
ENCS3340 - Artificial Intelligence

Adversarial Search & Games

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Game Playing and AI

• Why would game playing be a good problem for AI research?

• Game-playing is non-trivial
• Need to display “human-like” intelligence
• Some games (such as chess) are very complex
• Requires decision-making within a time-limit

• Games are played in a controlled environment
• Can do experiments, repeat games, etc
• Good for evaluating research systems

• Can compare humans and computers directly
• Can evaluate percentage of wins/losses to quantify performance

• All the information is available
• Human and computer have equal information

1
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

How Does a Computer Play a Game?

• A way to play a game is to:
• Consider all the legal moves you can make
• Compute the new position resulting from each move
• Evaluate each resulting position and determine which is best
• Make that move
• Wait for your opponent to move and repeat

• Key problems are:
• Representing the “board”
• Generating all next legal boards
• Evaluating a position

2
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Game Playing: Adversarial Search

• Adversarial: involving two people or two sides who oppose each other

• Different kinds of games:

• Games with perfect information. No randomness is involved.

• Games with imperfect information. Random factors are part of the game.

3

Deterministic Chance

Perfect
Information

Chess, Checkers
Go, Othello

Backgammon,
Monopoly

Imperfect
Information

Battleship Bridge, Poker, Scrabble,

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Games as Adversarial Search

• many games can be formulated as search problems

• Zero sum: my win is your loss, my loss is your win!

• the zero-sum utility function leads to an adversarial situation
• in order for one agent to win, the other necessarily has to lose

• factors complicating the search task
• potentially huge search spaces
• elements of chance
• multi-person games, teams
• time limits
• imprecise rules

4
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Difficulties with Games

• games can be very hard search problems
• yet reasonably easy to formalize

• finding the optimal solution may be impractical
• a solution that beats the opponent is “good enough”

• unforgiving
• a solution that is “not good enough” not only leads to higher costs, but to a loss to

the opponent

• example: chess
• size of the search space

• branching factor around 35
• about 50 moves per player
• about 35100 or 10154 nodes
• about 1040 distinct nodes (size of the search graph)

5
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Single-Person Game

• conventional search problem

• identify a sequence of moves that leads to a winning state

• examples: Solitaire, dragons and dungeons, Rubik’s cube

• little attention in AI

• some games can be quite challenging

• some versions of solitaire

• a heuristic for Rubik’s cube was found by the Absolver program

6
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Searching in a two player game

• Traditional (single agent) search methods only consider how close the agent
is to the goal state (e.g. best first search).

• In two player games, decisions of both agents have to be taken into account:
a decision made by one agent will affect the resulting search space that the
other agent would need to explore.

• Question: Do we have randomness here since the decision made by the
opponent is NOT known in advance?

• No. Not if all the moves or choices that the opponent can make are finite and
can be known in advance.

7
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Searching in a two player game: Strategies

• Your Strategy for a move: you use the best strategy you can think of:
depends on how “smart” you are

• What about opponent strategy?
• We don’t know exactly: could be a NOVICE, could be a MASTER

• Which is safer:
• To assume that the opponent is a novice and may make dumb moves?
• To assume that the opponent is very smart?

• Which is safer in a war:
• To assume your opponent is weak
• To assume your opponent is very strong?

• We assume that the opponent is as smart as possible, or as smart as we can
think

• The opponent uses my own strategy for search (but in reverse):
• If I try to maximize MY future choices in XO he tries to minimize MY chances.
• I am MAX, he is MIN

8
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Two Player Games: Evaluation Functions

• What an evaluation function could be: an assessment of my chances to win:

• Chess: # of my figures – # of opponent figures (maybe weighted)

• Tic_tac_Toe: number of open chances for me – number of opponent’s chances

• General: Something that is good for me when higher and good for opponent
when lower; recall: I am MAX and he is MIN and we have ONLY ONE Evaluation
Function!

• Evaluation function is supposed to give an impression of how close MAX is to
the goal: the higher the closer:

9
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Two Player Games: Evaluation Functions

• The deeper you go: the more steps you imagine searching, the more accurate
your evaluation function gets (getting closer to goal).

• So it is good to do the computation (of evaluation function) at the deepest
possible level and then see how to act now to reach there: but that is costly
and time consuming

• We need a compromise! Look ahead at a limited depth!: modest
computation, modest knowledge about position:

10
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Searching in a two player game

• To formalize a two player game as a search problem an agent can be called MAX
and the opponent can be called MIN.

• Problem Formulation:
• Initial state: board configurations and the player to move.

• Successor function: list of pairs (move, state) specifying legal moves and their
resulting states. (moves + initial state = game tree)

• A terminal test: decide if the game has finished.

• A utility function: produces a numerical value for (only) the terminal states. Example:
In chess, outcome = win/loss/draw, with values +1, -1, 0 respectively.
If you stop at non-terminal states, use an evaluation function to indicate the chances

 of winning

• Players need search tree to determine next move.

11
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Partial game tree for Tic-Tac-Toe

12

• Root node represents the current board
configuration; player must decide
the best single move to make next

• Each level of search nodes in the tree corresponds
to all possible board configurations for a particular
player MAX or MIN.

• If it is my turn to move, then the root is labeled a
"MAX" node; otherwise it is labeled a "MIN"
node, indicating opponent's turn.

• Utility values found at the end can be returned
back to their parent nodes.

• Idea: MAX chooses the board with the max utility
value, MIN the minimum.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MiniMax (MinMax, MM) Algorithm

• An algorithm to search trees representing two-player zero-sum (my gain your
loss) games.

• Goal: minimizing the possible loss for a worst case (maximum loss) scenario.

• Or maximize the minimum gain. Guaranteed; no matter what; how opponent
plays; worst case scenario; gain can be MORE, never less

• Result: one move (one level down) then the process starts again.

• For this one move you may explore as many nodes as you have time for!

• MIN works in opposite direction to MAX

• Then work is repeated

13
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MiniMax Algorithm

• Create start node as a MAX node with current board configuration

• Expand nodes down to some depth of lookahead in the game

• Apply the evaluation function at each of the leaf nodes

• “Back up” values for each of the non-leaf nodes until a value is computed for
the root node

• At MIN nodes, the backed-up value is the minimum of the values associated with its
children

• At MAX nodes, the backed-up value is the maximum of the values associated with its
children

• Pick the operator associated with the child node whose backed-up value
determined the value at the root

14
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MiniMax Example

15

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

terminal nodes: values calculated from the utility function

Min

Min

Min

Max

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MiniMax Example

16

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

other nodes: values calculated via minimax algorithm

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MiniMax Example

17

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4
Max

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MiniMax Example

18

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MiniMax Example

19

Max

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5
3 4

5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MiniMax Example

20

Max

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5

moves by Max and countermoves by Min

Question: can I gain less than 5 if I take a move?
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MiniMax Exercise

21
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MiniMax Exercise Solution

22

3 9 0 7 2 6

3 0 2

3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Evaluation Function

• Complete search until reaching terminal states is impractical for most games

• Alternative: search the tree only to a certain depth

• Requires a cutoff-test to determine where to stop (e.g. # of levels)
• Replaces the terminal test
• The nodes at that level effectively become terminal leaf nodes

• Uses a heuristics-based evaluation function to estimate the expected utility of
the game from those leaf nodes (a measure of closeness to the goal)
• Must be consistent with the utility function. (values for terminal nodes, or at least

their order, must be the same)
• Tradeoff between accuracy and time cost
• Frequently weighted linear functions are used

• E = w1f1 + w2f2 + … + wnfn
• Combination of features, weighted by their relevance

23
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example: Tic-Tac-Toe

• simple evaluation function

 E(s) = (rx + cx + dx) - (ro + co + do)

 (number of rows, columns, and diagonals open for MAX) - (number of
rows, columns, and diagonals open for MIN)

• 1-ply lookahead
• start at the top of the tree
• evaluate all 9 choices for player 1
• pick the maximum E-value

• 2-ply lookahead
• also looks at the opponents possible move
• assuming that the opponents picks the minimum E-value

24
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Tic-Tac-Toe 1-Ply

25

E(s12)
 8

- 6
= 2

E(s13)
 8

- 5
= 3

E(s14)
 8

- 6
= 2

E(s15)
 8

- 4
= 4

E(s16)
 8

- 6
= 2

E(s17)
 8

- 5
= 3

E(s18)
 8

- 6
= 2

E(s19)
 8

- 5
= 3

X X X
X X X

X X X

E(s11)
 8

- 5
= 3

E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Tic-Tac-Toe 2-Ply

26

E(s2:16)
 5

- 6
= -1

E(s2:15)
 5
-6

= -1

E(s28)
 5

- 5
= 0

E(s27)
 6

- 5
= 1

E(s2:48)
 5

- 4
= 1

E(s2:47)
 6

- 4
= 2

E(s2:13)
 5

- 6
= -1

E(s2:9)
 5

- 6
= -1

E(s2:10)
 5
-6

= -1

E(s2:11)
 5

- 6
= -1

E(s2:12)
 5

- 6
= -1

E(s2:14)
 5

- 6
= -1

E(s25)
 6

- 5
= 1

E(s21)
 6

- 5
= 1

E(s22)
 5

- 5
= 0

E(s23)
 6

- 5
= 1

E(s24)
4

- 5
= -1

E(s26)
 5

- 5
= 0

E(s1:6)
 8

- 6
= 2

E(s1:7)
 8

- 5
= 3

E(s1:8)
 8

- 6
= 2

E(s1:9)
 8

- 5
= 3

E(s1:5)
 8

- 4
= 4

E(s1:3)
 8

- 5
= 3

E(s1:2)
 8

- 6
= 2

E(s1:1)
 8

- 5
= 3

E(s2:45)
 6

- 4
= 2

X X X
X X X

X X X

E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

E(s1:4)
 8

- 6
= 2

X O X
O

X
O

E(s2:41)
 5

- 4
= 1

E(s2:42)
 6

- 4
= 2

E(s2:43)
 5

- 4
= 1

E(s2:44)
 6

- 4
= 2

E(s2:46)
 5

- 4
= 1

O X
O

X
O
X

O
X X

O

X
O

X

O

X

O

XX
O

X OO X X

O

X
O

X

O

X

O

X
O

X
O

X OX O X

O

O

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MiniMax Properties

Assume lookahead to depth d

• Space complexity

• Depth-first search, so O(bd)

• Time complexity

• Given branching factor b, so O(bd)

• Time complexity is a major problem!

• Computer typically only has a finite amount of time to make a move.

27
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Pruning

• Discard parts of the search tree
• Guaranteed not to contain good moves
• Guarantee that the solution is not in that branch or sub-tree (if both players make optimal

decisions, they will never end up in that part of the tree)

• Use pruning to ignore those branches

• Certain moves are not considered
• Won’t result in a better evaluation value than a move further up in the tree
• They would lead to a less desirable outcome

• Applies to moves by both players
• 𝛼 (alpha) indicates the best choice for MAX so far, never decreases (initialize to -infinity)
• 𝛽 (beta) indicates the best choice for MIN so far, never increases (initialize to +infinity

28
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Pruning

29
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

α-β Pruning Example

30
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

α-β Pruning Example

31
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

α-β Pruning Example

32
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

α-β Pruning Example

33
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

α-β Pruning Example

34
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

α-β Pruning Example

35
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Pruning

Rules of Thumb

• α is the best (highest) found so far along the path for Max

• β is the best (lowest) found so far along the path for Min

• Search below a MIN node may be alpha-pruned if its β ≤ α of some MAX
ancestor

• Search below a MAX node may be beta-pruned if its α ≥ β of some MIN
ancestor

36
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

α -β Search Algorithm

37

1. If terminal state, compute e(n) and return the result.
2. Otherwise, if the level is a minimizing level,

• Until no more children or
- search on a child

- If
• Return min

3. Otherwise, the level is a maximizing level:
• Until no more children or

– search on a child.
– If

• Return

b a£

()iumax

,a b³

, set i iu a a u> ¬

iu a b¬ -

()iu

iu a b¬ -

, .i iu b b u< ¬

pruning

pruning

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Consider this Example

38

Max

Min

7 6 5 6

5

3 51 7 4

5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Example

39

Max

Min[-∞, +∞]

5

• we assume a depth-first, left-to-right search as basic strategy
• the range of the possible values for each node are indicated

• initially [-∞, +∞]
• from Max’s or Min’s perspective
• these local values reflect the values of the sub-trees in that node;

the global values α and β are the best overall choices so far for Max or Min

[-∞, +∞]

α best choice for Max ?
β best choice for Min ?

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Example

40

Max

Min

7

[-∞, 7]

5

• Min obtains the first value from a successor node

[-∞, +∞]

α best choice for Max ?
β best choice for Min 7

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Example

41

Max

Min

7 6

[-∞, 6]

5

• Min obtains the second value from a successor node

[-∞, +∞]

α best choice for Max ?
β best choice for Min 6

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Example

42

Max

Min

7 6 5

5

5[5, +∞]

α best choice for Max 5
β best choice for Min 5

• Min obtains the third value from a successor node
• this is the last value from this sub-tree, and the exact value is known
• Max now has a value for its first successor node, but hopes that something

better might still come

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Example

43

Max

Min

7 6 5

5

5

• Min continues with the next sub-tree, and gets a better value
• Max has a better choice from its perspective, however, and will not consider

a move in the sub-tree currently explored by Min
• initially [-∞, +∞]

3

[5, +∞]

α best choice for Max 5
β best choice for Min 3

[-∞, 3]

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Example

44

Max

Min

7 6 5

5

5

• Min knows that Max won’t consider a move to this sub-tree, and abandons
it

• this is a case of pruning, indicated by

3

[5, +∞]

α best choice for Max 5
β best choice for Min 3

[-∞, 3]

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Example

45

Max

Min

7 6 5 6

5

• Min explores the next sub-tree, and finds a value that is worse than the
other nodes at this level

• if Min is not able to find something lower, then Max will choose this branch,
so Min must explore more successor nodes

3

α best choice for Max 5
β best choice for Min 3

5

[5, +∞]

[-∞, 3] [-∞, 6]

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Example

46

Max

Min

7 6 5 6

5

• Min is lucky, and finds a value that is the same as the current worst value at
this level

• Max can choose this branch, or the other branch with the same value

3

α best choice for Max 5
β best choice for Min 3

5

[5, +∞]

[-∞, 3] [-∞, 5]

5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Example

47

Max

Min

7 6 5 6

5

• Min could continue searching this sub-tree to see if there is a value that is
less than the current worst alternative in order to give Max as few choices
as possible
• this depends on the specific implementation

• Max knows the best value for its sub-tree

3

α best choice for Max 5
β best choice for Min 3

5

5

[-∞, 3] [-∞, 5]

5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Example Overview

48

Max

Min

7 6 5 6 5 4

5 <=5

5

• some branches can be pruned because they would never be considered
• after looking at one branch, Max already knows that they will not be of interest since Min

would choose a value that is less than what Max already has at its disposal

3 6 4

<= 3

5

α best choice for Max 5
β best choice for Min 7 -> 6 -> 5 -> 3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Properties of Alpha-Beta Pruning

• in the ideal case, the best successor node is examined first
• results in O(bd/2) nodes to be searched instead of O(bd)
• alpha-beta can look ahead twice as far as minimax
• in practice, simple ordering functions are quite useful

• assumes an idealized tree model
• uniform branching factor, path length
• random distribution of leaf evaluation values

• transpositions tables can be used to store permutations
• sequences of moves that lead to the same position

• requires additional information for good players
• game-specific background knowledge
• empirical data

49
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Pruning Example

50

1.Search below a MIN
node may be alpha-
pruned if the beta
value is <= to the
alpha value of some
MAX ancestor.

•
2. Search below a MAX

node may be beta-
pruned if the alpha
value is >= to the beta
value of some MIN
ancestor.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Pruning Example

51

1.Search below a MIN
node may be alpha-
pruned if the beta
value is <= to the
alpha value of some
MAX ancestor.

•
2. Search below a MAX

node may be beta-
pruned if the alpha
value is >= to the beta
value of some MIN
ancestor. 3

3

3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Pruning Example

52

1.Search below a MIN
node may be alpha-
pruned if the beta
value is <= to the
alpha value of some
MAX ancestor.

•
2. Search below a MAX

node may be beta-
pruned if the alpha
value is >= to the beta
value of some MIN
ancestor. 3

3

3

5

β

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Pruning Example

53

1.Search below a MIN
node may be alpha-
pruned if the beta
value is <= to the
alpha value of some
MAX ancestor.

•
2. Search below a MAX

node may be beta-
pruned if the alpha
value is >= to the beta
value of some MIN
ancestor. 03

3

3

5

β

0

α

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alpha-Beta Pruning Example

54

1.Search below a MIN
node may be alpha-
pruned if the beta
value is <= to the
alpha value of some
MAX ancestor.

•
2. Search below a MAX

node may be beta-
pruned if the alpha
value is >= to the beta
value of some MIN
ancestor. 03

3

3

5

β

0

α

2

2

α

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Checkers Case Study

• how to play: https://www.youtube.com/watch?v=yFrAN-LFZRU

55

31

• initial board configuration
• Black single on 20

 single on 21
 king on 31

• Red single on 23
 king on 22

• evaluation function
E(s) = (5 x1 + x2) - (5r1 + r2)

where
 x1 = black king advantage,
 x2 = black single advantage,
 r1 = red king advantage,
 r2 = red single advantage

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://www.youtube.com/watch?v=yFrAN-LFZRU

Checkers MiniMax Example

56

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -8 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 25

22
 ->

 2
6

23 -> 26
23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
7

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 13

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 17

20
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16
21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

MAX

MAX

MIN

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Checkers Alpha-Beta Example

57

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 25

22
 ->

 2
6

23 -> 26
23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
7

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 1
2

161413

17 18 19 2
0

242221

25 26 27 2
8

323029

7

15

23

α 1
β 6

MAX

MAX

MIN

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Checkers Alpha-Beta Example

58

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 25

22
 ->

 2
6

23 -> 26
23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
7

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 1
2

161413

17 18 19 2
0

242221

25 26 27 2
8

323029

7

15

23

α 1
β 1

MAX

MAX

MIN

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Checkers Alpha-Beta Example

59

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 25

22
 ->

 2
6

23 -> 26
23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 1
2

161413

17 18 19 2
0

242221

25 26 27 2
8

323029

7

15

23

α 1
β 1

β− cutoff: no need to
examine further branches

MAX

MAX

MIN

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Checkers Alpha-Beta Example

60

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 25

22
 ->

 2
6

23 -> 26
23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 1
2

161413

17 18 19 2
0

242221

25 26 27 2
8

323029

7

15

23

α 1
β 1

MAX

MAX

MIN

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Checkers Alpha-Beta Example

61

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 25

22
 ->

 2
6

23 -> 26
23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 1
2

161413

17 18 19 2
0

242221

25 26 27 2
8

323029

7

15

23

α 1
β 1

β− cutoff: no need to
examine further branches

MAX

MAX

MIN

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Checkers Alpha-Beta Example

62

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 25

22
 ->

 2
6

23 -> 26
23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 1
2

161413

17 18 19 2
0

242221

25 26 27 2
8

323029

7

15

23

α 1
β 1

MAX

MAX

MIN

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Checkers Alpha-Beta Example

63

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 25

22
 ->

 2
6

23 -> 26
23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 13

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 1
2

161413

17 18 19 2
0

242221

25 26 27 2
8

323029

7

15

23

α 1
β 0

MAX

MAX

MIN

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Checkers Alpha-Beta Example

64

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 25

22
 ->

 2
6

23 -> 26
23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 1
2

161413

17 18 19 2
0

242221

25 26 27 2
8

323029

7

15

23

α 1
β -4

α− cutoff: no need to
examine further branches

MAX

MAX

MIN

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Checkers Alpha-Beta Example

65

22 -> 31

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 25

22
 ->

 2
6

23 -> 26
23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 1
2

161413

17 18 19 2
0

242221

25 26 27 2
8

323029

7

15

23

α 1
β -8

MAX

MAX

MIN

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Search Limits

• search must be cut off because of time or space limitations

• strategies like depth-limited or iterative deepening search can be used

• don’t take advantage of knowledge about the problem

• more refined strategies apply background knowledge

• quiescent search

• cut off only parts of the search space that don’t exhibit big changes in the
evaluation function

66
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Horizon Problem

• moves may have disastrous consequences in the future, but the
consequences are not visible

• the corresponding change in the evaluation function will only become evident at
deeper levels

• they are “beyond the horizon”

• determining the horizon is an open problem without a general solution

• only some pragmatic approaches restricted to specific games or situation

67
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Games with Chance

• in many games, there is a degree of unpredictability through random
elements

• throwing dice, card distribution, roulette wheel, …

• this requires chance nodes in addition to the MAX and MIN nodes

• branches indicate possible variations

• each branch indicates the outcome and its likelihood

68
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Expected Minimax

69

() Minimax()

3 0.5 4 0.5 2
chance nodes

v P n n= ´

= ´ + ´

å

Interleave chance nodes
with min/max nodes

Again, the tree is constructed
bottom-up

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Decisions with Chance

• the utility value of a position depends on the random element

• the definite minimax value must be replaced by an expected value

• calculation of expected values

• utility function for terminal nodes

• for all other nodes

• calculate the utility for each chance event

• weigh by the chance that the event occurs

• add up the individual utilities

70
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multi-player Non-Zero-Sum Games

71

• Similar to minimax:
• Utilities are now tuples
• Each player maximizes

their own entry at each
node

• Propagate (or back up)
nodes from children

• Can give rise to
cooperation and
competition
dynamically…

• Pruning?????
1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5

4,3,2 7,4,1 1,5,2 7,7,1

4,3,2 1,5,2

4,3,2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Chapter Summary

• many game techniques are derived from search methods

• the minimax algorithm determines the best move for a player by calculating
the complete game tree

• alpha-beta pruning dismisses parts of the search tree that are provably
irrelevant

• an evaluation function gives an estimate of the utility of a state when a
complete search is impractical

• chance events can be incorporated into the minimax algorithm by
considering the weighted probabilities of chance events

72
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

