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Si.nce the distance BC between the centers of the two gears is t«):OHEftantl.indal!rl;l;iZ?;sz
i ui ink joining the two centers may be visualized. ;
the mechanism, an equivalent link joining t (s o -
i i > is fi ine the velocities V and V. of the cen
five-bar linkage is first analyzed to determine Vi :
glévgearé. The felocity polygon of Fig. 8.20b shows the determination of V; and V;, from

- Eq. L. In a similar manner, V¢ and V., are determined from Eq. I

In Fig. 8.20¢, the velocity vectors V, and V. of Fig. 10.20b are rc{rjrawfn 1:3:1 ttl;)e
construction of the velocity images of gears 4 and 5. Becaus; the ;(;ioszlt;rt : li% opo[ie pointl
i S i f both points P, and P, is

ero and Vp, = V, (V;, = 0), the image o L an .
gzas shown ?FVith p(;int }’; located on the polygon, the vciomt)}f] 1mgg? oifsg(?:; :t Hllsmir(?\;r;

i : i i f point M, on the circle :
with B as a center and radius BP,. The image of 1 4 L
i i ) dicular to the line M, B on the configu
drawing a line through B on the polygon perpen : i .
dfa‘?angl The image of point M; is the same as that of point M, btscause VM"_S['b YM; ch:;}
Emagge of gear 5 is, therefore, drawn with C as a center and ArJad:us CM;. The imag
! - o . » t s

i is located on a diameter of the circle opposite point M, .

e ?hle: rﬁ;gnitudes and senses of w, and ws; can now be determined from Vg, and

Vs, 1espectively, as shown.
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8.12 INSTANTANEOUS CENTERS OF VELOCITY

In the foregoing paragraphs and examples, the velocity analyses of linkages were
made from an understanding of relative velocity and the influence of motion
constraint on relative velocity. In the following, another concept is utilized to
determine the linear velocity of particles in mechanisms, namely, the concept of
the instantaneous center of velocity. This concept is based on the fact that af a
given instant a pair of coincident points on two links in motion will have identical
velocities relative to a fixed link and, therefore, will have zero velocity relative

will then have zero absolute velocity, and the moving link at this instant will be
rotating relative to the fixed link about the coincident points. In both cases the
coincident set of points is referred to as an instanianeous center of velocity (some-
times referred to as instant center, or centro). From the foregoing, it can be seen
that an instantaneous center js (a) a point in both bodies, (b) a point at which
the two bodies have no relative velocity, and (c) a point about which one body

In the four-bar linkage of Fig. 8.21, it is obvious that relative to the fixed
link, points O, and 0, are locations of particles on links 2 and 4, respectively,
which are at zero velocity. It is less obvious that on link 3, which has both
translating and angular motion, a particle is also at zero velocity relative to the
fixed link. Referring to the velocity polygon shown in Fig. 8.21, the velocity
image of link 3 appears as the line AB and none of the particles on this line is

FIGURE 8§.21
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322 VELOCITY AND ACCELERATION ANALYSIS

at zero velocity. However, if link 3 is visualized large enough in extent as a rigid
body to include O, of the polygon, a particle of zero velocity is then included in
the image. To determine the location of O,, the instantancous center of link 3
relative to link 1, on the mechanism, a triangle similar to O,BA of the polygon
is constructed on the mechanism so that the sides of the two similar triangles are
mutually perpendicular. It is important to note that for the particles on link 3 at
A and at B, the fixed vectors V, and Vg on link 3 are normal to the lines drawn
from the instantaneous center O, to A and B. T
Since A and the instantaneous center O, are particles on a common rigid
link, the magnitude of V, may be determined from V, = w3(0,A). Similatly,
Vg = wy(0,B). The magnitude of the velocity of any particle on link 3 may be
determined from the product of w; and the radial distance from the instantaneous
* center to the particle, and the direction of the velocity vector is normal to the
radial line.

It may also be seen that the instantaneous center of link 3 relative to link
1 changes position with respect to time because of the changes in the shape of

- the velocity polygon as the mechanism passes through a cycle of phases. However,
for links in pure rotation, the instantaneous centers are fixed centers, such as O,
and O, of links 2 and 4, respectively, of Fig. 8.21.

The determination of velocities by instantaneous centers does not require

the velocity polygon of free vectors and is judged by many to be the quicker
- method. By the method of instantaneous centers, the velocity vectors are shown
directly as fixed vectors.

In the solution of a problem, such as in Fig. 8.22, the locations of the
instantaneous centers of the moving links relative to the fixed link are generally
determined first. For links 2 and 4, O, and O, are obviously points of zero velocity.
For links such as link 3, only the directions of the velocities of two particles on
the link need to be known since the intersection of the normals to the velocity
direction lines determines the instantaneous center.

Instanteneous

c center of link 3

AW relative to link 1

—__Instanteneous
center of link 2
177 relative to link 1
Instanteneous
center of link 4

FIGURE 8.22 relative to link 1

STUDENTS-HUB.com

i

e Sy g e o

INSTANTANEOUS CENTER NOTATION 32

Fixed velocity vectors may be determi
- : . . rmined almost entirely b i
ne ;?Oilg(;) ?32;1 assuming w, is the only informationygiv};ﬁralghlﬁicoli
e ezlati;; )tarifi V, drawn. normal to 0,4 using the i;lstaAntanf}:lo
e ve n_10 mbk 1 Cons;dering particles A and B as part of lirT
roesder e Constmcg ay be determined from similar triangles, as shown b
s i otn, since V, and V; are proportional to tl;c distance
hich it nfar_;equs celllter of link 3 relative to link 1. The equati :
e -y did /e( ngm;lar trlangfes in determining V, may be wr(i]ttenlc;
O e, graphﬁcauy gr.onijl:ive.llocny. of any particle on link 4 such as D ma
Cente;of e 1_Im ar triangles as shown using the instantaneou

or are i i
mEChaniernlgl:etggt are in pure translation, such as the slider in a slider-

; irection lines of the velocities of all of its particles are plarcz:lalgll

and the normals, also bei i
2 eing parallel, intersect at infini
e 1g p » Intersect a infinity. Thus, the in ;
i ink in translation is at an infinite distance from th ,l‘ k,i Stant'aﬂe?u-
tmal to the path of translation. FEEEEEE

8.13 INSTANTANEOUS CENTER NOTATION

In the foregoing, i
the movineggﬁlﬁcgs’rgitt?lltatneous centers of velocity were determined for each of
shown in Fig. 8.23 wh“el:e ct,hthti fixed link. The system of labeling these points is
Bk Tabelod 31 10 MEEhte Thoutfion oE 55 LA s delative Lasiie fixed
Siiantmens Cerin rellcz:_e the motion of 3 relative to 1.”” Link 1 has the same
in which case link 1 a E;lve oS S when link 3 is considered the fixed link
relatvE 16 Ak 3. Sinclzppgirst:oa?z Egt?tgmg in }Ihe opposite sense (wy; = _(1)315
18 acceptable although the simpler notatigfleItS ?ssgfé‘;egﬁégt,;g: ei::lsctizlslit%lnaﬂon
. ncous

center of link 2 relative to link 1 i
. . l :
o LT T M o okt 01‘5’V llabf:led 21 or 12, and that of link 4 relative

-
-
e
e e
42,24
FIGURE 8.23
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324 VELOCITY AND ACCELERATION ANALYSIS

Also of interest is the instantaneous center of one link relative to another
where both links are moving relative to the fixed link. Such a center is shown at
point A in Fig. 8.23, where both A, and Aj; have a common absolute velocity V,
because of the pinned joint so that the relative velocities V4.4, and V4,4, are Zero.
It is obvious that point A is the instantaneous center 32 about which link 3 is
rotating relative to link 2 at an angular velocity @s. Point A is also the-instan-
taneous center 23. In a similar manner point B is the instantancous center 43 or
34. The instantaneous center 42 or 24 is also shown in Fig. 8.23."However, the
method of determining its location will not be presented until the next section.

8.14 KENNEDY’S THEOREM

For three independent bodies in general plane motion, Kennedy’s theorem states
that the three instantaneous centers lie on a common straight line. In Fig. 8.24,
three independent links (1, 2, and 3) are shown in motion relative to each other.
There are three instantaneous centers (12, 13, and 23), whose instantancous

- locations are to be determined.

If link 1 is regarded as a fixed link, or datum link, the velocities of particles
A, and B, on link 2 and the velocities of D5 and E; on link 3 may be regarded
as absolute velocities relative to link 1. The instantaneous center 12 may be
located from the intersection of the normals to the velocity direction lines drawn
from A, and B;. Similarly, the center 13 is located from normals drawn from
particles D, and E;. The instantaneous centers 12 and 13 are relative to link 1.

The third instantaneous centet 73 remains to be determined. On a line
drawn through the centers 12 and 13, there exists a particle C; on link 2 at an
absolute velocity Ve, having the same direction as the absolute velocity Ve, of a
particle C; on link 3. Since Vg, is proportional to the distance of C, from 12, the
magnitude of Vg, is determined from the graphical construction shown, and

FIGURE 8.24
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V. i ; : o]

h Ifé ;sactlgktegn:::;d in aISImllar manner. From the intersection of the construction
Z mon location of C, and C, is determined :
e ol d C; is determine such that the absolute

: ; ¢, are identical. This location is the instanta

> 1 s lo neous center 2

::;Zfivg}i allbs?utevvelomt}es of the coincident particles are common and tli;
elocities V¢, and V¢, are z i
: : i Gy ero. It should be obvious that 23 i

‘ s on
straight line with 12 and 13 in order for the directions of V d "
common. e
Kennedy’s theorem is extemely useful in determining the locations of in-

stantaneous centers in me: i i

chanisms having a large nu i
: ) mber of | i
are in general plane motion. e

8.15 DETERMINATION OF INS
. STANTANEOU
CENTERS BY KENNEDY’S THEOREM °

In i isti i
rela:iti‘ze:hanlsm _cons;g,tmg of n lm}cs, there are n — 1 instantaneous centers
instantangoigyc egl:’en lﬁk' For n number of links, there is a total of n(n —1)
nters. However, since for each location of 1
instantaneous ce s
there are two centers, the total number N of locations is given by mers

n(n — 1)
2

N =

The number of locations of i
of cente i i i
e 15 increases rapidly with numbers of links as

LINKS N CENTERS
6

10
15
21

~ k3

E .
Example 8.6. For the Whitworth mechanism shown in Fig. 8.25, determine the 15

locations of instantaneous centers of zero velocity.

Soluti : A
e Slosrtlt;mBe}:duse of t.he large number of locations to be determined, it is desirable to
i iyn < % 2asv::c.:0unt1ngf f(})lr the centers as they are determined. The circle diagram
. 8.25 is one of the simplest means of accountin i
; ) lest g. The numbers of th
are designated on the periphery of the circle, and the chord linking any two nu(inlzanel:

;eepdrf;izlr-ll;sizz dn:)sta'iir]ltsanequs ce?ter‘ In the upper circle are shown eight centers which may
i gfow pe';tlon. Five of the centers (12, 14, 23, 45, and 56) are at pin-jointed
i anélii I\()v;) centers (16 fmd 34) are at infinity, since link 6 is in translation
S o e ; nk 3isin tfanslamon relative to link 4. Because the absolute velocit
points B and C of link 5 are known, the intersection of the normals Iocatez

15. Thus, eight centers are located i ;
diagram. cated by inspection, as shown by. the solid lines on the circle
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326 VELOCITY AND ACCELERATION ANALYSIS

e /
N

Circie diagrams

FIGURE 8.25

For centers less obviously determined, Kennedy’s th;:o;em. mz;y betuiec;lr.i;lrllgltélse
i 13, a dashed line is drawn such that it closes tw es.
upper circle, to locate center 13, S
i ‘ ters (12, 23, and 13) of links 1, 2, .
The triangle 1-2-3 represents the three cen : an ; W cie
i i i ight line. Similarly, triangle 1-3—4 repre
according to Kennedy’s theorem lie on a straig : 1 : A e
ich ¢ i traight line. The intersection
the centers 13, 34, and 14, which also lie on a s : . ; g
i i i 13, which must lie on both lines. The
lines on the mechanism locates the center 13, e
i i indi the unknown center has been located. ‘
line may be made solid to indicate that : . et iy
i i i center 24 is located using triangles
circle shows the next step in which the cen i sl
i i ter to determine rather than
—2-4, It may be seen that 24 is the logical cen :
§62 \:hich cans;oi be drawn as common to two triangles until other centers have been
determined. g

In Fig. 8.25, 10 of the 15 centers are shown. Figure 8.26 shows the same mechanism

with all 15 centers located.
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- 1are involved. The absolute v
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3Mat e +24

FIGURE 8.26

8.16 DETERMINATION OF VELOCITY
BY INSTANTANEOUS CENTERS

Kennedy’s theorem may be used to great advantage in determining directly the
absolute velocity of any given particle of a mechanism without necessarily de-
termining the velocities of intermediate particles as required by the vector pol-
ygon method. In connection with the Whitworth mechanism of Fig. 8.25, for
example, the velocity of the tool support (link 6) may be determined from the

known speed of the driving link 2 without first determining the velocities of points
on the connecting links 3, 4, and 5.

Example 8.7. For the Whitworth mech

velocity V. of the tool support when the
30 ft/s as shown.

anism shown in Fig. 8.27, determine the absolute
driving link 2 rotates at a speed such that Vi =

Solution. Two solutions for V. are shown in Fig. 8.27. In the first of these (Fig. 8.27a),

ch that instantaneous centers 13, 15, and 35 are used. Vi
of a particle on link 3 relative to link 1; thus, links 3 and
elocity V. is to be determined for a particle on link 5 also

_ g to Kennedy’s theorem, the
instantaneous centers 13, 15, and 35 are on a common straight line as shown in Fig. 8.27a.

Using center 13, the absolute velocity V., for a particle P, located at 35 on link 3 may be
determined graphically from similar triangles by swinging V, to position V} using center
13 as a pivot point. Point 35 represents the location of coincident particles P, on link 3
and P; on link 5, for which the absolute velocities are common (see Fig. 8.24). Thus,

Uploaded By: anonymous



GRAPHICAL DETERMINATION OF ACCELERATION

IN MECHANISMS 32
8 VELOCITY AND ACCELERATION ANALYSIS !

32 ¥ 1 velocities V, and Vy, are common. V,, is determined graphically from V, using cent:
//T 15 12 as a pivot point. Since pivot point 16 is at infinity, link 6 is in pure translation relatis
! to link 1 so that V. is the same in magnitude and direction as Vg, and V,,, as shown.

8.17 ROLLING ELEMENTS

The method of instantaneous centers is frequently applied to mechanisms cor

sisting of rolling elements as in epicyclic gear trains (Fig. 8.28). As shown pre

viously, the relative velocity of the coincident particles at the point of contact g
two rolling links is zero. Thus,

an instantaneous center exists at the point ¢
contact.

For the reduction drive shown in
as shown. The speed reduction ratio
speed when the sun gear is fixed
particles as shown. Assuming tha
is known, V, may be determined
the absolute velocity 'of a particl
absolute velocity Vp, of P, on lin
triangles. Since center 23 is
having a common absolute

Fig. 8.28, the instantaneous centers an
w3 /wy (the internal gear speed to carrie
) may be determined from linear velocities o
t'the absolute angular velocity w,; of the carrie
considering A as a particle on link 4. V4 is alsc
e on link 2; therefore, using the center 12, the
k 2 may be determined graphically from simila
the location of coincident particles on links 2 and -
velocity, wy; may be calculated from Vo,

(b)

V, (30 ft/s)

Vo=V, (11 ft/s)

ah

FIGURE 8§.27

P th i n hﬂ e S < h 5 P
ofa FIG

i imi jangles by swinging
ined from similar triangl
oy i int. The length of V¢ is measured to

i locity Vo,
V,. is also the absolute ve i .
01: link 5, the absolute velocity V. may o
V,. to position V¥, using centef 15asap
Ps

s : ity. . g ink are pivot
GeEI magli}‘llmde ?ft‘irzilocitl?’e centers 13 and 15 relative to the fixed lin r
In the above solu s

i erly identifying
d th ter 35 of the moving links is the transfer pot?[. By properly
ok inati iti omes systematic. ' . _
e Vdo?c?rci’b?; similar to the first, in which pl\;'Otk %Dlr:(i
: i icle on link 2 ¢
lute velocity of a particl ;
o o 26 is the transfer point representing
2 and 6, for which the absolute

8.18 GRAPHICAL DETERMINATION OF
ACCELERATION IN MECHANISMS
BY VECTOR POLYGONS

~As in the determination of velocities of particles in a mechanism, the linear
accelerations of particles may also be determined by graphical construction of

acceleration polygons and acceleration images. It is important that the relative
acceleration of pairs of particles be understood.

points, ey
e hese points, the 1 :
| e 'P}he second solution (Fig. 8.27b) @)
12 and 16 are used because V4 represen sl'._nk i
¥ .is the absolute velocity of a p:‘artlcle on 1d Q. oy
thce Jocation of coincident particles > and (s
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330 VELOCITY AND ACCELERATION ANALYSIS

8.19 RELATIVE ACCELERATION OF
PARTICLES IN MECHANISMS

If the acceleration A, of a particle Q is known, the acceleration of another particle
A, may be determined by adding the relative acceleration vector Apg as shown
in the following vector equation:

Ar= Ay + Apg 8.26)

As discussed in the sections on relative velocity, it is shown that the relative
velocity of a pair of particles depends on the type of constraint used in a given
mechanism. Similarly, the relative acceleration Ap, in mechanisms depends on
the type of built-in constraint.

820 RELATIVE ACCELERATION OF
PARTICLES IN A COMMON LINK

As shown in Fig. 8.29a, when two particles P and Q in the same rigid link are
considered, the fixed distance PQ constrains particle P to move on a circular arc
relative to Q regardless of the absolute linear motion of Q. Therefore, since the
path of P relative to Q'is circular, the acceleration vector Apo may be represented
by the perpendicular components of acceleration A}, and Aby normal and tan-
gent, respectively, to the relative path at P. Regardless of the linear absolute
acceleration of @, the angular motions of the link relative to Q are the same as
relative to<he fixed link because a particle such as Q has no angular motion. For
the circular path of P relative to O, the angular velocity o, of the radius of
curvature PQ is the same as the absolute angular velocity w; of the link. Also,
the angular acceleration «, of the radius of curvature is the same as the absolute
angular acceleration o of the link.

The magnitude of the normal relative acceleration A}, may be determined

from Eq. 8.4a:

Vv
A3l = (PO)0} = 52 (8.27)

Path of P
relative to @

Path of @
relative to P

(2) (b)

FIGURE 8.29
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The magnitude of the tan

mined from Eq. 8.4b: gential relative acceleration Afy may be deter-

|Abol = (PQ)as (8.28)

Because the relative path is circular, dR/dt is zero

Observe that the direction of A%, j ‘

- : ro-1s normal to the relative

) {sg t::fs‘;ir(()i ‘:ﬁ?nc;gteg of curvatur.e O so that the vector is gité]c:alzldf:(}::l?rf

e o 1g. 8.29a. The direction of Ajg is tangent to the relative

oy S l),_and. the sense of the vector depends on the sense of

e Whérc ; hre ative -acceleratmn vectors App and Al of O reiative '?

Fin: 8000 St € magnitudes fmd senses of w; and o5 are the sa in
relative path shown is that of Q observed at P. It is to l?;enil)stelg

that Ar, = Al
; op Poand AL, = — A! ; :
A, or Apg, where the minus signs indicate “opposite

E_xample 8.8. When the mechanism is
with Fhe angular velocity w, of 30 rad/s
the: directions given. Determine the ace
point C, the angular acceleration 0,

in the phase shown in Fig. 8.304, link 2 rotates
z[md an angular acceleration «, of 240 rad/s* ir;
= [53 ?{ratmn A; of point B, the acceleration Ac of
ik 3, the angular acceleration o, of link 4, and

O9A =102 mm
AB = 203 mm
AC =102 mm
CB = 152 mm

Oy

(b) A

FIGURE 8.30
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332 VELOCITY AND ACCELERATION ANALYSIS

the relative acceleration c. Velocity and acceleration equations can be written as follows:

L Vy=V,+ Vg
Ii. VC == VA =+ VCA

M. Vo= Vs + Vi

where )
VY, = direction perpendmuiar to O,

V, = (0A)w, = (102)30 = 3060 mm/s, direction perpendicular to 0,A
A -
¥, = direction perpendicular to BA, magnitude unknown

V. = direction unknow, magnitude unknown
to CA, magnitude unknown

B, magnitude unknown

Vs = direction perpendicular
V., = direction perpendicular to CB, magnitude unknown
= = 1130
Measured on the polygon of Fig. 8.30b, Vp = 3660 mm/s, Vp, = 2300 mm/s, Vea
mm/s, and Vep = 1750 mm/s. :

IV. Ay = Ay + Ap,
Aj + Ay = An + AL+ A+ Al

where,
Vi @92- = 66,000 mm/s?, direction from B toward O

~0.B 203
Ay = direction perpendicular to A%, magnitude unknown

Ay = . T M = 91,300 mm/s?, direction from A toward O,

4T 0,40 102 |
= (0,A)a, = (102)240 = 24,500 mm/s, direction perpendicular to Aj

g

An, = Viu = 2—3—02 = 26,100 mm/s?, direction from B toward A
BA T BA 203

A5, = diréction perpendicular to Aj,, magnitude unknown

= 70,400 mm/s*, Ay = 24,700 mm/s?, Ay =

Measured on the polygon of Fig. 8.30c, Ag
129,000 mm/s?, and

B e, 635 rad/s? . (ccw)

%= BA 203

A _ #,70 122 rad/s? (cw)

“ = 0B 203
= o, — @ = 635 — (—122) = 757 rad/s? (cew)

Oy = Q3

V. Ac= A, + AL+ Al

= Agp Ay + Al
B £t S STUDENTS-HUB.com
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where ;
A, = direction unknown, magnitude unknown
AL, = Ve = o = 12,500 mm/s?, direction from € toward A
CA 102 ’ ’
A, = direction perpendicular to A},, magnitude unknown
Ay = a0 20,100 mm/s?, direction from C toward B
CB 152 ’ i

-z = direction perpendicular to A%, magnitude unknown

Measured on the polygon of Fig. 8.30d, A: = 104,000 mm/s’.

The velocity polygon of Fig. 8.30b shows the determination of V; and V;, from Eq. L.
In a similar manner V¢, Vi, and Vg, are determined from Egs. 1T and II1. The shaded
triangle ABC of the velocity polygon is the velocity image of link 3.

Equation IV expresses A in terms of A, and Aj,, and all of the components of
this equation are known as indicated in magnitude, sense, and direction or in direction.
In constructing the acceleration polygon Fig. 8.30c starting with the right side of Eq. IV,
the vector Aj is drawn from pole O, to which is added A, This gives the vector A, whose
tip is labeled “A.” Next, add the vector Aj, starting at point A, and to it add the direction
of Aj,. As can be seen, it is impossible to complete the solution using only the components
on the right side of Eq. IV. Therefore, consider the left side of the equation and draw
vector Aj from O, and to it add the direction of A%. The intersection of the direction of
A}, and the direction of Aj completes the polygon. Arrowheads are now added to the
vectors Ay, and Aj so that the addition of the vectors of the polygon agrees with the
addition of the terms of Eq. IV. The resultant of the vectors A} and A} gives Ay whose
tip is labeled “B.” The resultant of A%, and A}, is also shown on the polygon.

The magnitudes and senses of o, and «, can now be determined from A%, and
Aj;, respectively, as shown.

To determine A, it is necessary to use Eqs. V and VI, which give the relations
between A; and A, and A,. The components of these equations are known as indicated.
For clarity, the acceleration vectors A, and A, are redrawn in Fig. 8.30d from Fig. 8.30¢
without their normal and tangential components. Use Eq. V, and draw the vector A%,
from point A in Fig. 8.30d and to it add the direction of Al,. Consider next Eq. VI and
draw the vector Al from point B and to it add the direction of A%y, The intersection of
the direction of A%, and the direction of A%; completes the polygon. This intersection is
point C, which gives A.. Arrowheads are now added to the vectors AL, and AL; so that
the vector addition checks with Egs. V and VI. The shaded triangle ABC of Fig. 8.304
is the acceleration image of link 3.

The acceleration of any point D as shown on link 3 can be determined by locating
its corresponding position on the acceleration image of link 3. The vector from O, to D
is A, as shown in Fig. 8.304d.

8.21 RELATIVE ACCELERATION OF
COINCIDENT PARTICLES ON
SEPARATE LINKS. CORIOLIS
COMPONENT OF ACCELERATION

The next mechanism to be considered is one in which there is relative sliding
between two links, as between links 3 and 4 as shown in Fig. 8.31, and it is
required to determine o, and o, given w, and o,. In this mechanism, points A,
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1
FIGURE 8.31

i i t ()- on o ﬁnk 4. TO find Oy
atld A are € i t (Hllt A 15 hell’ pr Je(_‘,tl n on
& r th same pOlIl ’ and p 4 4 ! g
aﬂd QL , the lfélOCity alld aCCﬂle[‘ation Of the two (_:OlnCldent pOlﬂtS A2 and A-ﬂh eaCll
4

3
te links, must be analyzed. . . :
o Se?;;f: equation for the velocity of point A, can be written as follows

29
VA4 = VA; + VA‘AZ (8.29)
is known in magnitude, sense, and direction and V,, and

L e velocity polygon can easily be drawn, and

V4, ar€ known in direction. Th
4

i i lated. ‘
d, from which @, can be calcu _ . :
- d?]:?:::i:lcration of point A, can be determined from the following equation

AAA o= AAZ + AAnAz (8-30)

¥

which can be expanded as follows: |
A:lt + Afd = A;'i: o+ A‘{h + AZ«A; -+ A‘Aqu + 2(!)2 x VA'tAZ (8.31)
In going from Eq. 8.30 to Eq. 8.31, the following substitution was made:
AA A, = .Aﬁ“,{z’ e Ahqu w3 2(})2 x VAdAz

i i inci ints, it

To determine the relative acceleration between two moving connc1c:§r;t 151?(;“:“ o

is necessary to add a third component as shown. This component. 1 e

Coriolis component, which was developed lfsu% vecut)lxl' rr:atlrimznlcs 1a v

i d A, are coincident, the ter hoa, and Al

8.6. Also, because points A, and A, : Gy b

I and tangential components

not represent the usual normal ‘ . . =

?lfc same Ir)igid body as previously considered. For this reason, the:;z gf:en z::gg -
in the literature written with a capital script @. The magnitude of A% 4,

calculated from the relation

Vi, 8.32)
A%l = —5 (

coincident with A,. ITowever, point A, is

i i t - -
3Ppint A, could have been used instead of A, as the poin O T i lo-an e

generally preferred because it is on a link directly connec!

easily visualized. STUDENTS-HUB.com
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where R is the radius of curvature of the path of point A, relative to point A,
This component is directed from the coincident points along the radius towarc
the center of curvature. The tangential component Al 4, 15 known in directior
and is tangent to the path of A, relative to A, at the coincident points. The
magnitude of the Coriolis component 2w, X V, , is easily calculated because -
is given data and V 4, ¢an be determined from the velocity polygon. The direction
of this component is normal to the path of A, relative to A,, and its sense is the
same as that of V,,_, rotated about its origin 90° in the direction of ;. An example
of this method of determining the direction will be given in a later section.

In Eq. 8.31, all of the components can casily be determined in magnitude,
sense, and direction or in direction except AJ,4,- This component calculated from
Vi.4,/R can only be determined if the instantaneous radius of curvature R of the
path of A, relative to A, is known. Unfortunately, because this path is not easily
determined for the mechanism shown in Fig. 8.31, it is necessary to rewrite Eq.
8.31 in the following form:

AG F AL S AL+ AL+ AL, + Al F 20, X Ve, (833)

With Eq. 8.31 written in this form, A, 4, can easily be evaluated as zero because
the path of A, relative to link 4 (which contains point A,) is a straight line and
R is infinite. The acceleration polygon can now be drawn and A/, determined,
from which oy is calculated,

While it is easy to see in Fig. 8.31 that the path of point A, relative to point
Ay is a straight line by inverting the mechanism and letting link 4 be the fixed
link, it is very difficult to visualize the path of A, relative to A,. As a means of
determining this path, consider Fig. 8.32, where link 2 is now the fixed link. In
this figure, link 1 is placed in a number of angular positions relative to link 2
and the relative position of A, is determined for each position of link 1. It may
be seen that the position of link 4 is always in a direction from O, through A,
and that A, is a fixed distance from O,. As shown, the path of A, on link 2 is
curvilinear and tangent to link 4 at point A;. Unfortunately, the path is not
circular so that the radius of curvature is difficult to determine.

Consider next the case where link 4 of Fig. 8.31 has been replaced by a
curved link of circular form as shown in Fig. 8.33. In this linkage, the path of
A, relative to Ay is a circular arc of known radius and center of curvature. The
magnitude of A3 , is therefore not zero, and the vector representing this com-
ponent will be directed from point A toward the center of curvature C,

The Coriolis component is always in the same direction as the Al 4, com-
ponent, if one exists, but its sense may or may not be the same. Considering the
Coriolis term 2e, % V.4, for the linkage of Fig. 8.33, its direction and sense can
easily be determined as follows. Draw the vector representing the relative velocity
V4,4, I its correct direction and sense, Rotate this vector 90° about its origin in
the same sense as w,. This will give the direction and sense of the Coriolis
component as shown in Fig. 8.34. As can be seen, the terms A% 4, and 2w, X
V4,4, have the same sense for this case and will therefore add together. Obviously,
this method of determining the direction and sense of Coriolis applies even if the
A}, 4, component is zero.
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2
Path of A4 \%\ \ |

on link 2 —S\

FIGURE 8.33

Example 8.9. In the crank
constant angular v

link 4 and the angular acceleration o, when the mechani

and acceleration equations ca

L V,, =Vt Vaa

elocity o, of 10 rad/s. Determine the acceleration A,

vAz-‘h

w4
90°

2w4 X Va, a,

FIGURE 8.34

i in Fig. 8.35a link 2 rotates at a
-shaper mechanism shown in Fig Frepye

sm is in the phase shown. Velocity

n be written as follows:
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where

V., = direction perpendicular to 0,A,, magnitude unknown
Vi, = (04w, = (4)10 = 40 in./s, direction perpendicular to 0,4,

V4,4, = direction parallel to 0,4,, magnitade unknown

Measured on the polygon of Fig. 8.35b, Vi, = 13in/s, V, . = 38 in./s, and

VA4 13
= ="t = 2= = {3rad/
Y= o4, 10" L3radls  (cow)
. A““‘ . A/‘z i AA.;A:

. AA: = AA4 + AA2A4
AL+ Ay = A+ A+ Adya, + Al + 20, X Wi

where
V3 2
R . L = 400 in./s?, direction from A, toward a,
A, 4
4 =0 (o =0)
¥ Vi, _ 13 16.9 in./s?, direction from A, toward O
il =l o — . 5 » C W
“T 04, 10 : e :
A, = direction perpendicular to Aj,, magnitude unknown
n V2
AA;%:;;;_"“:() (R = )
2w, X V. = 2(1.3)38 = 98.8 in./s*, direction perpendicular to Vi,

Al 4, = direction perpendicular to 2w, X V,,,, magnitude unknown

Measured on the polygon of Fig. 8.35¢, Ay, = 475 in. /8, Aj,4 = 474 in./s*, and
i
0 = ——= = — = 47 4 rad/s? (cw)

Link 4 is a guide link which constrains points A, and A4, to follow a straight-line path on
link 4. Two pairs of coincident points may be considered, either A, and A, or A; and A,
For this illustration, A, and A, are chosen, and the straight guide path is the relative path
of A4, on link 4. Thus, the vectors V4, and A, 4, are involved, and the A} 4, component
of AAZA‘ can easily be determined because R = o0,

The velocity polygon of Fig. 8.35b shows the determination of V., and V, . from
Eq. I. The calculation for w, is also shown,

Equation II expresses A, in terms of A, and A, ,,. However, because the path of
point A, relative to point A, is not easily determined, Eq. IT is rewritten in the form of
Eq. IIT so as to use the component A, , as discussed above.

All of the components of Eq. III are known as indicated in magnitude, sense, and
direction or in direction only. In constructing the acceleration polygon of Fig. 8.35¢ starting
with the right side of Eq. III, the vector A%, is drawn first, followed by the direction of
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B

wy = 10 rad/s
E 02
Ag 2
Ay e

0204 =121in.

FIGURE 8.35

Al,,. This is all that can be laid off from the right side of Eq. IIT at present. Therefore,
consider the left side of Eq. I and draw the vector A,,. Next, draw the vector
203, X V4, so that its tip meets the tip of vector A,,. Draw Aj,, perpendicular to the
Uoriolis component until it interseets the direction of the vector representing Aj,; this
completes the polygon. Arrowheads are now added to the vectors A, and Al 4, 80 that
the addition of the vectors of the polygon agrees with the addition of the terms of Eq.
TI1. The magnitude and sense of oy can now be determined from Al as shown.

Example 8.10. In the mechanism shown in Fig. 8.36a, link 2 drives link 3 through a
pin at point B, Link 2 rotates at a uniform angular velocity o, of 50 rad/s, and the radius
of curvature R of the slot in link 3 is.305 mm. Determine the acceleration A, of point
B, on link 3 and the angular acceleration o for the position shown. Velocity and accel-
eration equations can be written as follows:

1. ng = Vﬁz + VB!HZ

where :
V,, = direction perpendicular to O;B;, magnitude unknown

Vi, = .(Osz)wz = (50.8)50 = 2540 mm/s, direction perpendicular to O,B;

Vo, = direction perpendicular to R, magnitude unknown

Measured on the polygon of Fig. 8.36b, Vi, = 1650 mm/s, V5 = 2540 mm/s, and

v
o _ 1650 _ 93 radss

= 0,8, 208 (cew)

Wy

. A, = As, + Asp,
STUDENTS-HUB.com
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Path of By
on flink 3

0203 = 229 mm
O3Bz = 50.8 mm
03B3 = 208 mm

(a)

VBaﬂz
Bs Vi, p,
By
(b)
Oy
Agﬂsa + 2wy X Vg, p,

ZW3 x VB"]B';

FIGURE 8.36 ’

ML A, = Ag + Ay,
An =B t = n
B+ Aj, By A + A, t Al + 20 X V0

where

Ag‘z - V?Bz - 25402

0,B, 508 127,000 mm/s?, direction from B, toward 0,
!32 =0 (az = 0)
3, = Vi, _ 1650° .
"= 0.8, 208 13,100 mm/s?, direction from B; toward O,

5, = direction perpendicular to Aj,, magnitude unknown

VZ
oy o, B

29 X Vg = 2(7.93)2540 = 40,300 mm/s?, direction perpendicular to V,
283

1 — = b .
Al = direction perpendicular to 2e; X V, ;. magnitude unknown
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Measure on the polygon of Fig. 8.36c, Ap = 122,000 mm/sZ, A'B3= 120,000 mm/s?, and

AR 120,000 2
T 577 rad/st  (cw)

03

Link 3 is a guide link which constrains point B; on link 2 to follow a circular path on link
3. Points B, and B, on link 3 are coincident, and the circular guide path is the relative
path of B, on link 3. Therefore, the vectors Vi, and Ay,p, are involved in the analysis.

The velocity polygen of Fig. 8.36b shows the determination of Vg, and V4, from
Eq. L. The calculation for o, is also shown.

Equation II gives Apg, in terms of Ap, and Az, Because the path of B, relative to
B, is known to be a circular arc and the path of B; relative to B, is not easily determined,
Eq. Il is rewritten in the form of Eq. IIT so as to use the component A g s,

All of the components of Eq. III are known as indicated in magnitude, sense, and
direction, or in direction only. The acceleration polygon of Fig. 8.36¢ is started with the
right side of Eq. III by drawing the vector Aj, followed by the direction of Ajp,. This is
all that can be laid off on the right side of Eq. 1II at the moment, 50 consider the left
side of the equation and draw the vector Ay, The vectors Al g and 2005 X Vi, have
opposite sense. Determine the resultant of these two vectors, and add it to the polygon
so that its tip meets the tip of vector Ag,. Draw Aj g perpendicular to Aj; until it
intersects the direction of the vector representing Aj; this complétes the polygon., Ar-
rowheads are now added to the vectors Aj, and Aj,p, SO that the addition of the vectors
of the polygon agrees with the addition of the terms of Eq. I1L. The magnitude and sense
of o, can now be determined from Ajg, as shown.

8.22 RELATIVE ACCELERATION OF
COINCIDENT PARTICLES AT THE POINT
OF CONTACT OF ROLLING ELEMENTS

An important type of constraint in mechanisms is that which occurs because one
link is constrained to roll on another link without relative sliding of the two
surfaces at the point of contact. In Fig, 8.37 are shown the rolling pitch circles
of a pair of gears in mesh with particles P, on link 3 and P; on link 2 coincident
in position at the point of contact of the rolling circles. As concluded in an earlier
paragraph, the relative velocity Vp.p, of the coincident particles is zero, and the
absolute velocities Vp, and Vp, are identical.

The relative acceleration A, p, of the coincident particles may be represented
by component accelerations, a component A} p in the -t direction of the common
tangent to the surfaces at the point of contact, and a component A}, » in a direction
normal to the surfaces at the point of contact. The tangential component of
relative acceleration Ab p. is the vector difference of the absolute tangential ac-
celerations A%, and A}, shown in Fig. 8.37. Like the tangential velocities Vp, and
Vp,, the tangential accelerations A}, and Ap, are identical because of the condition
of no slipping of the surfaces at the point of contact. No slipping requires that
there be no relative motion of the two particles in the direction of possible sliding,

which is the tangent direction. Thus, because Ap, and Ap, are identical, the

tangential component of acceleration of Ps relative to P, is zero.

The normal component of reslgl_tive acceleration A} p is the vector difference -
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FIGURE 8.37

& :
r:ci?:;ll)f(ﬁ::; ba;zzigra:;}ons A}, and A}, shown in Fig. 8.37 in the normal di-
e e \:;rd eg thrlcihabsolute normal acceleration of Py is toward O,
s thatz.h ese are parallel vectors, but the senses of the
b L e the magnitude of A} is the sum of the magnitudes
. 3 s .hou h thls Important to obgerve that a normal relative acceleration
s X : meChaHiﬁm e f1iang'entlal relgtwe; acceleration is zero.
i negsc as is shown in Fig. 8.37 where the centers of the gears
. 'fhe ph accsesiz;};ttiz draw an acc_eleration polygon to determine A,
oot e s bl USillgnt§3 can easily be determined from o, and from

been found, the ¢ "
» the components A}, and Aj, can be calculated and combined to give

A more complex ca cs W]le car nterx Ie 11 t1o1 Sint l() l(iW n
Py l S re g cent sa moti 1, das1 hC I 1 g

eXanlple, it 18 IeCOmlnended at S()ll.lti(” [)e ur (Eeltake usin p(! y on con-
th
S 1 n g 1 g n

Example 8.11. 1n the mechanism shown in Fi
constant angular velocity o,
acceleration A, of point P,
2 and 3. Velocity and accele

g. 8.38a, gear 2 rotates about (2, wi

\ 1 S ith a
0of 10 rad/s, and gear 3 rolls on gear 2. Detcrmzine the
n gear 3 a{:d the velocity and acceleration images of gears
ration equations can be written as follows:

LV,=V,+ Voa

LV, =V, +V,,

- where
:r’y = direction perpendicular to O, B, magnitude unknown
: a = S-OZA)DJZ = (2)10 = 20 in./s, direction perpendicular to 0,4
na = direction perpendicul ine joini i
; p ar to line joining points B and A, magnitude unknown

p, = direction perpendicular to O,P,, magnitude unknown

Ve, = direction per] i
pendicular to P,A, magnitude unk
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e fact that Ap = Ap,. After o; and w; have
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