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Model Selection

• Model selection is the application of a principled method to determine the 
complexity of the model, e.g. choosing a subset of predictors, choosing the 
degree of the polynomial model etc.

• A strong motivation for performing model selection is to avoid overfitting, 
which can happen when:

• there are too many predictors:
• the feature space has high dimensionality
• the polynomial degree is too high

• the coefficients values are too extreme
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Polynomial Regression Example

• Fitting a polynomial model requires choosing a degree.
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Generalization Error

• We know to evaluate the model on both train and test data, because models 
that do well on training data may do poorly on new data (overfitting).

• The ability of models to do well on new data is called generalization.

• The goal of model selection is to choose the model that generalizes the best.

• Always evaluate models as they are predicting future data.

• If the data is seen during training, we cannot use it for evaluation.
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Train-Validation-Test
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Model Selection

• Question: How many different models when considering d predictors (only 
linear terms) do we have?
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2d models
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Stepwise Variable Selection and Validation

Selecting optimal subsets of predictors (including choosing the degree of 
polynomial models) through:

• Stepwise variable selection - iteratively building an optimal subset of 
predictors by optimizing a fixed model evaluation metric each time.

• Validation – selecting an optimal model by evaluating each model on 
validation set.
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Stepwise Variable Selection: Forward method

In forward selection, we find an ‘optimal’ set of predictors by iterative building 
up our set.

• Start with the empty set P0, construct the null model M0.

• For 𝑘 = 1, ... , d:
• Let 𝑀𝑘 − 1 be the model constructed from the best set of 𝑘 − 1 predictors, 𝑃𝑘 − 1.

• Select the predictor 𝑋n,k, not in 𝑃k-1, so that the model constructed from 𝑃k = 𝑋n,k
∪ 𝑃k-1 optimizes a fixed metric.

• Let 𝑀k denote the model constructed from the optimal 𝑃k.

• Select the model 𝑀 amongst {𝑀0, 𝑀1, ... , 𝑀d} that optimizes a fixed metric 
(this can be validation MSE, 𝑅2, … etc.)
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Stepwise Variable Selection Computational Complexity

How many models did we evaluate?

• 1st step, d Models

• 2nd step, d-1 Models (add 1 predictor out of d-1 possible)

• 3rd step, d-2 Models (add 1 predictor out of d-2 possible)

• …

O(d2) << 2d for large d
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Choosing the degree of the polynomial model

• Fitting a polynomial model requires choosing a degree.
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Choosing the degree of the polynomial model
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Cross Validation: Motivation

• Using a single validation set to select amongst multiple models can be 
problematic - there is the possibility of overfitting to the validation set.

• Example: It is obvious that degree=3 is the correct model but the validation 
set by chance favors the linear model.
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Cross Validation: Motivation

• Using a single validation set to select amongst multiple models can be 
problematic - there is the possibility of overfitting to the validation set.

• One solution to the problems raised by using a single validation set is to 
evaluate each model on multiple validation sets and average the validation 
performance.

• One can randomly split the training set into training and validation multiple 
times but randomly creating these sets can create the scenario where 
important features of the data never appear in our random draws.
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Cross Validation

13
Uploaded By: Jibreel BornatSTUDENTS-HUB.com



K-Fold Cross Validation

• Given a data set {𝑋1, ... , 𝑋n} , where each {𝑋1, ... , 𝑋n} contains J features.

• To ensure that every observation in the dataset is included in at least one 
training set and at least one validation set we use the K-fold validation:

• split the data into K uniformly sized chunks, {𝐶1, ... , 𝐶K}

• we create K number of training/validation splits, using one of the K chunks for 
validation and the rest for training.

• We fit the model on each training set, denoted %𝑓c-i , and evaluate it on the 
corresponding validation set, %𝑓c-i (𝐶i). The cross validation is the 
performance of the model averaged across all validation sets:

where L is a loss function.
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Leave-One-Out

• Or using the leave one out method:

• validation set: {𝑋i}
• training set: 𝑋-i = {𝑋1, ... , 𝑋i-1,, 𝑋i+1,, ... , 𝑋n}

• for 𝑖 = 1, ... , 𝑛:

• We fit the model on each training set, denoted '𝑓x-i , and evaluate it on the 
corresponding validation set, '𝑓x-i (xi).

• The cross validation score is the performance of the model averaged across 
all validation sets

where L is a loss function.
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Regularization error, bias vs variance
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Test Error and Generalization

• We know to evaluate models on both train and test data because models can 
do well on training data but do poorly on new data.

• When models do well on new data is called generalization.

• There are at least three ways a model can have a high test error.
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Irreducible and Reducible Errors

• We distinguished the contributions of noise to the generalization error:

• Irreducible error: we can’t do anything to decrease error due to noise.

• Reducible error: we can decrease error due to overfitting and underfitting by 
improving the model.
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The Bias-Variance: Bias

• Reducible error comes from either underfitting or overfitting. There is a 
trade-off between the two sources of errors:
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Bias vs Variance: Variance
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Bias vs Variance
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Bias vs Variance

• Left: 2000 best fit straight lines, each fitted on a different 20-points training 
set.

• Right: Best-fit models using degree 10 polynomials
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The Bias-Variance Trade Off
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The Bias-Variance Trade Off
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Overfitting

• Overfitting occurs when a model corresponds too closely to the training set, 
and as a result, the model fails to fit additional data.

• Overfitting we can happen when:

• there are too many predictors:
• the feature space has high dimensionality
• the polynomial degree is too high

• the coefficients values are too extreme

• Model selection can be used the avoid the first case of overfitting

• For the 2nd case, we use another way of avoiding overfitting: Regularization
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Regularization: An Overview

• The idea of regularization revolves around modifying the loss function L; in 
particular, we add a regularization term that penalizes some specified 
properties of the model parameters

𝐿!"# = 𝐿 𝒘 + 𝜆 𝑅(𝒘)

where 𝜆 is a scalar that gives the weight (or importance) of the
regularization term.

• Fitting the model using the modified loss function 𝐿!"# would result in model 
parameters with desirable properties (specified by 𝑅).
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LASSO Regression

• Since we wish to discourage extreme values in model parameter, we need to 
choose a regularization term that penalizes parameter magnitudes. For our 
loss function, we will again use MSE.

• Together our regularized loss function is:
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Ridge Regression

• Alternatively, we can choose a regularization term that penalizes the squares 
of the parameter magnitudes. Then, our regularized loss function is:
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Ridge, LASSO - Computational complexity

• Solution to ridge regression:

w = (XT X + λ Id)-1 XT y

• LASSO has no conventional analytical solution, as the L1 norm has no 
derivative at zero. We can, however, use the concept of subdifferential or 
subgradient to find a manageable expression.
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Choosing 𝜆

• In both ridge and LASSO regression, we see that the larger our choice of the 
regularization parameter 𝜆, the more heavily we penalize large values in w.

• If 𝜆 is close to zero, we recover the MSE, i.e. ridge and LASSO regression is 
just ordinary regression.

• If 𝜆 is sufficiently large, the MSE term in the regularized loss function will be 
insignificant and the regularization term will force wridge and wLASSO to be 
close to zero.

• To avoid ad-hoc choices, we should select 𝜆 using validation or better cross-
validation.
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Regularization Parameter with a Validation Set

The solution of the Ridge/Lasso regression involves three steps:

• Select 𝜆

• Find the minimum of the ridge/Lasso regression loss function and record the 
MSE on the validation set.

• Find the 𝜆 that gives the smallest MSE on the validation set.
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The Geometry of Regularization
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