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Introduction

• Classification is a supervised learning task where the goal is to predict a 
categorical (discrete) target label. 
Examples: spam detection, object recognition, … etc.

• If the target label has only two possible values (ex: spam/not spam), then the 
task is called binary classification.                                                                
However, if there are more than                                                                            
two possible values (ex: object                                                                
recognition) then the task 
is multiclass classification.

• For both binary classification 
and multiclass classification,
each example has only one label. 
If the example can have more 
than one label (ex: book genre), 
then the task is called 
multi-label classification.
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Classification Example

• Heart Data: These data contain a binary outcome HD for 303 paHents who 
presented with chest pain. An outcome value of:

• Yes indicates the presence of heart disease based on an angiographic test, 

• No means no heart disease. 
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response variable Y
is Yes/No
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k-NN for Classification
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Instance-based learning (IBL)

Idea:
• Store all training instances x along with their prediction value y:

x1 , y1

x2 , y2

…

• When asked to predict for an unseen instance 
• find stored instance “closest” to it: the “nearest neighbor”
• and simply predict its stored class value

• Do not produce an explicit generalization (lazy learning)

K-nearest neighbor learning:
• Find k most similar instances and take a (weighted) majority vote
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Voronoi Diagram

• The decision surface induced by 1-nearest neighbor is a combinaHon of 
convex polyhedra surrounding each of the training examples (Voronoi 
Diagram)

• For every training example, the polyhedron indicates the set of query points 
whose classificaHon will be completely determined by that training example
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Example

• Given a set of positive (+) and negative (-) 
training examples and a new test example 
(query) xq as shown in the figure

• What is the prediction of xq in case of                                                                                  
1-nearest neighbor?

(+) 

• What is the prediction of xq in case of                                                                                  
5-nearest neighbor?

(-) 
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Selecting k

• boundary becomes smoother 
with increasing value of k

• With k increasing to infinity it 
finally becomes all blue or all 
red depending on the total 
majority.
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Selec@ng k

Training error rate vs. value of k:

• The error rate at k=1 is always zero for the training sample. This is because 
the closest point to any training data point is itself.
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Selecting k

Testing error rate vs. value of k:

• At k=1, we were overfitting the boundaries. 

• Hence, error rate initially decreases and reaches a minima. 
• After the minima point, it then increase with increasing k. 
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Majority Voting

• For instance x, let N = {n1 ... nk} the k nearest neighbors of x, 

where nk = (xk,yk)

• Let wk := 1 / dist(x, nk)2, (k in {1...k})

• The Majority voting for discrete prediction problems:
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Distances for Real-Valued Spaces (Rm)
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Distance Functions (Propositional Case)
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Ideal: Distances should be metrics
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Scaling of attribute values and weighting of attributes

Scaling:

• If a\ributes have differing value ranges, the a\ributes with smaller absolute 
distances will be effecHvely “ignored”

• E.g. one a)ribute is “income” (from 0 to 1000000€), another is age (from 0 to 125)

• So we must use proper scaling, e.g. to a range between 0 and 1

WeighHng: 

• K-NN will become confused by large numbers of (potenHally irrelevant) 
a\ributes

• Must remove a\ributes that are not relevant (or try an error-based method 
to select them automaHcally)

• General problem! (curse of dimensionality)
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Curse of Dimensionality

• As the number of dimensions grows, distances between points become more 
and more similar

• in particular, distances to nearest neighbor becomes similar to distance to 
most distant neighbor!

• Curse of dimensionality: nearest neighbor is easily mislead when high-
dimensional X
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Properties of kNN
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Parametric Modeling: Why not Linear 
Regression?
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Simple Classifica@on Example

• Given a dataset:

where the 𝑦 are categorical (sometimes referred to as qualitative), we would       
like to be able to predict which category 𝑦 takes on given 𝑥.    

• A categorical variable 𝑦 could be encoded to be quantitative.  For example, if 
𝑦 represents concentration of BZU undergrads, then 𝑦 could take on the 
values: 
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{(x1, y1), (x2, y2), · · · , (xN , yN )}

y =

8
<

:

1 if Computer Science (CS)
2 if Statistics
3 otherwise

.

Linear regression does not work well, or is not appropriate 
at all, in this setting.
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Simple Classification Example (cont.)

• A linear regression could be used to predict y from x. What would be wrong 
with such a model?  

• The model would imply a specific ordering of the outcome, and would treat a 
one-unit change in y equivalent.  The jump from y = 1 to y = 2 (CS to 
Statistics) should not be interpreted as the same as a jump from y = 2 to y = 3 
(Statistics to everyone else). 

• Similarly, the response variable could be reordered such that y = 1 represents 
Statistics and y = 2 represents CS, and then the model estimates and 
predictions would be fundamentally different.    

• If the categorical response variable was ordinal (had a natural ordering, like 
class year: Freshman, Sophomore, etc.), then a linear regression model 
would make some sense but is still not ideal.
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Even Simpler Classification Problem: Binary Response

• The simplest form of classificaHon is when the response variable 𝑦 has only 
two categories, and then an ordering of the categories is natural.  For our 
example, a paHent in the ICU could be categorized as having [atheroscleroHc] 
heart disease (AHD) or not (note, the 𝑦=0 category is a "catch-all" so it would 
involve those paHents with lots of other diseases or diagnoses):

• Linear regression could be used to predict 𝑦 directly from a set of covariates 
(like sex, age,  resHng HR, etc.), and if 𝑦 ̂≥0.5, we could predict the paHent to 
have AHD and predict not to have heart disease if 𝑦 ̂<0.5.
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Even Simpler Classification Problem: Binary Response (cont)

• What could go wrong with this linear regression model? 
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Even Simpler Classification Problem: Binary Response (cont)

• The main issue is you could get non-sensical values for 𝑦.  Since this is 
modeling 𝑃(𝑦=1) , values for 𝑦 ̂ below 0 and above 1 would be at odds with 
the natural measure for 𝑦. Linear regression can lead to this issue.
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Binary Response & Logis@c Regression
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Quiz
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𝑌 = 𝑓(𝑥)

Think of a function that would do this for us
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Logistic Regression

• LogisHc Regression addresses the problem of esHmaHng a probability, 
𝑃(𝑦=1), to be outside the range of [0,1]. 

• The logisHc regression model uses a funcHon, called the logis*c funcHon (or 
sigmoid funcHon), to model 𝑃(𝑦=1):
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P (Y = 1) =
e�0+�1X

1 + e�0+�1X
=

1

1 + e�(�0+�1X)
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Logis@c Regression Model
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Logistic Regression Model
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• Want
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Logistic Regression - Decision Boundary

Why Sigmoid?

• Might seem more "natural" than others

• AcHvaHon funcHon that transform linear inputs to nonlinear outputs.

• Bound output to between 0 and 1 so that it can be interpreted as a 
probability.

• Make computaHon easier than arbitrary acHvaHon funcHons. 

• differenHable
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Logis@c Regression - Decision Boundary

• Linear decision boundaries
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x1

x2

1 2 3

1

2

3

Predict “          “ if 
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Logistic Regression - Decision Boundary

• Non-linear decision boundaries
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x1

Predict “          “ if 

x2

1-1

-1

1
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FiPng logis@c regression models

• A number of optimization techniques are available for finding the maximizing 
parameters

• Gradient descent: Neural Networks

• Newton’s method – Fisher scoring: Features Selection.
31
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Fitting logistic regression models ML Estimator

• Let us assume that

• Note that this can be written more compactly as

• Assuming that the m training examples were generated independently, we 
can then write down the likelihood of the parameters as
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Fitting logistic regression models using gradient ascent

• As with Linear Regression, it will be easier to maximize the log likelihood:

• we can use gradient ascent. Written in vectorial notation, our updates will 
therefore be given by

where

• This therefore gives us the stochastic gradient ascent rule
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Gradient Descent for Logistic Regression
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Want                    :

Repeat

(simultaneously update all     )

Start from some random initial point and move in the ‘opposite gradient 
direction' in order to decrease the cost function. We move step by step 
until there is no decrease in the cost function.
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Gradient descent algorithm
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q1
q0

J(q0,q1)
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Local Minima

• Gradient descent is a local search method for minimizing a function. 

• This makes gradient descent prone to getting stuck in local minima, rather 
than reaching the global minimum. 

• If the function is convex, then it has only a single minimum.
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Multiclass Classification using Logistic Regression

• one-vs-all (one-vs-rest):

• Train one classifier Fm for each class m

• All examples with label m are posiIve examples.

• All other examples are negaIve examples

• Classify by finding maximal response

• all-vs-all

• Train a classifier for each pair of classes

• Classify by voIng
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Mul@class Classifica@on using Logis@c Regression
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Multiclass Classification using Softmax Regression

• Softmax regression is a generalization of logistic regression for multiclass 
classification problems.

• For example, rather than classifying email into the two classes, we might 
want to classify it into three classes, such as spam, personal mail, and work-
related mail.

• Data x ∈ ℝd

• Labels y ∈ {1, 2, …, k}

• Model parametrized by w1, w2, …., wk ∈ ℝd

• 𝑃 𝑦 = 𝑗 𝑥) = !!𝒙, 𝒘𝒋&

∑'()
* !!𝒙, 𝒘𝒊&

• Prediction: given a point x, predict label argmaxj 𝑃 𝑦 = 𝑗 𝑥)
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Application: Sentiment Analysis

• Problem: Given a sentence predict if the senHment is posiHve or negaHve.

• Also known as opinion mining or emoHon AI.

• Data set:

• Sentences from reviews on Amazon, Yelp, IMDB.

• Each labeled as posiIve or negaIve.

• 2500 training sentences, 500 test sentences
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Sen@ment Analysis

Examples:

• Needless to say, I wasted my money.

• He was very impressed when going from the original battery to the extended 
battery.

• Decent volume.

• Will order from them again!
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Handling text data

• How do we use sentences as features?

• One Solution: Bag-of-words: vectorial representation of text sentences.
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Bag-of-words

• Fix V = Some vocabulary

• Treat each sentence (or document) as a vector of length |V|:

where xi = # of times the i-th word appears in the sentence

• Then we normalize each vector by the sum of xi
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A logistic regression approach

• Code positive as class 1 and negative as class 0.

• 𝑃 𝑦 = 1 𝑥) = #
#$ !,!-,𝒘&

• Given training data, minimize the loss/cost
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Interpreting the model
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Classifica@on Evalua@on Metrics

Classification metrics

• For classification, we usually represent the predictions by a confusion matrix, 
from which we derive all metrics.

• Confusion Matrix
• C by C matrix (C is the number of classes).

• Rows correspond to true classes, columns to predicted classes.

• Count how often samples belonging to class c are classified as c or any other class.

• For binary classification, we label these true negative (TN), true positive (TP), false 
negative (FN), false positive (FP).
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Classification Evaluation Metrics
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Classification Evaluation Metrics

Remarks

• Accuracy is not the best measure when the classes are highly skewed, i.e., 
number of samples of one class is significantly higher than the number of 
samples of other class.

• Precision is used when  the goal is to limit FPs. E.g. clinical trials (you only 
want to test drugs that really work), search engine (you want to avoid bad 
search results).

• Recall is used when the goal is to limit FNs. E.g. cancer diagnosis (you don’t 
want to miss a serious disease), search engine (you don’t want to miss 
important hits). 

48
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Precision vs. Recall
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F1-score

• Trade off precision and recall 
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Receiver operating characteristics (ROC)
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• Trade off true positive rate with false 
positive rate

• Plotting TPR against FPR for all 
possible thresholds yields a Receiver 
Operating Characteristics curve.
• Change the thresholds until you find 

a sweet spot in the TPR-FPR trade-off.

• Lower thresholds yield higher TPR 
(recall), higher FPR, and vice versa.

• The area under the ROC curve gives 
the best overall model.
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Receiver opera@ng characteris@cs (ROC)
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Receiver opera@ng characteris@cs (ROC)
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How to Construct an ROC curve

• Use classifier that produces posterior probability for each test 
instance P(+|A)

• Sort the instances according to P(+|A) in decreasing order

• Apply threshold at each unique value of P(+|A)

• Count the number of TP, FP, TN, FN at each threshold

• TP rate, TPR = TP/(TP+FN)

• FP rate, FPR = FP/(FP + TN)
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How to Construct an ROC curve

55
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



ROC Curve Interpretation

• Test A and B have nearly equal area but cross each other. Test A performs 
be\er than test B where high sensiHvity is required, and test B performed 
be\er than A when high specificity is needed.
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