int n, int m

if (n==m
return m;

else;
if (n>m)
return gcd(n-m,m) ;
else
return gcd(n,m-n) ;

Functional Paradigm

Computation is based on the evaluation or calling functions or application
Qkfifypgtjgﬂs. That is why the language is sometimes called @
language. A programming Language that is based on this model i;
characterized by:

1. There is NO Notion of Variables or Assignment Statements in this Paradigm.

2. Repetition is not Expressed in Loops, but is Achieved by Recursive Calls.

As an example,
Let us take LISP (LISt Programming) language. In LISP, everything is a list. In
LISP, a list is defined as: o el Shaicie

A Listis a Sequence of Things Separated by Blanks and Surrounded by
Parenthesis.

An example of lists

(+ab)
or:

(a (b O A)
— : /
or ©n thews 65 alist wines alyo « Pist-

(+23)

or

(A
(ifabc) \&

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

.
the

the value is b. otherwise
some small programs in

true, then
¢ ans '
hich me' e Let us see

or another program:

> (defun ff(X y)
(+ X y))

>ff

> (ff 3 5)

>

GCD in LISP would be (Z Cadan)

> (defun gcd(n m) > (Adbun c‘f&\'{\) C: V 2
I L=vel W
M)

(if (= n m) n §)
; d (-nm n {
(if(> n m) (gc) (_&kc_\ NJ (\M U \Y

(ged a (-nm)))
>gcd

>(gcd 18 16)

>2

Lets Write a LISP program to simulate the function power x*n(where X belongs to

rand n is an integer)

> (defun pwr(x n)
(if (=n 0) 1

(* x pwr'x (-n1))))))
>pWr

>(pwr 2 4)

>16

Logical Paradigm

This Paradigm is based on symbolic logic. The Program consists of a set of

ged(u,v,u) :- v = 0.
ged{u,v,x) :- v >0
; ;
Y is u mode v, =
ged(v,y, x) . @

STUDENTS-HUB.com
Uploaded By: Jibreel Bornat

STUDENTS-HUB.com

statements that describe what is true about these statements. For example, the
Greatest Common Divisor function could be written in a Logical language

fo N
called PF

L OG (PROgramming LOGical):

Object Oriented Paradigm

In This Paradigm, the notions of Object and Class are introduced. It widely
spread in the 90's. The main advantages of Objected Oriented Programming

are:
. i a and Functions.
* Inheritance.

' Polymorphism.

The Chart of Language Evolution

Imperative

=

Logical

)

bject Oriented

-l-
B

@

Uploaded By: Jibreel Bornat

—————"

Chapter 3

programming Languages principles

-

Language Translation

rammers used Machine Language to program i.e., The language of
wrote his program in HEX which is translated

le, look at the following piece of code: B

Early prog
numbers. The Programmer

automatically t© pinary. For examp
> ~% ."Y;A \‘(.‘ e

2 4 63 >7) ‘_,S,-»k

3 4 46

5 4 57

\ N
PR

\

This is a Machine Language program.

Later on, they improved this and created assembly. In compiler construction,
there is no difference between Assembly and Machine Language. Assembly

simply gave mnemonics to Machine Language instructions. Assuming some

architecture X, the above hex program would be

LOD 4,X
ADD 4y
STO4,Z

in Assembly. Assuming 4 is a certain register, the above code means
Load the contents of memory location 63 whose name is X into register 4.

Add the value stored in memory location 46 whose
name is Y to the value in register 4. Store the value
stored in register 4 to the memory location 57 whose
name is Z.

Th|:,> was still difficult. After Assembly, we created High Level Languages such
:lhs ascal, Basic, ADA, C, etc. And with the creation of High Level Languages
there was now a need for Translators. Comnp\\xS « |

Tolex peiess « ®

STUDENTS-
HUB.com Uploaded By: Jibreel Bornat

—

What is a Translator?

The Most general definition of a translator is:

Translator is an Algorithm Which Translates the Source Code Into a Target

Code.
If the source code is an assembly language program, and the target code is a
machine language program, the translator is called an Assembler. If the
source code is a high-level language program, and the target code is
assembly or machine language, the translator is called a Compiler.

Compilers

given the above, a compiler is defined as :

An Algorithm that Translates High Level Languag_Program to an Assembly or

a Machine Language Program. - =

The Process of compilation and execution, for say, C code is :

Library Linking Input
- Data V v

Source Code(*.c) -> Compiler(gcc) -> Object Code(*.obj) -> Executable Code(*.bin) -> OutputData

A Compiler generates Object Code (Machine Code).

Advantages: [1\ SNHE rde exCe Pt moDias

Mose Ceda Dediy @

Generate Object Code N
- NS ¢ \\(X

Faster Programs

Disadvantage

Complex and hard to lmplementatlon

Interpreters
A Simple definition of an interpreter is:

An_lInterpreter is an Algorithm that Translates the Source Code to an

Intermediate Code which is Executed by Another AIgonthm(Program) with
the Input Data to Produce the Output Data.

The General process of interpretation is :

Input Data
v

Source Code -> Interpreter -> Intermediate Code -> Another Algorithm -> Output Data C

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

W b :
x T £4 i
\\\) \ 5] o \ [&m p\ "C‘ m— - \k
X o |
~
¢ L I)

\ {_ wal @ (o _,;_S@ ,.%Tnﬁ-‘umg&)“x-gw ‘r_'

|
Tofix —— Cacrox T Cundhad —> Pos\’g—\x____] :
?

oS | corpuk > |
.\—_x\\\\\\.\/“x \ng k____ PW /

AN &

_—L\\k\\a\\éﬁ c

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

A simple interpretation would be changing an equation from infix to postfix and

calculation it.
Input Data
v
gix Code -> Translator Converter -> postfix Code -> Some Program -> Result

infi>] 3

in Java .
Input Data
v

« 4ava -> Java Compiler -> Byte Code -> JVM -> Result

Advantages

« Interpreters generate a Portable intermediate code.

o Easierto Implement

Disadvantages

ln

lower

Both Compilers and Interpreters Perform the Following Steps :

* Lexical Analysis(scanner) : Which simply groups the characters of the
source code to form what is called the Tokens. This Only detects legal

charactererrors. ©°»®e=h (x == 10) (x === 10)
(,\.(,::,30\3 (\X\::)—_.\O))
AND eRRoR v)ﬁ‘ Dynt ax “:9&69\“,

* Syntax Analysis : Groups the set of tokens from the scanner to form

Syntax Structures.

*Semantic Analysis: Gives the syntax structures meaning. This is the
Rerdactiagk: Ly snder shanding] Symtex Sreadiaes qivan Yy the
Synar fplas)zar.

* Code Generation : Both Compilers and Interpreters do code generation,
but they differ in how. While the Compiler generates Object Code, the
interpreter generates Intermediate Code.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

!

Interpreter Compiler

These similarities and differences are highlighted in the following diagram:

®

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Even though this flowchart makes it seem that these processes take place one
after the other, these processes(lexical analysis, syntax analysis, semantic

analysis, etc) are not done i.ndependent from each other. Today, almost all
compilers areé One-Pass Compilers.

A Runtime Environment is defined as :

The Space Allocation for Programs and Data in Memory During Execution.

There are 3 types of Runtime Environment :

1. Fuly-Static Environment.

2. Fully-Dynamic Environment.

3. Stack-Based Environment.

Fully-Static Environments

In this type of environment, all properties of the programming language are
predetermined before execution. This means that all the address allocation is
performed when the code is loaded, not when it is run.

FORTRAN for example, uses this scheme. In FORTRAN, all memory locations
of all variables are fixed during program execution. In Addition, FORTRAN has
only one type of procedure/function called subroutine. In Subroutines, there
are no nested subroutines, i.e. you cannot define a subroutine in a
subroutine. This also means that there is no recursion. Thus, the original
FORTRAN is suitable for a fully-static environment.

'Eully-Dynamic Environments

This Scheme is more suitable for dynamically computed procedures such as
LISP. It is best with functional and logical programming. This is because it
allows us to do recursive function calls, as the allocation is done
dynamically. St Mg

Stack Based Environments

It Is A hybrid of the above 2 schemes. In This Kind of environment, the static
allocation is used for the variables and other data structures, while a stack is
used for recursion, nested functions, and procedures during execution. This
scheme is best. @

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

* B raple

axes>

Y Svoek- Q\L\%Qg&j eXW \\E,\Y(\'\Q\\J"‘B :

e ool Tt Pan Ciok Xy 0F W)
i 5 4==°)
TRy o Y U

e\se)
vehun %+ Pow (Ry2-40;

o e

26)e- By sag\)(‘?/f‘.ﬁ

&— %*?6\905 \d

A
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

used with bIE)ck structured languages (Imperative/Procedural |anguages) such as

all AL_’Q_QL—:%Q languages including Pascal, C, Modula, Ada, etc. Most

languages today use this scheme.

Languages with strong static structures are more likely to be compiled. i.e.,
genera")” imperative languages are compiled. Conversely, Languages with
more dynamic structures are more likely to be interpreted, i.e., generally,
functional and logical languages are interpreted.

Error Detection and recovery

Juring any point or place in the translation process, errors can arise. Generally,
sfficiency is a trade-off with complexity in error handling. The Faster we handle
srrors, the less robust our error handling will be. More complex error handling

outines, while they do make using the language and fixing bugs easier, they
ake more processing power and time.

There are 4 types of errors that can arise in the compilation process:

1. Lexical Errors : Lexical Errors arise when an illegal character is detected.

an example of this is the number symbol in C. they are easiest to find and fix

; : . J¢ Cad Owagonsng) Laneinese. oy &S

and are detected during Lexical Analysis. et A &éxw‘\\)ﬁ)

: \STY vped v PHsCRilL.

2. Syntax errors : Syntax Errors arise when grammatical errors are detected.
This happens when the source code does not follow the grammar of the
syntax language, ie, the Production Rules. An example of this is missing
semicolons in C and Java. They are the a little harder but still easy to find and

o . LO WA\ ST LR AL S S NAVEAY Q) KTYS\
fix. They are detected during Syntax Analysis | : o s

S Sanvax Eom b SRy v
3. Semantic Errors : Semantic Errors are detected either during Semantic

Analysis or During Execution. There are 2 types of Semantic Errors :
° Static : And these are pre-execution. An example of these are type
mismatch errors.

° Dynamic : And these are detected only during execution. An example of
these is division by zero.

4. Logical Errors : These are errors that are related to the logic the code was
written in, and what the programmer thinks he means with a statement vs
what the compiler actually understands it as. This is completely human error,
and is the hardest to fix. @

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

I—

Programming Languages Domain

programming Languages are divided into several domains

1. Scientific Domain' : This Domain includes all applications with a
computational base. Languages in this domain include FORTRAN, C, and
ALGOL60. This is where programming started originally.

2 Business Domain : This Domain includes all applications used for
commercial purposes. Languages in this domain include ,,QQB_@L_(a'r’fd:))
Database languages) and JAVA. This came afterwards when businesses, ¥
especially banks, found use for programming. >

-

3. Artificial Intelligence Domain : This Domain includes languages used for
Al. Languages in this domain are LISP and PROLOG.

4. Systems Programming : Which is programming all aspects of the
computer (including hardware). Languages in this domain include
Machine Language, Assembly Language, and C.

5. Very High Level Languages : These are essentially scripting languages.
Languages in this domain include python and bash.

Language Evaluation Criteria : Which Language is the Best?
>

L

There is no "best" general programming language. However, we can say that a
gramming language is more suitable for a certain application. There are a lot

of factors to consider when we want to choose a programming language.

However, we can compare similar programming languages on certain
benchmarks such as speed, space usage, ease of use, libraries available, etc.

6

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Factors that Effect Programming Languages

Readabilit

It is the most important criteria of programing languages (we made programming
languages to be able to understand code after all). It is judging the language by
simplicity of which programs can be read and understood, ie, how hard it is to
understand a segment of source code. There are several things that contribute to

the readability of a language :

« Simplicity : a language with a large number of basic components is difficult
to learn. Users generally tend to use only some of those features(according
to personal preferences). An example of this is how there are many types
of loops available(while, for, recursion), but each person has a different
affinity to them, or muiltiplicity (Xx=x+1,x+=1 x++, ++x), where there is more
than one way to increment or decrement a variable, and a user only likes to
use one of them.

* Orthogonality : Orthogonality means the symmetry of relationships among
primitives combined to form the constructs/controls ie, the language should
not behave differently in different contexts. An example of this is in Pascal,
the block statement in loops must start with BEGIN and end with END like
this :

* T PASCL

for(...) o . ' C n
BEGIN

ces 9 2 2
END . L ‘I

except in the ~““repeat™ " statement,
which uses

-~
—_\
~

**“PASCAL
REPEAT i :

UNTIL 1
or in IBM mainframe, where : 1Zeory Reaiy

" "ASSEMBLY . :
A Regl,mem = " "]} Ew QTSR

but

" ASSEMBLY 'T \x
o o thogendls > Tugln Stndortey s Less Trovadions

V) W€
Or in VAX(an OS for mainframe digital corporation), where
there is only 1 add instruction for all types of memory(memory

locations and registers) : @

" TASSEMBLY
Add op1, op2

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

shis Case VAX is said to be wore
in short:

oo::'..":-‘?::u“..

. The Less the Orthogonality, The NMore Instructions There are

Nowever:

. The Higher the Orthogomality, The More Froblems There are to the Compiler

L _(_:_gr_l_tLQLitL"M : Early Languages such as FORTRAN and COBOL had a
limited number of control structures(COBOL had 1 type of loop, the for loop) .
As such, the use of the goto statement was more prevalent. This caused the
language to be less readable. In the 70's, block structured programming
languages were introduced as a solution to poor readability.

.Data Types and Structures : Sometimes, the use of a datatype can be

confusing. Pascal, for example, solved this issue. say we want to have a flag.

In pascal, we have the Boolean type:
flag:Booclean;
flag: strue;

if flag
then

However, In C, we don't have a boolean type, so if we want to define a flag, we
have to use the datatype:

int flag:
flag = 1;

if(flag

Syntax Consideration :
Identifier length(eg int , for), separators.

Using Keywords(eg BEGIN , END) in compound statements.

Writability

Writability is the ability to write programs in a certain language. It is not
Separated from the readability issue. We can say that the writability issue is the
Same as the readability issue. Generally, if a programming language is easy to
read, it is easy to write and vice versa. The Factors which effect readability also
effect writability.

We should compare writability of the programming language in the same
domain. COBOL is no good for writing a scientific programs, while ALGOLG0 is.
In the same way, its not a good idea to do Al in ALGOL60 compared, to say,
PROLOG. @

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

I—

Reliabilit

iabilty is how much we "trust” a programming language. A Programing
Relia aals said to be reliable if it performs well under all conditions,
langu

The Reliability issue is

checking : That is, to check that the operands of a certain operation are of

effected by the following factors :

Type
a compatible data type.

Exception Handling : That is, the ability to detect the error, report the error, and

recover from it.
Aliasing : That is, Having 2 or more distinct referencing methods , ie, having 2

different names for the same memory location.

Cost

Cost is divided into categories :

Programmer Training. Programmer Training is a
function of simplicity and orthogonality. Software
Creation. Software Creation is a function of writability.

Cost of Compilation. This means how much time/processing power and
space we need to compile the source and create an executable.

Cost of Execution. This means how much time/processing power
and space we need to run a program. Cost of Compiler
Development.

Cost of Maintenance. This is also a function of readability.

Other Factors

There are also other factors to consider when comparing languages :

Portability : The Ability to move the program and run it on a different platform.
This is a huge plus.

Generality : That is, is the programming language a general purpose
Programming language? Can we use it for everything?
Efficiency : And This includes 3 types of efficiency:

Efficiency in Translation.
Efficiency in Execution.

Efficiency in Writing Programs. @

[o=, .
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

