ENCS3340 - Artificial Intelligence

Adversarial Search & Games
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Game Playing and Al

* Why would game playing be a good problem for Al research?

Game-playing is non-trivial
* Need to display “human-like” intelligence
* Some games (such as chess) are very complex
* Requires decision-making within a time-limit

 Games are played in a controlled environment
» Can do experiments, repeat games, etc
* Good for evaluating research systems

Can compare humans and computers directly
* Can evaluate percentage of wins/losses to quantify performance

All the information is available

* Human and computer have equal information
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How Does a Computer Play a Game?

* A way to play a game is to:
e Consider all the legal moves you can make
 Compute the new position resulting from each move

* Evaluate each resulting position and determine which is best
* Make that move

* Wait for your opponent to move and repeat

* Key problems are:
* Representing the “board”
* Generating all next legal boards
e Evaluating a position
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Game Playing: Adversarial Search

* Adversarial: involving two people or two sides who oppose each other

* Different kinds of games:

Deterministic Chance
Perfect Chess, Checkers Backgammon,
Information Go, Othello Monopoly
Imperfect , :
, Battleship Bridge, Poker, Scrabble,
Information

* Games with perfect information. No randomness is involved.

* Games with imperfect information. Random factors are part of the game.
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Games as Adversarial Search

* many games can be formulated as search problems

Zero sum: my win is your loss, my loss is your win!

the zero-sum utility function leads to an adversarial situation
* in order for one agent to win, the other necessarily has to lose

» factors complicating the search task
* potentially huge search spaces
* elements of chance
* multi-person games, teams
* time limits
* imprecise rules
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Difficulties with Games

e games can be very hard search problems
* yet reasonably easy to formalize

* finding the optimal solution may be impractical
* asolution that beats the opponent is “good enough”

* unforgiving

* asolution that is “not good enough” not only leads to higher costs, but to a loss to
the opponent

e example: chess

* size of the search space
* branching factor around 35
* about 50 moves per player
* about 3519 or 10*>4 nodes
* about 1070 distinct nodes (size of the search graph)
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Single-Person Game

e conventional search problem

* identify a sequence of moves that leads to a winning state
» examples: Solitaire, dragons and dungeons, Rubik’s cube

e little attention in Al

* some games can be quite challenging

e some versions of solitaire

* a heuristic for Rubik’s cube was found by the Absolver program
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Searching in a two player game

* Traditional (single agent) search methods only consider how close the agent
is to the goal state (e.g. best first search).

* In two player games, decisions of both agents have to be taken into account:
a decision made by one agent will affect the resulting search space that the
other agent would need to explore.

* Question: Do we have randomness here since the decision made by the
opponent is NOT known in advance?

* No. Not if all the moves or choices that the opponent can make are finite and
can be known in advance.
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Searching in a two player game: Strategies

* Your Strategy for a move: you use the best strategy you can think of:
depends on how “smart” you are

 What about opponent strategy?
 We don’t know exactly: could be a NOVICE, could be a MASTER

e Which is safer:

* To assume that the opponent is a novice and may make dumb moves?
* To assume that the opponent is very smart?

* Which is safer in a war:
* To assume your opponent is weak
* To assume your opponent is very strong?

* We assume that the opponent is as smart as possible, or as smart as we can
think

* The opponent uses my own strategy for search (but in reverse):

 Ifltryto future choices in XO he tries to minimize MY chances.
* |am , he is MIIN
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Two Player Games: Evaluation Functions

* What an evaluation function could be: an assessment of my chances to win:
e Chess: # of my figures — # of opponent figures (maybe weighted)
e Tic_tac_Toe: number of open chances for me — number of opponent’s chances

* General: Something that is good for me when higher and good for opponent
when lower; recall: | am MAX and he is MIN and we have ONLY ONE Evaluation
Function!

* Evaluation function is supposed to give an impression of how close MAX is to
the goal: the higher the closer:
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Two Player Games: Evaluation Functions

* The deeper you go: the more steps you imagine searching, the more accurate
your evaluation function gets (getting closer to goal).

* Soitis good to do the computation (of evaluation function) at the deepest
possible level and then see how to act now to reach there: but that is costly
and time consuming

* We need a compromise! Look ahead at a limited depth!: modest
computation, modest knowledge about position:
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Searching in a two player game

* To formalize a two player game as a search problem an agent can be called MAX
and the opponent can be called MIN.

* Problem Formulation:
* Initial state: board configurations and the player to move.

* Successor function: list of pairs (move, state) specifying legal moves and their
resulting states. (moves + initial state = game tree)

* A terminal test: decide if the game has finished.

e A utility function: produces a numerical value for (only) the terminal states. Example:
In chess, outcome = win/loss/draw, with values +1, -1, O respectively.

If you stop at non-terminal states, use an evaluation function to indicate the chances
of winning

* Players need search tree to determine next move.
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Partial game tree for Tic-Tac-Toe

MAX (x) !’_':L:
__—-’:Z—'—':‘.—:f’%"%:“\:‘::—’::—___
A
MIN (0) [] JEQEEHEEER RN .. 1 HH
‘ [ ] L | | J | (X 1 x| X

> \-\“‘\-~ * Root node represents the current board
MAX (Xx) i X %o: éf ' 1 configuration; player must decide

| | _ j the best single move to make next
— e Each level of search nodes in the tree corresponds

to all possible board configurations for a particular

MIN (o) | X[ || ‘ ] player MAX or MIN.
___(!%\\ 11 1 J * Ifitis my turn to move, then the root is labeled a
“\Tf:-‘\“‘_x\_ "MAX" node; otherwise it is labeled a "MIN"

node, indicating opponent's turn.
e Utility values found at the end can be returned

|
zloTx. x!cl).x I back to their parent nodes.
TERMINAL [ JolX| [o[olx] [ IX] | * lIdea: MAX chooses the board with the max utility
0 X[Xx|o| [x/o[0] value, MIN the minimum.
Uahty -1 0 +1
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MiniMax (MinMax, MM) Algorithm

* An algorithm to search trees representing two-player zero-sum (my gain your
loss) games.

e Goal: minimizing the possible loss for a worst case (maximum loss) scenario.

* Or maximize the minimum gain. Guaranteed; no matter what; how opponent
plays; worst case scenario; gain can be MORE, never less

* Result: one move (one level down) then the process starts again.

* For this one move you may explore as many nodes as you have time for!
* MIN works in opposite direction to MAX

* Then work is repeated
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MiniMax Algorithm

* Create start node as a MIAX node with current board configuration
* Expand nodes down to some depth of lookahead in the game
* Apply the evaluation function at each of the leaf nodes

e “Back up” values for each of the non-leaf nodes until a value is computed for
the root node

* At MIN nodes, the backed-up value is the minimum of the values associated with its
children

* At MAX nodes, the backed-up value is the maximum of the values associated with its
children

* Pick the operator associated with the child node whose backed-up value
determined the value at the root
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MiniMax Example

Min
Max eee
Min
000
AN
e0eo0 e0eo0 e0eo0 Minooo e0eo0
7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

terminal nodes: values calculated from the utility function
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MiniMax Example

000
7¥X 6 2 K 3 ‘>4 1 2 5 44X 1 2 6X 3 4 3
Min
[ONON0©] [ONON0©] [ONON0©] [ONON0©] [ONON0©]
8 5 6 7 5 2

7 9 6 9 8

other nodes: values calculated via minimax algorithm

16
STUDENTS-HUB.com Uploaded By: Jibreel Bornat



MiniMax Example

7 6 5 000 5 6
Max
000
7 6 2 YA 3 4/1\ 1 2 5 4 1 2 6 3 4 3
Min
eo0o0 eo0o0 eo0o0 eo0o0 eo0o0
7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9

17
STUDENTS-HUB.com Uploaded By: Jibreel Bornat



MiniMax Example

5

d 4 Min

7 6 5 000 5 6

Max

000

7X 6 2 K 3 48 1 2 5% 4 1 2 6y 3 4 3

Min
[ONON0©] [ONON0©] [ONON0©] [ONON0©] [ONON0©]
7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9
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MiniMax Example

5
Max
5

d 4 Min

7 6 5 000 5 6

Max

000

7X 6 2 K 3 48 1 2 5 4 1 2 6y 3 4 3

Min
[ONON0©] [ONON0©] [ONON0©] [ONON0©] [ONON0©]
7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9
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MiniMax Example

5
Max
5
d 4 Min
7 6 5 000 5 6
Max
000
7X 6 2 K 3 48 1 2 5 4 1 2 6y 3 4 3
Min
[ONON0©] [ONON0©] [ONON0©] [ONON0©] [ONON0©]
7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9

moves by Max and countermoves by Min

Question: can | gain less than 5 if | take a move?
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MiniMax Exercise

A
MAX
D (
MIN
AONER®
MAX
S uj v
MIN ORCIONERC
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MiniMax Exercise Solution

MAX

D (2
MIN

@ e
MAX

S uj v
MIN ORCIONERC
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Evaluation Function

* Complete search until reaching terminal states is impractical for most games

» Alternative: search the tree only to a certain depth

e Requires a cutoff-test to determine where to stop (e.g. # of levels)

* Replaces the terminal test
* The nodes at that level effectively become terminal leaf nodes

* Uses a heuristics-based evaluation function to estimate the expected utility of
the game from those leaf nodes (a measure of closeness to the goal)

* Must be consistent with the utility function. (values for terminal nodes, or at least
their order, must be the same)
* Tradeoff between accuracy and time cost
* Frequently weighted linear functions are used
e E=wqfi +wofh + .. +w,f,
* Combination of features, weighted by their relevance
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Example: Tic-Tac-Toe

e simple evaluation function

E(s) = (rx + cx + dx) - (ro + co + do)

(number of rows, columns, and diagonals open for MAX) - (number of
rows, columns, and diagonals open for MIN )

* 1-ply lookahead
» start at the top of the tree
* evaluate all 9 choices for player 1
e pick the maximum E-value

e 2-ply lookahead
* also looks at the opponents possible move
* assuming that the opponents picks the minimum E-value
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Tic-Tac-Toe 1-Ply

E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

E(s11) Es (514 | EC) 6] E(s18) E(s19)

> g Dy 8 my 8 3 3 : 8
-5 -6 5y x -6 -5 -6 -5

-3 -2 -3 -2 -2 X 3EX [ =20EX =3
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Tic-Tac-Toe 2-Ply

E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

E(s1:8) E(s1:9)

I
w

E(s21) E(s22) E(s23)

D] 6 ol 5 6
-5 -5 -5
=1 =0 =1
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MiniMax Properties

Assume lookahead to depth d

e Space complexity

* Depth-first search, so O(bd)

* Time complexity

 Given branching factor b, so O(bd)

* Time complexity is a major problem!

* Computer typically only has a finite amount of time to make a move.
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Pruning

* Discard parts of the search tree

* Guaranteed not to contain good moves

* Guarantee that the solution is not in that branch or sub-tree (if both players make optimal
decisions, they will never end up in that part of the tree)

e Use pruning to ignore those branches

e Certain moves are not considered
* Won't result in a better evaluation value than a move further up in the tree
* They would lead to a less desirable outcome

* Applies to moves by both players

* « (alpha) indicates the best choice for MAX so far, never decreases (initialize to -infinity)
e [ (beta) indicates the best choice for MIN so far, never increases (initialize to +infinity

28
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Alpha-Beta Pruning

O Beta cutoff pruning occurs when maximizing
if child’s alpha >= parent's beta
Stop expanding children. Why?

< Opponent won't allow computer to take this move

O Alpha cutoff pruning occurs when minimizing
if parent's alpha >= child’s beta
Stop expanding children. Why?

< Computer has a better move than this
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a-f Pruning Example

MAX

MIN
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a-B Pruning Example

MAX 23

MIN MAX

MIN
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a-B Pruning Example

MAX 23

MIN €2

MAX

MIN
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a-B Pruning Example

MAX

MIN <14

MAX

MIN
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a-B Pruning Example

MAX

MIN

MAX

MIN
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a-B Pruning Example

MAX

MIN

MAX

MIN
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Alpha-Beta Pruning

Rules of Thumb

a is the best ( highest) found so far along the path for Max

B is the best (lowest) found so far along the path for Min

Search below a MIN node may be alpha-pruned if its B < a of some MAX
ancestor

Search below a MAX node may be beta-pruned if its a = B of some MIN
ancestor
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a -3 Search Algorithm

1. If terminal state, compute e(n) and return the result.
2. Otherwise, 1f the level 1s a minimizing level,
* Until no more childrenor f<a —

- U, < a— f search on a child

- Ifu, <pB,B<«v,.
* Return min(ul.)

3. Otherwise, the level 1s a maximizing level: o
e Until no more children or a > g,
— U, <~ a— B search on a child.
- If U, >a, set a <V,
 Return max(ui)
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Consider this Example
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Alpha-Beta Example

[_oo' +°°]

a best choice for Max ?
B best choice for Min  ?

* we assume a depth-first, left-to-right search as basic strategy
* the range of the possible values for each node are indicated
* initially [-oo, +o0]
* from Max’s or Min’s perspective

* these local values reflect the values of the sub-trees in that node;
the global values a and B are the best overall choices so far for Max or Min
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Alpha-Beta Example

[_ool +°°]

a best choice for Max ?
B best choice for Min 7

* Min obtains the first value from a successor node

40
STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Alpha-Beta Example

[_ool +°°]

a best choice for Max ?
B best choice for Min 6

* Min obtains the second value from a successor node
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Alpha-Beta Example

[5, +°]

o best choice for Max 5
B best choice for Min 5

* Min obtains the third value from a successor node
e thisis the last value from this sub-tree, and the exact value is known

* Max now has a value for its first successor node, but hopes that something
better might still come
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Alpha-Beta Example

[5, +°]

o best choice for Max 5
B best choice for Min 3

* Min continues with the next sub-tree, and gets a better value

* Max has a better choice from its perspective, however, and will not consider
a move in the sub-tree currently explored by Min

* initially [-oo, +o0]
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Alpha-Beta Example

[5, +o°]
Max

Min

o best choice for Max 5
B best choice for Min 3

* Min knows that Max won’t consider a move to this sub-tree, and abandons
it

* thisis a case of pruning, indicated by ®

44
STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Alpha-Beta Example

[5, +o°]
Max
5 [_oo’ 3] [_oo’ 6] Mln
6 5 3 6

o best choice for Max 5
B best choice for Min 3

* Min explores the next sub-tree, and finds a value that is worse than the
other nodes at this level

* if Min is not able to find something lower, then Max will choose this branch,
so Min must explore more successor nodes
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Alpha-Beta Example

[5, +o°]
Max
5 [_oo’ 3] [_oo’ 5] Mln
6 5 3 6 5

o best choice for Max 5
B best choice for Min 3

* Minis lucky, and finds a value that is the same as the current worst value at
this level

 Max can choose this branch, or the other branch with the same value
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Alpha-Beta Example

Max

[_oo’ 5]

o best choice for Max 5
B best choice for Min 3

* Min could continue searching this sub-tree to see if there is a value that is
less than the current worst alternative in order to give Max as few choices
as possible

* this depends on the specific implementation
* Max knows the best value for its sub-tree
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Alpha-Beta Example Overview

Max

<=3 Min

a best choice for Max 5
B best choice forMin 7->6->5->3

* some branches can be pruned because they would never be considered

» after looking at one branch, Max already knows that they will not be of interest since Min
would choose a value that is less than what Max already has at its disposal
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Properties of Alpha-Beta Pruning

in the ideal case, the best successor node is examined first

* results in O(b%2) nodes to be searched instead of O(bd)
* alpha-beta can look ahead twice as far as minimax
* in practice, simple ordering functions are quite useful

e assumes an idealized tree model

* uniform branching factor, path length
* random distribution of leaf evaluation values

transpositions tables can be used to store permutations
* sequences of moves that lead to the same position

requires additional information for good players
» game-specific background knowledge
* empirical data

STUDENTS-HUB.com
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Alpha-Beta Pruning Example

1.Search below a MIN
node may be alpha-
pruned if the beta MAX
value is <= to the
alpha value of some
MAX ancestor.

2. Search below a MAX

node may be beta- MIN
pruned if the alpha | s o e e Sy i e o e Sl e e e e o
value is >= to the beta
value of some MIN
ancestor.
MAX
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Alpha-Beta Pruning Example

1.Search below a MIN
node may be alpha-
pruned if the beta MAX
value is <= to the
alpha value of some
MAX ancestor.

2. Search below a MAX

node may be beta- MIN
pruned if the @lpha | 0 i S o s o 5 0 1 0 1 0 0 i 1 s o
value is >= to the beta
value of some MIN
ancestor.
MAX
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Alpha-Beta Pruning Example

1.Search below a MIN
node may be alpha-
pruned if the beta MAX
value is <= to the
alpha value of some
MAX ancestor.

2. Search below a MAX

node may be beta- MIN
pruned if the @lpha | 0 i S o s o 5 0 1 0 1 0 0 i 1 s o
value is >= to the beta
value of some MIN
ancestor.
MAX

52
STUDENTS-HUB.com Uploaded By: Jibreel Bornat



Alpha-Beta Pruning Example

1.Search below a MIN
node may be alpha-
pruned if the beta MAX
value is <= to the
alpha value of some
MAX ancestor.

2. Search below a MAX

node may be beta- MIN
pruned if the @lpha | 0 R S o s o 5 0 1 0 1 0 i 0 i 1 s o
value is >= to the beta
value of some MIN
ancestor.
MAX
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Alpha-Beta Pruning Example

1.Search below a MIN
node may be alpha-
pruned if the beta MAX
value is <= to the
alpha value of some
MAX ancestor.

2. Search below a MAX

node may be beta- MIN
pruned if the @lpha | 0 R S o s o 5 0 1 0 1 0 i 0 i 1 s o
value is >= to the beta
value of some MIN
ancestor.
MAX
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Checkers Case Study

* how to play: https://www.youtube.com/watch?v=yFrAN-LFZRU

* initial board configuration

e Black single on 20
single on 21
king on 31

* Red single on 23
king on 22

e evaluation function

E(s) = (5x;+X3) - (5r1+15)
where
x; = black king advantage,
X, = black single advantage,
r; = red king advantage,

r, = red single advantage
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https://www.youtube.com/watch?v=yFrAN-LFZRU

Checkers MiniMax Example
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Checkers Alpha-Beta Example

MAX 5 o X
OLl 07 Lol R 3)
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1 0 4
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Checkers Alpha-Beta Example
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Checkers Alpha-Beta Example

a 1
B 1 3
© 7
N .
MAX 0,7 h\% o\); A?)
O B- cutoff: no need to v AR
, o
examine further branches = G
1 0 4
V)
S 3,
M'N ‘B)) %) Y \kl)) ), >
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o
2 0 4 8 8
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6 1 111 2 00 0 -4 -4 8 -8 -8 -8
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Checkers Alpha-Beta Example

a 1
B 1 2
© J
N N
Vv v\ Y
- \\V)
~ &
1 0 4
o R ®,
'S}
: o
MIN \‘3) {/ N > \_)
vf)) w
> \e
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A 1 2 0 4 8 8

MAX ~
= ©

AN Q?Z u\} 8\9 Hv‘iwpw‘\\i
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Checkers Alpha-Beta Example

a 1
B 1 3
o 7
N N
MAX 0,7 ~ 9 A?)
O B- cutoff: no need to v v 4
: o)
examine further branches = G
1 0 4
V)
o
5 ® 5
MIN \ \V V)
K N w 2
“’p o)‘\\ % s
o\
1 4 -8 8
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= ol \p
> = \» ™
: AT
- > ] = LN <
A =S
1
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Checkers Alpha-Beta Example
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Checkers Alpha-Beta Example
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Checkers Alpha-Beta Example
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Checkers Alpha-Beta Example
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Search Limits

e search must be cut off because of time or space limitations

 strategies like depth-limited or iterative deepening search can be used

* don’t take advantage of knowledge about the problem

* more refined strategies apply background knowledge
e quiescent search

» cut off only parts of the search space that don’t exhibit big changes in the
evaluation function
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Horizon Problem

* moves may have disastrous consequences in the future, but the
consequences are not visible

* the corresponding change in the evaluation function will only become evident at
deeper levels

* they are “beyond the horizon”

* determining the horizon is an open problem without a general solution

* only some pragmatic approaches restricted to specific games or situation
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Games with Chance

* in many games, there is a degree of unpredictability through random
elements

* throwing dice, card distribution, roulette wheel, ...

* this requires chance nodes in addition to the MAX and MIN nodes

* branches indicate possible variations

* each branch indicates the outcome and its likelihood
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Expected Minimax

MAX

V= Z P(n) x Minimax(n)

chance nodes
 —»
3=05x4+05bx2 CHANCE 3

Interleave chance nodes MIN 2

with min/max nodes

Again, the tree is constructed
bottom-up
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Decisions with Chance

 the utility value of a position depends on the random element

* the definite minimax value must be replaced by an expected value

 calculation of expected values

 utility function for terminal nodes
e for all other nodes
* calculate the utility for each chance event

* weigh by the chance that the event occurs

* add up the individual utilities
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Multi-player Non-Zero-Sum Games

e Similar to minimax:
 Utilities are now tuples 4,3,2

* Each player maximizes
their own entry at each
node

* Propagate (or back up)
nodes from children

1,5,2

1,5,2 7,7,1

* Can giverise to
cooperation and
competition

dynamically... 126 |[43.2 |[6.1.2 |[7.41 | [5.1.1 |[1.52 | [7.7.1 |[5:45
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Chapter Summary

* many game techniques are derived from search methods

* the minimax algorithm determines the best move for a player by calculating
the complete game tree

* alpha-beta pruning dismisses parts of the search tree that are provably
irrelevant

* an evaluation function gives an estimate of the utility of a state when a
complete search is impractical

* chance events can be incorporated into the minimax algorithm by
considering the weighted probabilities of chance events
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