Chapter 5: Demand Estimation

🔲 1. Interview and Experimental Methods

Consumer Interview Method

- Useful when market data is scarce.
- · Example: Comparing awareness of price differences across brands can reveal price sensitivity.
- Beware: Consumer opinion ≠ actual behavior.

Experimental Method

- · Controlled experiments vary factors like price or packaging in similar markets.
- Example: BP testing fuel price changes in London vs Paris.
- · Can analyze effects of demographics (income, education, etc.).
- <u>A</u> Limitations:
 - Expensive, low confidence, uncontrolled external variables (e.g., strikes or snowstorms).
 - · May not be generalizable.
 - Lost customers during price changes might not return.

2. Simple Demand Curve Estimation

Linear Demand Function Example

Manchester United Ticket Pricing

- Price dropped: £200 → £180
- Sales rose: 32,000 → 40,000

Inverse demand equation:

$$P = a + bQ$$

$$b = \Delta P/\Delta Q = (180 - 200)/(40000 - 32000) = -0.0025$$

Solve for *a*:

$$a = 280$$

Demand Function:

$$P = 280 - 0.0025Q$$

$$Q = 112,000 - 400P$$

Total Revenue (TR):

$$TR = PQ = (280 - 0.0025Q)Q = 280Q - 0.0025Q^2$$

Marginal Revenue (MR):

$$MR = d(TR)/dQ = 280 - 0.005Q$$

Set MR = 0:

$$Q = 56,000$$
, $P = 140$, $TR = £7,840,000$

© Conclusion: Optimal revenue when price = £140 and Q = 56,000. Fixed cost \rightarrow profit maximization too.

3. Market Demand Curve Estimation

- Market demand = sum of individual demand quantities.
 - Add quantities, not prices.
- Example (Bayer AG):

Domestic:

$$P_D = 100 - 0.001Q_D \rightarrow Q_D = 100,000 - 1000P$$

Foreign:

$$P_F = 80 - 0.004Q_F \rightarrow Q_F = 20,000 - 250P$$

Total:

$$Q_T = Q_D + Q_F = 120,000 - 1250P$$

 $\rightarrow P = 96 - 0.0008Q_T$

Profit Maximization

Given:

$$TC = \mathbf{1}, 200, 000 + \mathbf{1}$$

$$MR = 96 - 0.0016Q$$
, $MC = 24$

Set MR = MC:

$$Q = 45,000, P = \text{€}60, \text{Profit} = \text{€}420,000$$

4. Identification Problem

- Difficulty arises due to simultaneous changes in supply/demand.
- A shift in either can distort the true demand curve.
- ? Can AB line represent demand curve?
 - · No, if non-price factors are changing at each point.
- **6** Key Issue: Can't determine if movements are along the curve or between equilibria.

5. Regression Analysis

Deterministic vs. Statistical

- Deterministic: known by definition (e.g., TR = P×Q)
- Statistical: estimated from data (e.g., demand regression)

Regression Model Specification

Basic form:

$$Y_t = b_0 + b_x X_t + u_t$$

- ullet Residual u_t : deviation from actual value.
- ullet Goal: minimize $\sum u_t^2$

Regression Assumptions:

- Normal errors
- Mean error = 0
- Constant variance (homoscedasticity)
- No autocorrelation

6. Non-Linear Demand Functions

Multiplicative Model

$$Q = b_0 P^{b_1} A^{b_2} I^{b_3}$$

In log form:

$$\log Q = \log b_0 + b_1 \log P + b_2 \log A + b_3 \log I$$

Where:

- b₁: price elasticity
- ullet b_2 : advertising elasticity
- b_3 : income elasticity

7. Model Evaluation Metrics

Standard Error of Estimate (SEE):

Measures scatter around regression line.

Goodness of Fit

- Correlation coefficient (r): strength of relationship
- R²: % of variance in Y explained by X
- Adjusted R²: corrects R² for sample size

F-statistic:

Tests overall model significance

t-statistic:

· Tests individual variable significance:

$$t = \frac{\text{Estimated Coefficient}}{\text{Standard Error}}$$

- If t > 2: 95% confidence
- If t > 3: 99% confidence

📕 8. Problems in Regression

Multicollinearity

- Explanatory variables are highly correlated.
- Effects:
 - High SE, low t-values
 - · Unreliable significance

Fixes:

- 1. Increase sample
- 2. Drop a variable
- 3. Use prior info
- 4. Transform function

Heteroscedasticity

- Error variance changes with X.
- Common in cross-sectional data.

Fixes:

- Use logs
- Weighted least squares

Autocorrelation

• Consecutive errors correlated (mostly in time-series data)

Durbin-Watson Test:

- ullet d=2 ightarrow No autocorrelation
- ullet d < 2 o Positive autocorrelation
- d>2 \rightarrow Negative (rare)

Final Summary

Metric	Meaning
R^2	Fit of model
F-Test	Overall model significance
t-Test	Variable significance
P-Value	Accuracy of each coefficient