HW 5 Solutions

Manoj Mardithaya

Question 1: Processor Performance

The critical path latencies for the 7 major blocks in a simple processor are given below.

STUDENTS-HUB.com

IMem | Add | Mux | ALU | Regs | DMem | Control

a | 400ps | 100ps | 30ps | 120ps | 200ps | 350ps 100ps

b | 500ps | 150ps | 100ps | 180ps | 220ps | 1000ps 65ps

For each part, answer the following questions:

1. What is the critical path for a MIPS ADD instruction? Explain your break-up.

Using the diagram in the book, three of the many possible paths through the circuit
are:

Add 4+ Add + Mux Imem -+ Control + Mux + ALU 4+ DMem + Mux Imem + Mux
+ Reg + Mux + ALU + DMem + Mux

The longest of these (and the other shorter combinations that I didn’t list) is the critical
path. Note that the instruction type doesn’t affect the critical path — the critical path
through the circuit is the same because it determines how quickly you can do the next
operation — even if an instruction finishes meaningful work ’early’, it still has to go
through the rest of the circuit so your timing and signals stay in sync.

For both a. and b., the longest is the third path:
400 + 30 4 200 + 30 + 120 4 350 4 30 = 1160

500 + 100 + 220 + 100 + 180 + 1000 + 100 = 2200

. If the number of registers is doubled, this increases Regs by 100ps and Control by

20ps. This results in 10% fewer instructions due to fewer load/stores. What is the new
critical path for a MIPS ADD instruction?

Again, the 10% fewer instructions doesn’t affect the critical path. (it would affect
program runtime, because of fewer instructions.). The changes don’t change the critical
path, they only increase the length of it to 1260psand2300ps respectively.

https://students-hub.com

Question 2: Pipelining

The 5 stages of the processor have the following latencies:

Fetch | Decode | Execute | Memory | Writeback

a. | 300ps 400ps 350ps 500ps 100ps

b. | 200ps | 150ps | 120ps | 190ps 140ps

Assume that when pipelining, each pipeline stage costs 20ps extra for the registers be-

tween pipeline stages.

STUDENTS-HUB.com

1. Non-pipelined processor: what is the cycle time? What is the latency of an instruction?

What is the throughput?

Cycle-time: there is no pipelining, so the cycle-time has to allow an instruction to go
through all the stages each cycle. Therefore:

a. CT = 1650ps
b. CT = 800ps

The latency for an instruction is also the same, since each instruction takes 1 cycle to
go from beginning fetch to the end of writeback. The throughput similarly is Cyde—lnme
instructions per second.

. Pipelined processor: What is the cycle time? What is the latency of an instruction?

What is the throughput?

Pipelining to 5 stages reduces the cycle time to the length of the longest stage. Ad-
ditionally, the cycle time needs to be slightly longer to accomodate the register at the
end of the stage.

a. CT = 520ps
b. CT = 220ps

The latency for both is 5 * (cycle time), since an instruction needs to go through 5
pipeline stages, spending 1 cycle in each, before it commits.

The throughput for both is still 1 instruction/cycle. Throughput increases because the
cycle time reduces.

. If you could split one of the pipeline stages into 2 equal halves, which one would you

choose? What is the new cycle time? What is the new latency? What is the new
throughput?

Splitting the longest stage is the only way to reduce the cycle time. After splitting it,
the new cycle time is based on the new longest stage.

a. Old longest stage is Memory. New CT = 420ps
b. Old longest stage is Fetch. New CT = 210ps

The new latency is 6% (cycle time), since an instruction needs to go through 6 pipeline
stages now.

https://students-hub.com

The throughput for both is still 1 instruction/cycle. Throughput increases because the
cycle time reduces.

Assume the distribution of instructions that run on the processor is:

e 50% ALU
e 25%: BEQ
e 15%: LW
e 10%: SW

Assuming there are no stalls or hazards, what is the utilization of the data memory?
What is the utilization of the register block’s write port? (Utilization in percentage of
clock cycles used)

Data memory is utilized only by LW and SW instructions in the MIPS ISA. So the
utilization is 25% of the clock cycles.

The write port may be utilized by ALU and LW instructions. The utilization is 65%
of the clock cycles.

Calculating utilization in terms of % time though gives different results, because unless
the corresponding stage (data memory or writeback) is the stage dictating cycle time,
the circuit is idle for some period of the clock cycle in all cycles.

Question 3: Stalling

Sequence of instructions:

STUDENTS-HUB.com

1.

Y O W N

1.

1w $s2, 0($s1)

lw $s1, 40($s6)
sub $s6, $s1, $s2
add $s6, $s2, $s2
or $s3, $s6, $zero
sw $s6, 50($s1)

Data dependencies: A data dependence is a dependence of one instruction B on another
instruction A because the value produced by A is read by B. So when listing data
dependencies, you need to mention A, B, and the location (in this case, the register
that causes the dependence). It also doesn’t matter how far apart dependencies are.
Don’t confuse data dependencies and hazards!

Dependencies:

3 depends on 1 ($s2)
3 depends on 2 ($s1)
4 depends on 1 ($s2)
5 depends on 4 ($s6)

https://students-hub.com

6 depends on 2 ($s1)
6 depends on 4 ($s6)

. Assume the 5-stage MIPS pipeline with no forwarding, and each stage takes 1 cycle.

Instead of inserting nops, you let the processor stall on hazards. How many times does
the processor stall? How long is each stall (in cycles)? What is the execution time (in
cycles) for the whole program?

Ignoring the stalls for a moment, the program takes 10 cycles to execute — not 6, because
the first 4 cycles, it does not commit (finish) an instruction — those 4 cycles, the pipeline
is still filling up. It is also not 30, because when the first instruction commits, the 2nd
instruction is nearly done, and will commit in the next cycle. Remember, pipelines
allow multiple instructions to be executing at the same time.

With the stalls, there are only two stalls — after the 2nd load, and after the add — both
are because the next instruction needs the value being produced. Without forwarding,
this means the next instruction is going to be stuck in the fetch stage until the previous
instruction writes back. These are 2 cycle stalls (when in doubt, draw diagrams like
the ones on the Implementing MIPS slides, slide 63). So to answer the question, 2
stalls, 2 cycles each, and the total is 10 4+ 2 * 2 = 14 cycles to execute the program.

. Assume the 5-stage MIPS pipeline with full forwarding. Write the program with nops

to eliminate the hazards. (Hint: time travel is not possible!)

Again, draw a diagram — in the second stall, the result of the add is available at the
register at the end of the execute stage when the next instruction wants to move to
the execute stage, so you can forward the value of $s6 as the input to the execution
stage (as the argument for the or) — this removes the second 2-cycle stall. However,
the loaded value is not ready until the end of the memory stage, so you cannot using
forwarding to remove both cycles — you still need to wait 1 cycle. The solution is to
place a NOP after the second load. (Note: this is also the reason why MIPS has load
delay slots).

Speaking of delay slots, the question was ambiguous in whether delay slots were used or

not. If they are, all the answers are slightly different:

Part 1: You have one fewer dependence - 3 does not depend on 2, because it is in the

delay slot.

Part 2: The first stall is only 1 cycle, so the program executes in 13 cycles.
Part 3: You do not require any nops, because of the delay slot.

Question 4: More Pipelines

You are given a non-pipelined processor design which has a cycle time of 10ns and average
CPI of 1.4. Calculate the latency speedup in the following questions.

The solutions given assume the base CPI = 1./ throughput. Since the question is am-

biguous, you could assume pipelining changes the CPI to 1. The method for computing the
answers still apply.

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

. What is the best speedup you can get by pipelining it into 5 stages?

Since IC and CPI don’t change, and, in the best case, pipelining will reduce CT to 2ns:

CTold - 10ns

= d
oT.. T 5x Speedup

Speedup =

. If the 5 stages are 1ns, 1.5ns, 4ns, 3ns, and 0.5ns, what is the best speedup you can

get compared to the original processor?

The cycle time is limited by the slowest stage, so CT = 4 ns.

CTold . 10ns

T Tns = 2.5x Speedup

Speedup =

. If each pipeline stage added also adds 20ps due to register setup delay, what is the best

speedup you can get compared to the original processor?

Adding register delay to the cycle time because of pipeline registers, you get CT =
4.02 ns.

CTold . 10ns
CThew 4.02ns

Speedup = = 2.49x Speedup

. The pipeline from Q4.3 stalls 20% of the time for 1 cycle and 5% of the time for 2

cycles (these occurences are disjoint). What is the new CPI? What is the speedup
compared to the original processor?

20% of the time: CPI =14+1=2.4

5% of the time: CPI =14+2=3.4

75% of the time: CPI =14

New average CPI: 2.4 % 0.2 4+ 3.4%0.054+1.4%0.75 = 1.7

CTold * ijold . 10x1.4
CThew * CPlyew 4.02% 1.7

Speedup = = 2.049x Speedup

https://students-hub.com

