Engineering Electromagnetics

By Dr. Khaled Hejja

STUDENTS-HUB.com

Electromagnetics

Electromagnetics theory is a discipline concerned with the study of <u>CHARGES</u>, at <u>REST</u> and **MOTION**, that produce **CURRENT, ELICTRICAL,** and MAGNATIC fields.

Electromagnetics

James Clerk Maxwell 1831-1879

The study of EM includes:
 Theoretical and applied concepts.

• The theoretical concepts are described by a set of:

□ Basic laws formulated through experiments.

These laws known as

Maxwell Equations

STUDENTS-HUB.com

where

- D the electric flux density Coulombs per meter squared
- **B** the magnetic flux density Weber per meter squared
- **E** the electric field intensity **Volts per meter**
- H the magnetic field intensity Amperes per meter
- \mathcal{P}_{v} the volume charge density Quantity of charge per cubic meter

J the current density Ampere per meter squared STUDENTS-HUB.com

Faraday's Experiment

Question: If a current can generate a magnetic field, then can a magnetic field generate a current?

Ammeter

An experiment similar to that conducted to answer that question is shown here. Two sets of windings are placed on a shared iron core. In the lower set, a current is generated by closing the switch as shown. In the upper set, any induced current is registered by the ammeter.

STUDENTS-HUB.com

Some insights about EM fields

- In static EM fields, electric and magnetic fields are independent of each other, whereas in dynamic EM fields, the two fields are interdependent.
- Electrostatic fields are usually produced by static electric charges, whereas Magnetostatic fields are due to motion of electric charges with uniform velocity (direct current) or static magnetic charges (magnetic poles)

Common single-element antennas.

STUDENTS-HUB.com

Vectors Analysis

STUDENTS-HUB.com

What is a Scaler quantity?

 The term scalar refers to a quantity whose value may be represented by a single (positive or negative) <u>real number</u>.

• Examples:

Distance, temperature, mass, density, pressure, volume, volume resistivity, and voltage.

What is a Vector quantity

- A vector quantity has both a magnitude and a direction in space.
- Examples

- Force, velocity, acceleration,

STUDENTS-HUB.com

What is the field?

- A field (scalar or vector) is a function that connects an arbitrary origin to a general point in space.
- The value of a field varies in general with both position and time.
- Both *scalar fields* and *vector fields* exist.
 - The temperature and the density are examples of scalar fields.
 - The gravitational and magnetic fields of the earth, voltage gradient, and the temperature gradient are examples of vector fields.

Vectors characteristics

- Vectors may be multiplied by scalars.
- When the <u>scalar is positive</u>, the <u>magnitude</u> of the vector changes, but its <u>direction</u> does not.
- It <u>reverses direction</u> when multiplied by a <u>negative scalar</u>.
- Multiplication of a vector by a scalar also obeys the associative and <u>distributive</u> laws of algebra.

Vector Addition

Associative Law: $\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$ Distributive Law: $(r + s)(\mathbf{A} + \mathbf{B}) = r(\mathbf{A} + \mathbf{B}) + s(\mathbf{A} + \mathbf{B})$

STUDENTS-HUB.com

Describe a vector

To describe a vector accurately, some specific lengths, directions, angles, projections, or components must be given.

There are three simple methods of doing this,

- Rectangular Cartesian coordinate system.
- cylindrical coordinate system and
- spherical coordinate system

Rectangular Coordinate System

STUDENTS-HUB.com

Point Locations in Rectangular Coordinates

STUDENTS-HUB.com

Differential Volume Element

STUDENTS-HUB.com

Orthogonal Vector Components

STUDENTS-HUB.com

Orthogonal Unit Vectors

unit

vectors having unit magnitude by definition

STUDENTS-HUB.com

Vector Representation in Terms of Orthogonal Rectangular Components

$$\mathbf{R}_{PQ} = \mathbf{r}_Q - \mathbf{r}_P = (2-1)\mathbf{a}_x + (-2-2)\mathbf{a}_y + (1-3)\mathbf{a}_z$$
$$= \mathbf{a}_x - 4\mathbf{a}_y - 2\mathbf{a}_z$$

STUDENTS-HUB.com

Vector Expressions in Rectangular Coordinates

General Vector, **B**: $\mathbf{B} = B_x \mathbf{a}_x + B_y \mathbf{a}_y + B_z \mathbf{a}_z$

Magnitude of **B**:

$$|\mathbf{B}| = \sqrt{B_x^2 + B_y^2 + B_z^2}$$

Unit Vector in the Direction of **B**:

$$\mathbf{a}_B = \frac{\mathbf{B}}{\sqrt{B_x^2 + B_y^2 + B_z^2}} = \frac{\mathbf{B}}{|\mathbf{B}|}$$

STUDENTS-HUB.com

Example

Specify the unit vector extending from the origin toward the point G(2, -2, -1)

$$\mathbf{G} = 2\mathbf{a}_x - 2\mathbf{a}_y - \mathbf{a}_z$$

$$|\mathbf{G}| = \sqrt{(2)^2 + (-2)^2 + (-1)^2} = 3$$

$$\mathbf{a}_{G} = \frac{\mathbf{G}}{|\mathbf{G}|} = \frac{2}{3}\mathbf{a}_{x} - \frac{2}{3}\mathbf{a}_{y} - \frac{1}{3}\mathbf{a}_{z} = 0.667\mathbf{a}_{x} - 0.667\mathbf{a}_{y} - 0.333\mathbf{a}_{z}$$

STUDENTS-HUB.com

Vector Field

We are accustomed to thinking of a specific vector:

 $\mathbf{v} = v_x \mathbf{a}_x + v_y \mathbf{a}_y + v_z \mathbf{a}_z$

A vector field is a *function* defined in space that has magnitude and direction at all points:

$$\mathbf{v}(\mathbf{r}) = v_x(\mathbf{r})\mathbf{a}_x + v_y(\mathbf{r})\mathbf{a}_y + v_z(\mathbf{r})\mathbf{a}_z$$

where $\mathbf{r} = (x, y, z)$

STUDENTS-HUB.com

The Dot Product

Given two vectors **A** and **B**, the *dot product*, or *scalar product*, is defined as the product of the magnitude of **A**, the magnitude of **B**, and the cosine of the smaller angle between them,

 $\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta_{AB}$

Commutative Law:

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$$

STUDENTS-HUB.com

Vector Projections Using the Dot Product

One of the most important applications of the <u>dot product</u> is that of <u>finding the component of a vector in a given direction</u>

B • **a** gives the component of **B** in the horizontal direction

 $(\mathbf{B} \cdot \mathbf{a})$ **a** gives the *vector* component of **B** in the horizontal direction

${\bf B} \cdot {\bf a}$ is the projection of ${\bf B}$ in the a direction.

STUDENTS-HUB.com

Operational Use of the Dot Product

Given
$$\begin{cases} \mathbf{A} = A_x \mathbf{a}_x + A_y \mathbf{a}_y + A_z \mathbf{a}_z \\ \mathbf{B} = B_x \mathbf{a}_x + B_y \mathbf{a}_y + B_z \mathbf{a}_z \end{cases}$$

Find
$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z$$

where we have used:
$$\begin{cases} \mathbf{a}_x \cdot \mathbf{a}_y = \mathbf{a}_y \cdot \mathbf{a}_z = \mathbf{a}_x \cdot \mathbf{a}_z = 0\\ \mathbf{a}_x \cdot \mathbf{a}_x = \mathbf{a}_y \cdot \mathbf{a}_y = \mathbf{a}_z \cdot \mathbf{a}_z = 1 \end{cases}$$

Note also:

$$\mathbf{A} \cdot \mathbf{A} = A^2 = |\mathbf{A}|^2$$

STUDENTS-HUB.com

Cross Product

The cross product $\mathbf{A} \times \mathbf{B}$ is a vector; the magnitude of $\mathbf{A} \times \mathbf{B}$ is equal to the product of the magnitudes of \mathbf{A} , \mathbf{B} , and the sine of the smaller angle between \mathbf{A} and \mathbf{B} ; the direction of $\mathbf{A} \times \mathbf{B}$ is perpendicular to the plane containing \mathbf{A} and \mathbf{B} and is along that one of the two possible perpendiculars which is in the direction of advance of a right-handed screw as \mathbf{A} is turned into \mathbf{B} .

$$\mathbf{A} \times \mathbf{B} = \mathbf{a}_N |\mathbf{A}| |\mathbf{B}| \sin \theta_{AB}$$

Reversing the order of the vectors A and B results in a unit vector in the opposite direction, and we see that the cross product is not commutative, for

$$\mathbf{B} \times \mathbf{A} = -(\mathbf{A} \times \mathbf{B}).$$

STUDENTS-HUB.com

Operational Definition of the Cross Product in Rectangular Coordinates

Begin with: $\mathbf{A} \times \mathbf{B} = A_x B_x \mathbf{a}_x \times \mathbf{a}_x + A_x B_y \mathbf{a}_x \times \mathbf{a}_y + A_x B_z \mathbf{a}_x \times \mathbf{a}_z$ $+ A_y B_x \mathbf{a}_y \times \mathbf{a}_x + A_y B_y \mathbf{a}_y \times \mathbf{a}_y + A_y B_z \mathbf{a}_y \times \mathbf{a}_z$ $+ A_z B_x \mathbf{a}_z \times \mathbf{a}_x + A_z B_y \mathbf{a}_z \times \mathbf{a}_y + A_z B_z \mathbf{a}_z \times \mathbf{a}_z$

where
$$\begin{cases} \mathbf{a}_{x} \times \mathbf{a}_{y} = \mathbf{a}_{z} \\ \mathbf{a}_{y} \times \mathbf{a}_{z} = \mathbf{a}_{x} \\ \mathbf{a}_{z} \times \mathbf{a}_{x} = \mathbf{a}_{y} \end{cases}$$

Therefore:

 $\mathbf{A} \times \mathbf{B} = (A_y B_z - A_z B_y) \mathbf{a}_x + (A_z B_x - A_x B_z) \mathbf{a}_y + (A_x B_y - A_y B_x) \mathbf{a}_z$

Or...
$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

STUDENTS-HUB.com

Circular Cylindrical Coordinates

z = a constantPoint *P* has coordinates Specified by $P(\rho, \phi, z)$ $\rightarrow y$ Ζ ϕ = a constant ϕ ρ = a constant

STUDENTS-HUB.com

Orthogonal Unit Vectors in Cylindrical Coordinates

STUDENTS-HUB.com

Differential Volume in Cylindrical Coordinates

STUDENTS-HUB.com

Point Transformations in Cylindrical Coordinates

STUDENTS-HUB.com

Dot Products of Unit Vectors in Cylindrical and Rectangular Coordinate Systems

	$\mathbf{a}_{ ho}$	\mathbf{a}_{ϕ}	\mathbf{a}_{z}
\mathbf{a}_{χ} .	$\cos\phi$	$-\sin$	0
$\mathbf{a}_y \cdot$	$\sin \phi$	$\cos\phi$	0
\mathbf{a}_{z} .	0	0	0

Example

Transform the vector,

$$\mathbf{B} = y\mathbf{a}_x - x\mathbf{a}_y + z\mathbf{a}_z$$

into cylindrical coordinates:

Use these:

	$\mathbf{a}_{ ho}$	\mathbf{a}_{ϕ}	\mathbf{a}_{z}
\mathbf{a}_{x} .	$\cos\phi$	— sin	0
\mathbf{a}_{v} .	$\sin \phi$	$\cos\phi$	0
\mathbf{a}_{z}	0	0	0
STUDENTS	S-HUB.com		

$$x = \rho \cos \phi$$

$$y = \rho \sin \phi$$

$$z = z$$

Uploaded By: Mohammad Awawdesta

Transform the vector,

$$\mathbf{B} = y\mathbf{a}_x - x\mathbf{a}_y + z\mathbf{a}_z$$

into cylindrical coordinates:

Start with:

$$B_{\rho} = \mathbf{B} \cdot \mathbf{a}_{\rho} = y(\mathbf{a}_x \cdot \mathbf{a}_{\rho}) - x(\mathbf{a}_y \cdot \mathbf{a}_{\rho})$$

$$B_{\phi} = \mathbf{B} \cdot \mathbf{a}_{\phi} = y(\mathbf{a}_x \cdot \mathbf{a}_{\phi}) - x(\mathbf{a}_y \cdot \mathbf{a}_{\phi})$$

	$\mathbf{a}_{ ho}$	\mathbf{a}_{ϕ}	\mathbf{a}_{z}	-
\mathbf{a}_{x} .	$\cos\phi$	$-\sin$	0	
\mathbf{a}_{y} .	$\sin \phi$	$\cos\phi$	0	
\mathbf{a}_{z} .	0	0	0	
STUDENTS	S-HUB.com			Ч

$$x = \rho \cos \phi$$

$$y = \rho \sin \phi$$

$$z = z$$

Uploaded By: Mohammad Awawdess

Transform the vector,

$$\mathbf{B} = y\mathbf{a}_x - x\mathbf{a}_y + z\mathbf{a}_z$$

into cylindrical coordinates:

Then:

$$B_{\rho} = \mathbf{B} \cdot \mathbf{a}_{\rho} = y(\mathbf{a}_{x} \cdot \mathbf{a}_{\rho}) - x(\mathbf{a}_{y} \cdot \mathbf{a}_{\rho})$$

$$= y \cos \phi - x \sin \phi = \rho \sin \phi \cos \phi - \rho \cos \phi \sin \phi = 0$$

$$B_{\phi} = \mathbf{B} \cdot \mathbf{a}_{\phi} = y(\mathbf{a}_{x} \cdot \mathbf{a}_{\phi}) - x(\mathbf{a}_{y} \cdot \mathbf{a}_{\phi})$$

$$= -y \sin \phi - x \cos \phi = -\rho \sin^{2} \phi - \rho \cos^{2} \phi = -\rho$$

	$\mathbf{a}_ ho$	\mathbf{a}_{ϕ}	\mathbf{a}_{z}	$x = \rho \cos \phi$
\mathbf{a}_{χ} .	$\cos\phi$	— sin	0	$v = \rho \sin \phi$
\mathbf{a}_{y} .	$\sin \phi$	$\cos\phi$	0	
\mathbf{a}_{z} .	0	0	0	z = z
STUDENTS-	HUB.com			Uploaded By

Transform the vector,

$$\mathbf{B} = y\mathbf{a}_x - x\mathbf{a}_y + z\mathbf{a}_z$$

into cylindrical coordinates:

Finally:

$$B_{\rho} = \mathbf{B} \cdot \mathbf{a}_{\rho} = y(\mathbf{a}_{x} \cdot \mathbf{a}_{\rho}) - x(\mathbf{a}_{y} \cdot \mathbf{a}_{\rho})$$

$$= y \cos \phi - x \sin \phi = \rho \sin \phi \cos \phi - \rho \cos \phi \sin \phi = 0$$

$$B_{\phi} = \mathbf{B} \cdot \mathbf{a}_{\phi} = y(\mathbf{a}_{x} \cdot \mathbf{a}_{\phi}) - x(\mathbf{a}_{y} \cdot \mathbf{a}_{\phi})$$

$$= -y \sin \phi - x \cos \phi = -\rho \sin^{2} \phi - \rho \cos^{2} \phi = -\rho$$

$$\mathbf{B} = -\rho \mathbf{a}_{\phi} + z \mathbf{a}_{z}$$

STUDENTS-HUB.com

Spherical Coordinates

Constant Coordinate Surfaces in Spherical Coordinates

STUDENTS-HUB.com

Unit Vector Components in Spherical Coordinates

STUDENTS-HUB.com

Differential Volume in Spherical Coordinates

STUDENTS-HUB.com

Dot Products of Unit Vectors in the Spherical and Rectangular Coordinate Systems

	\mathbf{a}_r	$\mathbf{a}_{ heta}$	\mathbf{a}_{ϕ}
\mathbf{a}_{χ} .	$\sin\theta\cos\phi$	$\cos\theta\cos\phi$	$-\sin\phi$
\mathbf{a}_{y} .	$\sin heta \sin \phi$	$\cos\theta\sin\phi$	$\cos\phi$
\mathbf{a}_{z} .	$\cos heta$	$-\sin\theta$	0

Example: Vector Component Transformation

Transform the field, $\mathbf{G} = (xz/y)\mathbf{a}_x$, into spherical coordinates and components

$$G_{r} = \mathbf{G} \cdot \mathbf{a}_{r} = \frac{xz}{y} \mathbf{a}_{x} \cdot \mathbf{a}_{r} = \frac{xz}{y} \sin \theta \cos \phi$$
$$= r \sin \theta \cos \theta \frac{\cos^{2} \phi}{\sin \phi}$$
$$G_{\theta} = \mathbf{G} \cdot \mathbf{a}_{\theta} = \frac{xz}{y} \mathbf{a}_{x} \cdot \mathbf{a}_{\theta} = \frac{xz}{y} \cos \theta \cos \phi$$
$$= r \cos^{2} \theta \frac{\cos^{2} \phi}{\sin \phi}$$
$$G\phi = \mathbf{G} \cdot \mathbf{a}_{\phi} = \frac{xz}{y} \mathbf{a}_{x} \cdot \mathbf{a}_{\phi} = \frac{xz}{y} (-\sin \phi)$$
$$= -r \cos \theta \cos \phi$$
$$\mathbf{G} = r \cos \theta \cos \phi (\sin \theta \cot \phi \mathbf{a}_{r} + \cos \theta \cot \phi \mathbf{a}_{\theta} - \mathbf{a}_{\phi})$$

	\mathbf{a}_r	$\mathbf{a}_{ heta}$	$\mathbf{a}_{oldsymbol{\phi}}$	$x = r\sin\theta\cos\phi$
\mathbf{a}_{x} .	$\sin heta \cos \phi$	$\cos heta \cos \phi$	$-\sin\phi$	$v - r \sin \theta \sin \phi$
\mathbf{a}_y .	$\sin heta\sin\phi$	$\cos\theta\sin\phi$	$\cos\phi$	$y = 7 \sin \theta \sin \phi$
	$\cos\theta$	$-\sin\theta$	0	$z = r \cos \theta$