Cursor Implementation of Linked Lists
from Data Structures and Algorithm Analysis in C, 2" ed. by Mark Weiss

Many languages, such as BASTC and FORTRAN, do not support pointers. If linked lists are required and
pointers are not available, then an alternate implementation must be used. The alternate method we will
describe is known as a cursor implementation.

The two important items present in a pointer implementation of linked lists are

1. The data is stored in a collection of structures. Each structure contains the data and a pointer to the
next structure.

2. A new structure can be obtained from the system's global memory by a call to malloc and released
by a call to free.

Our cursor implementation must be able to simulate this. The logical way to satisfy condition 1 is to have
a global array of structures. For any cell in the array, its array index can be used in place of an address.
Figure 1 gives the type declarations for a cursor implementation of linked lists.

We must now simulate condition 2 by allowing the equivalent of malloc and free for cells in the
CURSOR_SPACE array. To do this, we will keep a list (the freelist) of cells that are not in any list. The
list will use cell 0 as a header. The initial configuration is shown in Figure 2.

A value of 0 for next is the equivalent of a pointer. The initialization of CURSOR_SPACE is a
straightforward loop, which we leave as an exercise. To perform an malloc, the first element (after the
header) is removed from the freelist.

typedef unsigned int node ptr;

struct node

{
element type element;
node ptr next;

i

typedef node ptr LIST;

typedef node ptr position; Slot | Element Next
struct node CURSOR SPACE[SPACE SIZE]; 0 ? 1
1 ? 2
Figure 1 Declarations for cursor implementation of linked lists 2 ? 3
3 ? 4
4 ? 5
Figure 2 An initialized CURSOR_SPACE > ? 6
6 ? 7
To perform a free, we place the cell at the front of the freelist. Figure 3 shows 7 ? 8
the cursor implementation of malloc and free. Notice that if there is no space 8 ? 9
available, our routine does the correct thing by setting p = 0. This indicates that 9 ? 10
there are no more cells left, and also makes the second line of cursor_new a 10 ? 0

nonoperation (no-op).

STUDENTS-HUB.com Uploaded By: anonymous

Given this, the cursor implementation of linked lists is straightforward. For consistency, we will implement
our lists with a header node.

position cursor alloc(wvoid) {
position p;
p = CURSOR SPACE[O] .next;

CURSOR_SPACE[0] .next = CURSOR SPACE[p].next;

return p;

}

void cursor free(position p) {
CURSOR_SPACE [p] .next = CURSOR SPACE[OQO] .next;
CURSOR_SPACE [O] .next = p;

}

Figure 3 Routines: cursor-alloc and cursor-free

As an example, in Figure 4, if the value of L is 5 and the value of M is 3, then L represents the list a, b, e,
and M represents the list c, d, f.

Slot Element | Next
0 - 6
1 b 9
2 f 0
3 header |7
4 - 0
5 header | 10
6 - 4
7 o 8
8 d 2
9 e 0
10 a 1

Figure 4 Example of a cursor implementation of linked lists

To write the functions for a cursor implementation of linked lists, we must pass and return the identical
parameters as the pointer implementation. The routines are straightforward. Figure 5 implements a
function to test whether a list is empty. Figure 6 implements the test of whether the current position is the
last in a linked list.

The function find in Figure 7 returns the position of x in list L.

The code to implement deletion is shown in Figure 8. Again, the interface for the cursor implementation is
identical to the pointer implementation. Finally, Figure 9 shows a cursor implementation of insert.

The rest of the routines are similarly coded. The crucial point is that these routines follow the ADT
specification. They take specific arguments and perform specific operations. The implementation is

STUDENTS-HUB.com Uploaded By: anonymous

transparent to the user. The cursor implementation could be used instead of the linked list implementation,
with virtually no change required in the rest of the code.

int is empty(LIST L){ /* using a header node */
return (CURSOR_SPACE[L].next ==
}

Figure 5 Function to test whether a linked list is empty--cursor implementation

int is last(position p, LIST L){ /* using a header node */

return (CURSOR_SPACE [p].next ==
}

Figure 6 Function to test whether p is last in a linked list--cursor implementation

position find(element type x, LIST L) /* using a header node */
{

position p;
/*1%/ p = CURSOR_SPACE[L] .next;
/*2*/ while(p && CURSOR_SPACE([p].element != x)

/*3%/ p = CURSOR SPACE[p].next;
/*4*/ return p;

}
Figure 7 Find routine--cursor implementation

void delete(element type x, LIST L)
{
position p, tmp cell;
p = find previous(x, L);
if(!is_last(p, L))
{
tmp cell = CURSOR SPACE([p].next;

CURSOR_SPACE [p] .next = CURSOR SPACE[tmp cell].next;
cursor free(tmp cell);
}
}

Figure 8 Deletion routine for linked lists--cursor implementation

void insert(element type x, LIST L, position p)
{

position tmp cell;
/*1%/ tmp cell = cursor alloc()

/*2%/ if(tmp cell ==0)
/*3%/ fatal error ("Out of space!!!");
else
{
/*4*/ CURSOR _SPACE[tmp cell].element = x;
/*5%/ CURSOR _SPACE [tmp cell].next = CURSOR SPACE([p].next;
/*6%*/ CURSOR_SPACE[p] .next = tmp cell;

}
}

Figure 9 Insertion routine for linked lists--cursor implementation

The freelist represents an interesting data structure in its own right. The cell that is removed from the
freelist is the one that was most recently placed there by virtue of free. Thus, the last cell placed on the
freelist is the first cell taken off. The data structure that also has this property is known as a stack.

STUDENTS-HUB.com Uploaded By: anonymous

