Instruction-Level Parallelism

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Presentation Outline
*Diversified Pipeline
“+Out of Order Execution
“*Tomasulo's Dynamic Scheduling
“*Dealing with Exceptions
“*Reorder Buffer

“*Out of Order Memory Access

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Pipelined Datapath Review

EX.Flush

IF.Flush
ID.Flush
Hazard
detection =
N 4
3 M
ID/IEX u
X
N Y
e v EX/MEM
Control M M
ontro > u | M > \/VB
u MEM/WB
T g :
IF‘ID 0= [, | EX _|_> EPC . ol M WEB
p——- B
Shift (M)
4 left 2 R |m
- - u =
> Y - x
Registers T/ -
Y l P
80000180 <iRT pc Ll Instruction . - u
X memeny . M Data | | >
- — : r memory
* .
N
Sign- > >
extend o
> | 4 r=
= =0 > U &
] : () l ’
[Forwarding
. unit -
STUDENTS-HUB.com o LR IRTRIE e

What Makes Pipelining Complex?

“* Multiple Execution Units
< Integer ALU, Floating-Point Unit, Multiply, Divide, etc.
¢ Long-Latency Execution Units
< Integer Multiplication and Division take longer to execute
< FP Addition, FP Multiplication, and FP division (multiple cycles)
“* Fully pipelined versus non-pipelined arithmetic units
< Fully pipelined: can issue one instruction every cycle
<> Not pipelined: must wait until arithmetic unit is not busy
% Cache memory system with variable access time
< Cache miss: must wait for instruction or data
» Dealing with Exceptions

< Imprecise versus Precise exceptions
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Function Unit Characteristics

Fully Pipelined
Operands —2| 1 1 1 1 > Result |nijtiate 1 op per cycle
Control —>| cycle | cycle | cycle | cycle —> Rdst, w Result after 4 cycles

Partially Pipelined

Operands —> 2 2 —> Result Initiate 1 op per 2 cycles
Control —>{ cycles cycles |—> Rdst, w Result after 4 cycles
Not Pipelined
Operands —>17 6 \—) Result Initiate 1 op per 6 cycles
Control _>\c)/c|is/_> Rdst, w Result after 6 cycles

“* Function units have internal pipeline registers
<> Operands are latched when an instruction enters a function unit
<> Control specifies operation + destination register

< A busy signal can be added to control the initiation of instructions
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Program Order and Dependences

** Program Order
< Sequential order of instructions as defined by source program

<> Hardware and software must preserve program order

*» True data dependence

< Instruction I computes a result that is used by instruction J

I: add rl, r2, r3 @_)@ Dependency
J: sub r4, ri, r5 Graph

< If instruction J depends on I =» Cannot execute in parallel

¢ Effect of true data dependence must be preserved

» If data dependence causes a hazard then it is called
< Read-After-Write (RAW) data hazard

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Name Dependences

* Name Dependence
< When two instructions use the same register or memory location

<> But no flow of data between the two instructions
s Two types of Name Dependences

1. Anti-Dependence: I reads r2, which is later written by J
I: add r4, r2, r3 M Dependency
J: sub r2, rl, r5 Graph
2. Output Dependence: I writes r4, later re-written by J
I: add r4, r2, r3 M Dependency
J: sub r4, rl, r5 Graph

s Caused by the reuse of same register name

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Name Dependences and Hazards

¢ If anti-dependence causes a hazard then it is called
< Write-After-Read (WAR) data hazard

“ If output-dependence causes a hazard then it is called
< Write-After-Write (WAW) data hazard

“* Dependences are a property of programs
“+ Hazards are a property of pipeline implementation

“* Name dependences can be eliminated by renaming

< Instructions can execute in parallel if a different name is used
“* Renaming can be done by the compiler at compile-time
*» Can be done also by the hardware during execution time

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Example of a Diversified Pipeline

s Four functional units are used:

< Integer Execution unit: 1 pipeline stage (EX)

< Memory Unit (Data Cache): 2 pipeline stages (M1 and M2)

< Floating-Point Multiply-Add: 4 pipeline stages (FP1 thru FP4)
< Divide Unit (Integer and FP): 6 cycles, NOT pipelined (DIV)

EX

IF

M1

v

M2

WB

STUDENTS-HUB.com

-n
)
[
|

FP2

FP3

FP4

J;
|

~u

Uploaded By: Jibreel Bornat

Timing of Long-Latency Operations

* Timing of Independent Floating-Point Instructions

+» In-Order Instruction Fetch, Decode, and Execute

% Out-of-Order Completion of Instructions

< The FDIV instruction has the longest execution time (6 cycles)

< The FADD and LD complete before FDIV

< Structural Hazards occur if multiple write-backs during same cycle

Clock Cycle Number

1 2 3 4 5 6 7 3 9 10 11 12
FDIV IF ID DIV DIV DIV DIV DIV DIV WB
FADD IF ID FP1 FP2 FP3 FP4 WB
LD IF D M1 M2 WB
FMUL IF ID FP1 FP2 FP3 FP4 WB

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Structural Hazards

¢ Structural hazards occur when a unit is not pipelined
¢ The divide (DIV) unit is not pipelined

< Cannot issue second divide instruction during next clock cycle
 Stall pipeline as long as the DIV functional unit is busy

<> Cannot execute second FDIV instruction until the DIV function unit is free

< Freeze the IF and ID stages until DIV unit is free (5 stall cycles)

Clock Cycle Number
1 2 3 4 5 6 7 8 9 10 11 12

FDIV IF ID DIV DIV DIV DIV DIV DIV WB

FDIV IF ID ID ID ID ID ID DIV DIV DIV DIV
LD IF IF IF IF IF IF D M1 M2 WB
FMUL 5 Stall Cycles IF ID FP1 FP2

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Conflicting Writes

* Out-of-Order completion causes conflicting writes

¢ Multiple write-backs during the same cycle

“* Must detect hazard and delay conflicting writes

Clock Cycle Number

1 2 3 4 5 6 7 8 9 10 11 12

FDIV IF ID DIV DIV DIV DIV DIV DIV WB

LD IF D M1 M2 WB

FMUL IF ID FP1 FP2 FP3 FP4 WB

FADD IF ID FP1 FP2 FP3 FP4 WB

LD IF D M1 M2 WB

ADD IF ID EX WB

SUB IF ID EX WB

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Detecting Conflicting Writes

s Conflicting writes to the register file is a structural hazard
<> Function units can produce multiple results in parallel
<> However, one write port to the register file can write one result

s Conflicting writes can be detected early in the ID stage
< Preventing conflicting writes early in the ID stage
< Knowing the latency of each function unit

¢ Conflicting writes can also be detected late in the WB stage
< The Write-Back stage must resolve the conflict
< Forcing some function units to stall until write-back is completed

¢ A third choice is to balance the depth of all function units

< By adding delay stages and ensuring In-Order Completion

< Prevents conflicting writes, but increases the delay of function units
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Resolving Conflicting Writes

*+ An Instruction in the ID stage is not issued for execution

< Until it is clear there is no conflicting write

< A conflicting write causes the instruction in the ID stage to stall

Clock Cycle Number
1 2 3 4 5 6 7/ 8 9 10 11 12 13 14 15

FDIV IF ID DIV DIV DIV DIV DIV DIV WB

LD IF ID M1 M2 WB

FMUL IF ID ID FP1 FP2 FP3 FP4 WB

FADD IFIF ID FP1 FP2 FP3 FP4 WB

LD IF ID D ID M1 M2 WB

ADD IF IF IF ID ID EX WB

SUB IF IF ID EX WB
OR IF ID EX WB

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Write-After-Write (WAW) Hazards

% Out-of-Order Completion also causes WAW hazards
*» Write-Backs to the same register can occur out-of-order

¢ In the example shown below:
<> The LD instruction completes before FADD
< Final value of F5 is written by FADD not LD
< Causing WAW Hazard

*» Writes to the same register should be in program order

Clock Cycle Number
1 2 3 4 5 6 7 8 9 10
FADD F5,F2,F3 IF ID FP1 FP2 FP3 FP4 WB
LD F5, 16(R6) IF ID M1 M2 WB

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

RAW Hazards: Stall and Forward

“* RAW hazards are caused by long-latency operations
+» Stall cycles: waiting for results of long-latency operations
*» Implementing Stall-and-Forward can be complex

<> Number of stall cycles can vary according to the unit latencies

< Forwarding is needed across multiple functional units

Clock Cycle Number

1 2 3 4 5 6 7 8 9 10 11 12 13

LD F4,0(R7) IF ID M1 M2 WB

FADD Fs,\F‘4, F2 IF D ID\FPl FP2 FP3 FP4 WB

FMUL Fs,\F‘G, F3 F IF ID ID ID ID \FPl FP2 FP3 FP4 WB
ADDI Ri, R7, 8 F IF IF IF ID EX WB

SD F5, 16(R8) F ID ID ID M1

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Complex Forwarding Network

“* Wide multiplexers at the input of each function unit

** Must detect RAW hazards and control each multiplexer

Forwarding
becomes - - ss
complex if more = | EX
function units PR - - - .
are added PR s
7 M1~ M2 _)
IF |- ID : WB
N < |FP1|=|FP2 || FP3 || FP4 [+
Delay stages Céntrfl _
increase the | “°"°" N Fa
complexity of 'j \\DIV/

forwarding
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Presentation Outline
*Diversified Pipeline
“*Out of Order Execution
“*Tomasulo's Dynamic Scheduling
“*Dealing with Exceptions
“*Reorder Buffer

“*Out of Order Memory Access

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Motivation for Out-of-Order Execution

*»» So far, instructions are ...

< Fetched, decoded, and executed in program order

<> But complete out-of-order
*» Consider the following example:

DIV.D FO, F1, F2 ; Long latency operation
ADD.D F4:\FG, F3 ; Wait for DIV.D

L.D F5, O(R4) Do not depend on the
L.D F6, 8(R4) result of DIV.D or ADD.D

SUB.D Ff?‘FG, F5 ; Wait for both L.D

» If in-order execution then ADD.D will stall the pipeline

¢ But the two L.D instructions can execute
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Out-of-Order Execution

* Also known as Dynamic Scheduling
<> Done by the processor pipeline at runtime
<> Instructions execute based on the availability of their operands
< In contrast, compiler scheduling is called Static Scheduling
“ O0OO0 execution must preserve sequential semantics
< Instructions with dependences must wait
< But should allow later independent instructions to execute
¢ Must have an Issue Stage In the processor pipeline
< Issue stage detects when an instruction can begin execution
<> Based on the availability of its operands
“* No complex forwarding network

< Only the WB stage forwards the result to the Issue Stage
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Example of Out-of-Order Execution

Clock Cycle Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DIV.D F({\Fl, F2 IF ID IS DIV DIV DIV DIV DIV DIV WB

ADD.D F4,FO, F3 IF ID IS IS IS IS IS IS I\lS,o FP1 FP2 FP3 FP4 WB
L.D F5, O(R4) IF ID IS M1 M2 WB

L.D FNM IF ID IS M1l V\/iZ WB

SUB.D F7\,\F6, F5 IF ID IS IS I\g FP1 FP2 FP3 FP4 WB

“* A new Issue Stage (IS) is added to the pipeline

¢ Instructions wait in the Issue Stage if they cannot execute
<> ADD.D waits for the result of DIV.D (RAW hazard)
<> SUB.D waits for the two L.D instructions (RAW hazard)

< Can have many waiting instructions in IS without stalling pipeline
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Advantages of Out-of-Order Execution

*» Overcomes the limitations of in-order execution pipelines

*» Allows non-dependent instructions that come after to proceed
“* Hardware rearranges instructions to reduce stall cycles

*» Hardware detects and handles all types of dependences

“* Works even when dependences are not known at compile time
“* Multiple execution units can be used in parallel

“ Simplifies the compiler

¢ Code for one pipeline runs well on another pipeline

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Write-After-Read (WAR) Hazards

«» Out-of-Order execution can cause WAR hazards

¢ In the example shown below:
<> The ADD.D instruction depends on the result of DIV.D
< ADD.D waits in the Issue Stage and begins execution at cycle 11
< L.D does NOT depend on the result of DIV.D or ADD.D
< L.D completes and writes F3 before ADD.D begins execution

< ADD.D reads the wrong value of F3 (value written by L.D)

Clock Cycle Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DIV.D F%Fl, F2 IF ID IS DIV DIV DIV DIV DIV DIV V\iB
ADD.D F5, FO, F3 IF ID IS IS IS IS IS IS IS FP1 FP2 FP3 FP4 WB

L.D F3, 8(R4) IF ID IS M1 M2 WB
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Register Renaming

% 00O execution causes WAR and WAW hazards
<> Because of name dependences, NOT true data dependences

“* Name dependences can be eliminated with Register Renaming
< Eliminates WAR and WAW hazards

< Done by the hardware at runtime using extra registers: X0, X1, etc.

“ Example on register renaming

DIV.D FO, F1, F2 DIV.D FO, F1, F2
ADD.D F5, FO, F3 ADD.D F5, Fo, F3
L.D Fo, o(R4) —> L.D X0, 8(R4)
L.D F3, 8(R4) L.D X1, 8(R4)
MUL.D F5, F@, F3 MUL.D X2, X0, X1

“* With register renaming, only true data dependences remain
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Presentation Outline
*Diversified Pipeline
“*Out of Order Execution
*Tomasulo's Dynamic Scheduling
“*Dealing with Exceptions
“*Reorder Buffer

“*Out of Order Memory Access

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Tomasulo's Dynamic Scheduling

** Reservation Stations (RS)
< Areservation station is a buffer for an instruction and its operands
<> An instruction waits in a reservation station until its operands are available
< A reservation station number renames the destination register
< Number of reservation stations can exceed the number of registers

% Common Data Bus (CDB)

<> Broadcasts a result to all waiting reservation stations
*» First implementation: IBM 360/91 (1967)

< Dynamic scheduling for Floating-Point units only
< IBM 360/91 had 4 Floating-Point registers only!

“ Our example of a Tomasulo Pipeline

< Dynamic scheduling for everything: ALU, FPU, and load/store

< One register file for general-purpose and floating-point registers
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Example of a Tomasulo Pipeline

Instruction _ Ra, Rb v_ v |
Register
IF <— stall —— ID g_
Rd, s File
)
c vVvVvVY YV VYV Yv VVVVVY Yy VWVVVVYVY VYWV V VYV VY D
S w 12 9 5 1 O
— C S—
© O |13 10 6 2 n
>
o E 14 11 7 3 a
S & |15 8 = ©
o s| |lop |vl|im [v2 s{ |op |vi v2 op |vl v2 s| |op |v1 v2 | ¥
Vv V \ 4 \ 4 \ 4 Y V \ 4 \ 4 Y V \ 4 \ 4 Y V \ 4 \ 4 8
Address Unit QD'D FP1 ALU -
S address data FP2 g
v Vv \ 4 \ 4 T FP3 E
D-Cache s| Result busy S Result busy | O
load b FP4 O
S us
data Y Result | busy
\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4
WB
| Result, s

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Reservation Stations

“» Each reservation station RS[s] has a unigue number s
< Used as a tag to rename and identify the result of an instruction

< There is NO zero tag (reserved for special use)

¢ Each reservation station has the following fields:
< T: Tag = a unigue number s identifying each reservation station
< Busy: Indicates whether the reservation station is busy or free
< Op: Operation of the instruction waiting in this reservation station
< V1, V2: Source operand values
= |-type ALU instructions put the immediate constant in V2
< T1, T2: Source operand tags (stations that will produce value)
= |fT1 (or T2)is zero then the value is present in V1 (or V2)
= |fboth T1 and T2 are zero, the instruction is ready to execute

<> Load/store instructions need an immediate field to compute address
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Register File

¢ One register file is used for both integer and FP registers

“+ Each entry in the reqgister file has two fields:
< T =Tag (rename) of a register = reservation station number s
< V =Value of a register in the register file

“* The register Tags are also known as the Rename table
< If T is s then the instruction waiting in RS[s] will compute value

< If T is zero then the register value V is present

Rl | T=tag V =value
Register File for : :)
general-purpose R31 | T=tag V = value

and floating-point FO | T=tag V = value
registers : : :

F31 | T =tag V =value
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Tomasulo's Algorithm: Four Steps

1. Dispatch: in-order
< Instruction in ID allocates free reservation station s: Rs[s].Busy < 1
< Regqister file is read and operand values are copied to RS[s]
< Destination register Rd is renamed to reservation station s: Reg[Rd].T € s

2. Issue: out-of-order
< If input operands are ready in RS[s], issue and begin execution
< If not, instruction waits in RS[s] and monitors the common data bus

3. Execute: out-of-order
< Execute instruction in RS[s] and compute its Result

4. Write Back: out-of-order
< Forward Result to stations with a source operand matching tag s
< Write back Result to register with matching tag s
< Free reservation station s: Rs[s].Busy < O
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Tomasulo's Algorithm: Four Steps

1=

\ 4

Queue

Issue Writeback

Integer

Integer

Multiply
Floating-Point / NEON

STUDENTS-HUB.com

TEEETREEE

Load

Store

Uploaded By: Jibreel Bornat

Instruction Dispatch Stage

*» ID Stage = Instruction Decode and Dispatch Stage

¢ Instructions are decoded and dispatched in program order

*» Check for a free reservation station s

<>

R

¢

If station s is free (Busy is 0) then Rs[s].Busy € 1; RS[s].Op € Operation
Let Ra, Rb = source registers in the register file

Copy the source register tags and values into station s

RS[s].T1 € Reg[Ra].T RS[s].V1 < Reg[Ra].V

RS[s].T2 € Reg[Rb].T RS[s].V2 € Reg[Rb].V

If instruction has no 2"d source register then: RS[s].T2 < 0

Load and Store instructions: RS[s].imm < immediate (offset)

Let Rd = destination register, then Reg[Rd].T < s

** If no free reservation station then stall (structural hazard)
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Issue Stage

¢ Instructions walit in reservation stations in the Issue stage

* An Instruction in station s is ready to execute if
<> Both operands are present: (RS[s].T1 == 0 and RS[s].T2 == 0)

¢ Issue instruction if corresponding function unit is NOT busy
< If corresponding function unit is busy then wait (structural hazard)

¢ Issued Instruction = (s, RS]s].op, RS[s].V1, RS[s].V2)

* Can issue instructions in parallel to different function units
<> However, cannot issue multiple instructions to same function unit

¢ After an instruction is issued, then it is executed

< Execution might take one or multiple cycles

< Function unit may or may not be pipelined
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Write Back Stage

“* Write Back stage receives the results of all function units

“* Write Back stage detects and resolves conflicting writes
< Each cycle, the WB stage selects the result of one function unit
< Places Result and its station number s on the common data bus
< Forces other function units to wait if conflicting write (busy signal)

“ All reservation stations monitor the common data bus
<> VX, if (RS[x].T1 ==5s) { RS[x].V1 € Result; RS[x].T1 < 0}
<> VX, if (RS[x].T2 == s) { RS[x].V2 € Result; RS[x].T2 < 0}

¢ The reqister file also monitors the common data bus
< VX, if (Reg[x].T ==s) { Reqg[x].V € Result; Reg[x].T < 0}

*» Free reservation station s: Busy[s] € O

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Improving the Write-Back Stage

*» Drawback of Write-Back: tag s must be compared against
< All tags in all reservation stations to detect data dependencies
< All tags in the rename table of the register file

*+ Requires many comparators and consumes a lot of energy

“* Writing result to the register file can be improved

< Result must be written to destination register Rd

< During instruction dispatch, store Rd in reservation station entry s

< During write-back: Result, s, and Rd should appear on the result bus
“» Check the tag of register Rd in the reqgister file

< If (Reg[Rd].T == s) { Reg[Rd].V €& Result; Reg[Rd].T < 0}

“ Only one tag is checked in the register file, not all of them

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Tomasulo Example

*» Consider the following loop example:

Loop: L.D F1, (R4)
MUL.D F2, F1, FO
S.D F2, (R4)
ADDIU R4, R4, 8
BNE R4, R5, Loop
“ Dependence Graph (for 2 iterations)

< Data + Name Dependences within iteration

< Data + Name Dependences across iterations

“ Assume that BNE is predicted to be taken v
<> The loop can be unrolled dynamically by the hardware

< Renaming eliminates all WAW and WAR hazards
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Tomasulo Example: Cycles 3 to 5

™ B Op T1 V1 T2 V2 Rd T Value Register File
Sll2[1] b Jo| 1000 [o] - [r1] R4[0] 1000 _
3113l i 0 i 0 i 1 R5|/0| 1800 Cycles: 3,4,and 5
IE(; 102 250 T Value
< B Op T1 VI T2 V2 Rd [;F3 : R4[0] 1000
g|[5]imuLD[i2] ? o 20 [r2 R 0
Oll6l0 - 0 , 0 _ _ - T Value
E% 152 3 R4[0] 1000
w| B Op TL VI T2 V2 Rd — o3 A5
Q .
IS 12|1 L.D 0 1000 0 - F1 F1112 2
o :
Ol [13|1] s.D |o| 1000 |5 ? - F2[5 ?
Clock Cycle Number
1 2 3 4 5 6 7 8 9 10
L.D F1, (R4) |F ID IS M1l M2 V\iB
MUL.D F2, F1, FO |F ID IS IS IS FP1 FP2 FP3 FP4
S.D F2, (R4) |F ID IS IS IS IS IS IS
ADDIU R4, R4, 8 |F ID IS EX V\iB
BNE R4, R5, Loop |F ID IS IS EX

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Tomasulo Example: Cycles 6 to 8

0 B Op T1 V1 T2 V2 Rd T Value Register File
S|[1]1] ADDIU 0| 1000 [0] 8 [R4 R4[LI] _
S0 i 0 i 0 i 1 R5|/0| 1800 Cycles: 6,7,and 8
FO10 2.0 T Value
F1l12] 2 >
~1||1|1] ADDIU [0| 1000 |O 8 R4 2[5 5 R4 |1 !
g|[2]1] BNE [1] ? o[1800 |- | R 0
: T Value
O||5(1] MULD |0 5.3 0 2.0 |F2 F110 53 R4TO 5
F2 |5 ?
o|[2Jo] Lb Jo| 1000 |0] - |r1 R0
Q .
IS 13|1 S.D 0 1000 5 ? - F1114 ?
Q :
O1114(1| L.D 1 ? 0 - F1 F2[5 ?
Clock Cycle Number
4 5 6 7 8 9 10 11 12 13
L.D F1, (R4) M1 M2 V\iB
MUL.D F2, F1, FO IS IS IS FP1 FP2 FP3 FP4 V\iB
S.D F2, (R4) ID IS IS IS IS IS IS IS M1 M2
ADDIU R4,R4, 8 IF ID IS EX WB . _
Conflicting Write
BNE R4, R5, Loop IF ID IS I$ EX 7
L.D F1, (R4) |F ID IS M1 M2 WB WB

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Tomasulo Example: Cycles 9 and 10

B Op T1 V1 T2 V2 Rd T Value : :
—112]1] BNE [0 1008 |0| 1800 |- R4[0] 1008 Register File
% 51l MULD | O 5.3 0 2.0 F2 R5(0 1800 CyCIGS: 9 and 10
S|[6l1[™MuLD |14] 2 |o| 20 |2 FOlO1 2.0
=12 b lo[1008 |0 S s s T Value
' - F216] °? R4[0] 1008
S1[3[1] so lo] 1000 [5] =2 |- Eg 8 153%0
L1]14/2] LD |0 1008 |0 F1 F1 14 ?
Sl115/1] sS.D |[0| 1008 |6 ? . F2|6 ?
Clock Cycle Number
7 8 9 10 11 12 14 15 16 17
MUL.D F2, F1, FO FP1 FP2 FP3 FP4 V\£B
S.D F2, (R4) S IS IS IS IS M1 M2
ADDIU R4, R4, 8 EX WB
BNE R4, R5, Loop 1S EX
L.D F1, (R4) D IS M1 M2 WB V\iB
MUL.D F2, F1, FO IF ID IS IS IS IS FP1 FP2 FP3 FP4 V\iB
S.D F2, (R4) IF ID IS IS IS S IS IS IS

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Tomasulo Example: Cycles 1 to 20

Iteration 1, 2 1 2 3 4 5 6 7 8 9 10 11 12 13
LD F1, (R4) F D IS M1 M2 WB

MUL.D F2, F1, FO F ID IS IS IS FP1 FP2 FP3 FP4 WB

s.D F2,(R4) F ID IS IS IS IS IS IS IS M1 M2
ADDIU R4, R4, 8 IF ID IS EX WB Conflicting
BNE R4, RS5, Loop IF ID IS |Is EX [write
LD F1,(R4) F ID IS M1 M2 WB WB
MUL.D F2, F1, FO F ID IS IS IS 1S FP1
Iteration 2, 3 8 9 10 11 12 13 14 15 16 17 18 19 20
MUL.D F2, F1, FO D IS IS IS IS FP1 FP2 FP3 FP4 WB

s.D F2,(R4) F ID IS IS IS IS IS IS IS IS M1 M2
ADDIU R4, R4, 8 F ID IS EX WB

BNE R4, RS, Loop IF ID IS |1s EX

LD F1,(R4) F 1D IS M1 M2 WB

MUL.D F2, F1, FO IF ID IS IS IS FP1 FP2 FP3 FP4
s.D F2,(R4) F ID IS IS IS IS IS IS
ADDIU R4, R4, 8 F D IS EX WB

BNE R4, RS, Loop F ID IS IS EX

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Advantages of the Tomasulo Approach

** Register Renaming
< Uses reservation station numbers to rename destination registers
< Eliminates all WAR and WAW hazards
< Preserving true data dependences only

» Allows out-of-order execution based on data availability
< Instructions wait in reservation stations
< Until their operands are available (RAW hazards)
< Tomasulo builds data dependency graph on the fly
¢ Broadcasts a result to many waiting instructions
< Uses a common data bus to forward a result to waiting instructions
< Uses tags to identify which instructions should grab the result
» Allows dynamic loop unrolling

< This requires an accurate branch predictor

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Drawbacks of the Tomasulo Approach

*» Implementation Complexity
< Delays in the introduction of IBM 360/91, MIPS 10000, etc.

*» Fully associative reservation stations

< Should compare (at high speed) the result tag against all the tags stored
In the reservation stations

< Resulting in high energy consumption
*» Performance limited by one Common Data Bus

< Can have multiple busses for multiple results computed in parallel

< However, this will increase the complexity of the reservation stations and
requires more comparators for tag checking

s Out-of-Order Completion

< Causes Imprecise Exceptions (discussed next)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Presentation Outline
“*Diversified Pipeline
“Out of Order Execution
*Tomasulo's Dynamic Scheduling
“*Dealing with Exceptions
“*Reorder Buffer

“*Out of Order Memory Access

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Exceptions and Interrupts

“* Unexpected events requiring change in flow of control
< Different architectures use different terminology

“» Exceptions (Synchronous)
< Caused by the program instructions
< Undefined opcode, overflow, page fault, system call, etc.
¢ Interrupts (Asynchronous)
< Caused by I/O devices requesting the processor
< Not related to program execution
“* Exceptions and Interrupts complicate the implementation

< They require immediate attention and special handling
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Types of Exceptions

* Undefined Instruction

“* Memory protection violation (illegal access to memory)
*» Page fault (requested page is not in memory)

“ Misaligned memory access (e.g. misaligned word)

** Integer arithmetic overflow

“* Floating-point exceptions (overflow, underflow, etc.)

*» System call instruction (calling the operating system)
¢ Breakpoint instruction (calling the debugger)

¢ Tracing instruction execution (trap after each instruction)
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Types of Interrupts

*» 1/0 Device Request
<> Called hardware or device interrupt
< Caused by devices external to the CPU
= Such as disk controller, keyboard, mouse, timer, etc.
<> Can be handled after the completion of the current instructions
< Current instructions in the pipeline are allowed to complete

< Program is resumed after handling the interrupt

+» Hardware Malfunctions or Power Failure

< Terminate program execution

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Detecting Exceptions in the Pipeline

¢ Instruction TLB for I-Cache
< Translates instruction addresses for instruction fetch
< Detects page faults and memory protection violation
* Instruction Decode
< Examines instruction opcode and detects undefined instructions
“ Arithmetic and Logic Unit
< Detects integer arithmetic overflow
¢ Floating-Point Unit
< Detects floating-point arithmetic exceptions
*» Data TLB for D-Cache

< Translates data addresses for load/store instructions

< Detects page faults, memory protection, and misaligned access
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Handling Exceptions and Interrupts

s Exceptions and Interrupts are handled by the OS kernel

¢ Processor saves the address of the offending instruction

< In a special register, called the Exception Program Counter (EPC)

¢ Processor saves the cause of the exception
< In a special register, called the Cause register

< For address faults, processor also saves the Virtual Address
¢ Processor jumps to the exception (or interrupt) handler
< The handler is a program that runs in the OS kernel (supervisor level)
< The handler saves the EPC and the register state
< When done, the handler restores the EPC and the register state
“ Return From Exception instruction

<> This instruction restarts the program at PC < EPC (in user level)
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Precise Exceptions and Interrupts

“ Can be viewed as an implicit call to a handling routine
% Inserted between two instructions: I,_, and I

“ All instructions up to and including I, _, have completed
% No effect on instruction I or after has taken place

** The handling routine either aborts the program

“ Or restarts the program at instruction I_

“+ 1/0O Device Interrupts can be forced to be precise

< Even though instructions complete out-of-order

< Wait for all instructions in the pipeline to complete (including I, _,)
“* However, it is difficult to achieve precise exceptions

< When instructions complete out-of-order

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Imprecise Exceptions

s Caused by Out-of-Order Completion

% Consider the following example: Handle MUL.D exception
MUL.D F4, F2, F3 Then restart at SUB.D
SUB.D F5, F4, F1 ADDU will re-compute R8
ADDU R8, R8, R5 Wrong value in R8!

¢ Suppose that MUL.D causes a floating-point exception
< ADDU has completed but SUB.D did not start execution yet!

Clock Cycle Number

1 2 3 4 5 6 7 8 9 10 11

MUL.D F4, F2, F3 |F ID IS FP1 FP2 FP3 FP4 FP Exception
SUB.D F5,F4,F1 |F ID IS IS IS IS Did not execute
ADDU RS, R8, R5 |F ID IS EX WB Completed

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dealing with Imprecise Exceptions

“+ Do nothing
<> Makes debugging difficult > NOT acceptable!
<> Makes page faults difficult > NOT acceptable!

< IEEE FP standard strongly suggests precise exceptions

“* Let the exception handler fix the problem
< Exception handler can create a precise sequence
< Knowing what instructions were in the pipeline and their addresses
< Handler can simulate and complete these instructions
< Major difficulty is the complexity added to the exception handler
“* Ensure In-Order Completion
< Instructions execute out-of-order, but complete in program order

< Use a Reorder buffer and a new Commit Stage (discussed next)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Presentation Outline
“*Diversified Pipeline
“Out of Order Execution
*Tomasulo's Dynamic Scheduling
“*Dealing with Exceptions
“*Reorder Buffer

“*Out of Order Memory Access

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Reorder Buffer (ROB)

¢ Must split the Write stage
¢ Instructions can finish execution out of program order
“» However, should only commit results in program order

< Commit =» Update register file or memory in program order
<> To support precise exceptions
<> To support speculation, such as dynamic branch prediction
“* Requires an additional stage, called Commit or Retire
< Commit is the last stage in the pipeline, after Write-Back
< Instructions commit their results in program order
*+ Requires an additional Reorder Buffer to hold results

<> Results of instructions that finished execution

<> But have not updated the register file or memory
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Reorder Buffer: a Circular Queue

+» Reorder Buffer holds instructions in FIFO order

< Implemented as a circular queue
¢ Dispatch stage allocates an entry at the Tail of the ROB
< If reorder buffer is full then stall instruction fetching

“ Commit stage frees the entry at the Head of the ROB

< The result value is written in the register file or stored in memory

Head: Next

to Commit —

Tail: Next >

to Allocate

STUDENTS-HUB.com

R

Type Rd V = Value

If the instruction at the
Head of ROB causes an
exception, then clear
ROB by changing the
tail pointer: Tail = Head

Reorder Buffer (ROB)

Uploaded By: Jibreel Bornat

Reorder Buffer Entry

“+ Each entry in the ROB contains four fields:

1. Instruction Type
<> Branch type: indicates prediction (No destination register)
< Store type: write to memory (No destination register)

< Load, ALU, or FPU type: write result to destination register
2. Destination Register: Rd

< Destination register for Load, ALU and FPU instructions

3. Value: V

<> Value of instruction result until the instruction commits

4. Ready Bit: R

< Whether instruction has finished execution and value is present

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Register File

¢ One register file is used for both integer and FP registers

“+ Each entry in the reqgister file has two fields:
< T =Tag (rename) of a register = reorder buffer entry
< V = Value of a register in the register file

“* The register Tags are also known as the Rename table
< If T 'is zero then the value V Is present in the register file

< If Tis non-zero then the instruction result will be written to ROBJ[T]

R1 T =tag V =value
Register File for : : :
general-purpose R31 | T=tag V = value

and floating-point FO | T=tag V = value
registers : : :

F31 [T=tag V =value
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Renaming Registers with ROB entries

*»» Each ROB entry has a unique index T

“ Tag T is used to rename the destination register of an instruction
< Tag zero is NOT used =» Indicates that value is present in register file

» If the Tag T of a source register is zero in the rename table then
< Read the source operand value from the reqgister file

» If the Tag T of a source register is non-zero in the rename table
< Read the source operand value from ROB[T] entry

< If the Value is NOT ready in ROB[T] then it has not been computed yet

¢ Execution units use the tag T to write computed result in ROB[T]
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Reservation Stations

** Instructions wait Iin reservation stations

<> Until their source operands are present and function unit is not busy

¢ Each reservation station has the following fields:
< Busy: Indicates whether the reservation station is busy or free
< T: Tag = Destination ROB entry
< Op: Operation of the instruction waiting in this reservation station
< V1, V2: Source operand values
= |-type ALU instructions put the immediate constant in V2
< T1, T2: Source operand tags
< If T1 (or T2) is zero then the value is present in V1 (or V2)
= |f both T1 and T2 are zeros, the instruction is ready to execute

<> Load/store instructions need an immediate field to compute address

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

New Pipeline with Reorder Buffer

Registers ROB |
Instruction _ Ra, Rb _ Rd. Val
> , Value
IF «—— stall — ID > . < T1
Rd, tail
' - —T2—>
T \ 4
-
v £
2 =
: T 2
C \f¢ \ 4 l \ \ll\f $ \ 4 ll y l \ l \ 4 l \ 4 \ll A\ 4 \ll \ 4 \ 4 \'l\' l \fl \Vl m
2 o [1] Tl va [im[r2l v2 T[] [raf vi 1] v2 T[] [raf vi [ra[v2 T[[vi [r2[v2 |
4('_6 @) v
= @
o @©
wn = ©
g @ | THjor (VI V2 ¢ Vi [v2 T vi V2 | @
o T\/ \/op \/Vl\flm \/V2 Y Y \ \ Op \ Y Y Op y \ ()]
Address Unit DID FP1 ALU S
T FP2 £
T address data &
vV v v FP3 T Result busy | S
D-Cache T| Result busy FP4
I 7 | R
T load data |busy T Result busy
\4 \1' \ 4 \ 4 Vv ‘L | A\ \ 4
W

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

New Pipeline Stages: IF, ID, IS, EX, W,C

IF: Instruction Fetch stage (In-Order)
ID: Instruction Decode and Dispatch stage (In-Order)

< Allocate tail ROB entry T and a free reservation station s

<> Read operands into RS[s]; Rename the destination register as T = tail

IS: Issue Stage (Out-of-Order)

< If operands are available in RS[s] then begin execution else wait
EX: Execute Stage using different function units (Out-of-Order)
W: Write Result to Reorder Buffer (Out-of-Order)

< Write result on the common data bus to ROB entry T

< Forward Result to stations with a source operand matching tag T

C. Commit stage (In-Order)

< Write value in ROB[head] to register file and free ROB[head]
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Instruction Dispatch Stage

¢ Allocate ROBJtail] and a free reservation station RSJs]
< ROB|[tail].Type €< Type; ROBI[tail].Rd ¢ Rd; ROBIJtail].R € 0
< RS[s].busy € 1; RS[s].Op €& Operation; RSJ[s].T < tail
** If no free ROB or RS entry then stall (structural hazard)
* Reading register (rename) tags and values
< Let Ra, Rb = source registers; T1 =Reg[Ra].T; T2 =Reg[RDb].T
“* Renaming Destination Register
< Let Rd = destination register; Reg[Rd].T < tail
“ Advancing tail index

< If (tail == last ROB index) then tail € 1 else tail € tail +1
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Reading Register Values

¢ Can be done during Instruction Dispatch or next cycle
** Read values from Register file or ROB

 If (T1 ==0) RS[s].V1 € Reg[Ra].V else RS[s].V1 ¢« ROB[T1].V

% If (T2 == 0) RS[s].V2 €« Reg[Rb].V else RS[s].V2 < ROB[T2].V
% RS[s].T1 € T1; If (ROB[T1].R) RS[s].T1 €< 0

% RS[s].T2 €« T2; If (ROB[T2].R) RS[s].T2 < 0

% If instruction has NO 2"9 source register then: RS[s].T2 €< 0

¢ Load and Store instructions: RS[s].imm < immediate (offset)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Issue Stage

¢ Instructions walit in reservation stations in the Issue stage
* An instruction in station s is ready to execute if
<> Both operands are present: (RS[s].T1 == 0 and RS[s].T2 == 0)

“ Issue instruction if corresponding function unit is NOT busy

< If corresponding function unit is busy then wait (structural hazard)
¢ Issue Instruction: (RS[s].T, RS[s].Op, RS[s].V1, RS[s].V2)
*» Free reservation station s: RS[s].busy € 0
* Can issue instructions in parallel to different function units
< However, cannot issue multiple instructions to same function unit

o After an instruction iIs issued, then it is executed

< Execution might take one or multiple cycles
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Write Stage

*» Write stage writes to reorder buffer (Not register file)

** Write stage detects and resolves conflicting writes

< Each cycle, the write stage selects the result of one function unit

< Forces other function units to wait if conflicting write (busy signal)
*» Place Result and ROB target T on the common data bus
“* Write to ROBJ[T]: ROBJT].V € Result; ROBJ[T].R €1
¢ All reservation stations monitor the common data bus

&V x, if (RS[x].T1 == T) { RS[x].V1 € Result; RS[x].T1 < 0}

$ VX, if (RS[x].T2 == T) { RS[x].V2 € Result; RS[x].T2 < 0}

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Commit Stage

“* Check the instruction type at the head of the ROB

If (ROB[head].Type == Branch)

< If (Branch is mispredicted)
= Clear ROB, Reservation Stations, Store Queue, Rename table
= Modify the PC to change the branch direction

Else if (ROB[head].Type == Store)

< Commit store instruction and write value to memory

Else if (ROB[head].R) // Ready to commit

< Let Rd = ROB[head].Rd; Reg[Rd].V €« ROB[head].V;
< If (Reg[Rd].T == head) then Reg[Rd].T < O

Else wait until (ROB[head].R)
“ If (head ==lastindex) head €< 1 else head < head +1

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dealing with Branch Mispredictions

*» Mispredicted branches should be recovered quickly

*» Should NOT wait until the Commit Stage
< Until the mispredicted branch appears at the head of the ROB

*+ Recover as soon as a branch misprediction is detected
1. Clear the Reorder Buffer

< For all entries that appear after the mispredicted branch
< Allow instructions before the branch to continue

2. Restart at the correct branch successor

*» Performance Iis sensitive to
< Accuracy of the branch predictor

<> How quickly a processor can recover from a branch misprediction
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Ensuring Precise Exceptions

“+ Exceptions are recorded in the Reorder Buffer
<> An exception bit is raised and the cause is also stored in the ROB
<- Can have multiple exceptions raised in the ROB
** An exception does not take place until ...
< The instruction that raised the exception is at the head of ROB
<> The instruction is not speculative (branch predictions are resolved)
“+ A mispredicted branch fetches instructions along wrong path
< These mispredicted instructions can also raise exceptions
< However, these exceptions are never taken
¢ The processor pipeline takes an exception by ...
< Flushing the ROB and jumping to the exception handler
“* A store instruction can update memory only when ...

< Itreaches the head of ROB and there is no raised exception
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Presentation Outline
“*Diversified Pipeline
“Out of Order Execution
*Tomasulo's Dynamic Scheduling
“*Dealing with Exceptions
“*Reorder Buffer

“*Out of Order Memory Access

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Load and Store Instructions

¢ Load instruction:

< Requires the address to read the D-Cache

+» Store Instruction:

< Requires the address and data to write the D-Cache

*» Address Calculation:
<> Compute the effective memory address (addressing mode)

<> Do the address translation to support virtual memory
¢ Can loads and stores access the D-Cache out-of-order ?

*» Consider the following example:

S.D F4, 8(R6)
Can L.D access D-Cache before S.D?

L.D F5, O(R8)
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Memory Disambiguation

*» Consider again the same example:

S.D F4, 8(R6)
Can L.D access D-Cache before S.D?

L.D F5, O(R8)
¢ Can L.D execute before S.D (out of program order)?

“ If S.D and L.D access different memory addresses ...

< Then YES, it is safe to execute them out-of-order

“ If S.D and L.D access the same memory address ...
< Then NO, executing L.D before S.D is a RAW memory hazard
< However, can forward data from S.D to L.D

* The S.D cannot write D-Cache until it is retired (head of ROB)

“ The L.D can bypass the S.D instruction if different address
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Allowing Loads to Bypass Stores

+» Address Reservations Stations

Common Data Bus

< Queue all load and store addresses _ T~ 1 address
< Wait until the address is available o P
()
< Stores wait in a Store Queue § 3
T| |op V1 im
<> Queue store address and data % Y ¥ Y ¥
& Address Unit
<> Until the store is allowed to commit op store | load
. o \1, LA £ Jaddress address
*» Load can bypass waiting stores 2 R
Store }compare |
< If the load address is different Queue address
. store
< Compare load address against all the data ‘ip 1 address
waiting store addresses in Store Queue ¥ ~
J < D-Cache
*» Forward the store data to a load J T load data

< If they have identical addresses
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

ROB Example

*» Consider the same loop example:

L: L.D F1, (R4)
MUL.D F2, F1, FO
S.D F2, (R4)
ADDIU R4, R4, 8
BNE R4, R5, L
“ Dependence Graph (for 2 iterations)

< Data + Name Dependences within iteration

< Data + Name Dependences across iterations

“ Assume that BNE is predicted to be taken v
<> The loop can be unrolled dynamically by the hardware

< Renaming eliminates all WAW and WAR hazards
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

ROB Example Cycles 1 to 30

Iteration 1, 2 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20

L.D F1, (R4) IF ID IS A M W C

MUL.D F2, F1, FO IF ID IS IS IS FP1 FP2 FP3 FP4 W C

S.D F2, (R4) IF ID IS A SQ SQ SQ SQ SsQ sQ C SQ = Store Queue

ADDIU R4, R4, 8 IF ID IS EX W rob rob rob rob rob C

BNE R4,R5,L IF ID IS IIS EX rob rob rob rob rob C

L.D F1, (R4) IF ID IS A M W Vy rob rob rob C

MUL.D F2, F1, FO IF ID IS IS IS IS FP1 FP2 FP3 FP4 V¢V C

S.D F2, (R4) IF ID IS A SQ SQ SQ SQ SQ sQ saQ C

ADDIU R4, R4, 8 W = Conflicting Write IF ID IS EX W rob rob rob rob rob rob C

BNE R4,R5,L IF ID IS IS EX rob rob rob rob rob rob

Iteration 3, 4 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L.D F1, (R4) IF ID IS A M Vy rob rob rob rob rob C

MUL.D F2, F1, FO IF ID IS IS IS FP1 FP2 FP3 FP4 Vy rob C

S.D F2, (R4) IF ID IS A SQ SQ SQ SQ sQ SQ sSaQ C

ADDIU R4, R4, 8 IF ID IS EX W rob rob rob rob rob rob C

BNE R4,R5,L IF ID IS IIS EX rob rob rob rob rob rob C

L.D F1, (R4) IF ID IS A M W Vy rob rob rob rob C

MUL.D F2, F1, FO At steady state: IF ID IS IS IS IS FP1 FP2 FP3 FP4 W C

S.D F2, (R4) One Instruction is IF ID IS A SQ SQ SQ SQ SQ sqQ s C

ADDIU R4, R4, 8 . IF ID IS EX W rob rob rob rob rob rob C
Committed Per Cycle }

BNE R4,R5,L IF ID IS IS EX rob rob rob rob rob rob

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Making the Pipeline Superscalar

¢ Pipelines studied so far are scalar
< Fetch, decode, and dispatch one instruction per cycle

< Write-back and Commit one instruction per cycle
“* Fundamentally limited to CPI = 1

¢ Superscalar pipelines can do more ...
< Can fetch, decode, and dispatch multiple instructions per cycle
< Can execute, write-back, and commit multiple instructions per cycle
< Can reduce the CPI below 1 (CPI < 1)
< IPC =Instructions per Cycle =1/ CPI

< Two types of superscalar processors

< In-order execution: based on program order

< Out-of-order execution: based on data dependences
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Superscalar Complexities

*» Must fetch a group of instructions each cycle (not just one)
<> An accurate branch predictor is essential for correct fetching
*+ Must decode a group of instructions each cycle
< Must check dependences between instructions in a single group
¢ Must dispatch a group of instructions each cycle
< Requires more read ports for the register file and reorder buffer
< Read ports increases with the number of dispatched instructions
¢ Must write multiple results each cycle
< Requires multiple result busses (not just one common data bus)
< Requires multiple write ports for the ROB (not just one)
<> More comparators for tag matching in reservation stations
¢ Must commit multiple results each cycle

< Requires multiple write ports for the register file
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Pipelining Delivers CPT = 1 at Best

*» How to get CPI < 1?
< Issuing and completing multiple instructions/cycle

<> Challenge: checking and resolving dependences among the instructions
Issued at the same cycle

“ Dynamic multiple Issue
< Fetch, decode, and commit multiple instructions
< Use dynamic pipeline scheduling, HW-based speculation and recovery

< Always beneficial if compiler can help, but recompiling not required for
new machines

¢ Static multiple issue

<> Compiler handles data and control hazards and decides what instructions
can be issued in the same cycle

< Often restrict mix of instructions can be initiated in a clock

STUDEﬁngggQMIaﬂon required for machines with diff. pipe"”eﬁpmaded By: Jibreel Bornat

Hardwere Strategies for Multiple Issue

¢ Superscalar: varying number of instructions/cycle (1 to 8),
scheduled by compiler (static) or by HW (dynamic)

< IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium 4, i7

“* Multithreading: exploiting thread-level parallelism to improve
uniprocessor throughput

< IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium 4, i7

“* Vector Processing: Explicit coding of independent loops as
operations on large vectors of numbers

<> Multimedia instructions being added to many processors

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Software Strategies for Multiple Issue

** Rely on compiler technology to extract parallelism
<> Loop Level Parallelism

Loop Unrolling

Software Pipelining

Predicated Instructions

R "

VLIW Approach

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Example: ARM Cortex-A53 Pipeline Structure

F1 F2 F3 F4 Iss Ex1 Ex2 Wr
Integer execute and load-store
Instruction fetch & predict
->| ALU pipe 0 I—-
Integer
AGU 1 register | -
TEB Hybrid file ALU pipe 1
—
Instruction predictor :
cache Indiract ’| MAC pipe | Writeback
1 dict
prodieor Divide pipe
Issue Load pipe
-I Store pipe I—-
Instruction Decode Floating Point execute
| MUL/DIV/SQRT pipe l
Early 13-Entry Main Late rgggtglr
— decode [—T|instruction—= . de "1 decod il -
ecode queve ecode ecode ile | ALU pipe |
D1 D2 D3 F1 F2 F3 F4 F5

** F1 and F2 fetch the instruction,

+* D1 and D2 do the basic decoding, and D3 decodes some more complex instructions and is
overlapped with the first stage of the execution pipeline (ISS).

s After ISS, the Ex1, EX2, and WB stages complete the integer pipeline.
** Branches use four different predictors, depending on the type.

s The floating-point execution pipeline is 5 cycles deep, in addition to the 5 cycles needed for
STUBeémgqu?g.%%gne' yielding 10 stages in total. Uploaded By: Jibreel Bornat

Example: ARM Cortex-A77 Pipeline Structure

Branch Predicta| Astun
(BPL) Stack Ll Instruction Cache
NanaB T8 {64 antry] a4 KiB 4-Way Instruction TLS
MicraB TH | G4- sty {48 antry|
Meizun BTE 8K “Hm Frﬂ"t
| Instruction Fetch |E"d
4-8 Instruchions/cyde w
.)
MOP Cache Decode Queue =
El.EK—Entrie5]| | 116 x 32h) | \“Q
L 18 18 bt 19 F‘—
i}
4-Way Decode
1-6 MOPs | pecoer || oecoder | | necoder | | Dscone |
[[0 [O
1-4 MOFs
[P [P [P
Rename [/ Allocate / Commit
RelOrder Buffer [180-antry)
(e i o wor e o o e i i =
%
1 %
i Dispatch il I =r g ‘ o U
= I
(L g wir [T g wor i [t [t g wir e [t g — H R B w
= %] o (it E
| Issue] |8 & m To L2 4
[Integer [ssue Queus | [FPU Issue Queus | L5U Issu= Queus | = m S 3 n
o [Perr | [Par [[Pee [P [[e e [[Par | L rar [[Pere J[Pen T Par | g {Flﬂ!l "
[Ae) [He0] [5=%] [| <
L5l W \E
EUs Lond Buller | [StoreBurer E [;
[B5-entry) [0-entry) A A
L] L] : m
Execution Engine o Wl >
fq’“‘u %lh %
Data TLE
L1 Data Cache [az-entry) E _
pleaded By: Jibreel Bornat

STUDENTS-HUB.com 64 KiB 4-Way

Example: Intel Core i7 Pipeline Structure

Pipeline depth = 14 stages
Branch penalty = 15 cycles

Intel x86 instructions translated
Into micro-operations

Micro-ops: RISC-like instructions
4 instructions decoded per cycle
Loop stream detector and buffer
36-entry centralized RS

Six independent function units

Up to 6 micro-ops can be
executed per cycle

STUDENTS-HUB.com

'~ 128-Entry
inst. TLB |-
(four-way)

Instruction
fetch
hardware

Micro
-code

Retirement
register file

ALU
shift

SSE
shuffle
ALU

128-bit
FMUL
FDIV

| 32 KB Inst. cache (four-way associative) |«

16-Byte pre-decode + macro-op
fusion, fetch buffer

18-Entry instruction queue

Simple

Complex Simple Simple
macro-op macro-op macro-op macro-op
decoder decoder decoder

decoder

28-Entry micro-op loop stream detect buffer

Register alias table and allocator
128-Entry reorder buffer

36-Entry reservation station

ALU Load Store Store ALU
shift address = | address data shift
SSE SSE
shuffle Memory order buffer shuffle
ALU ALU
128-bit 128-bit
FMUL Store FMUL
FDIV & load FDIV

512-Entry unified
L2 TLB (4-way)

64-Entry data TLB |
(4-way associative) | cache (8-way associative)

256 KB unified 12
cache (eight-way)

32-KB dual-ported data

8 MB all core shared and inclusive L3
cache (16-way associative)

Uncore arbiter (handles scheduling and
clock/power state differences)

Uploaded By: Jibreel Bornat

Example: Apple M1 Pipeline Structure

»=192KB L1 : Fr‘Er'tf”d &@E@D@ &1'@}
Here be dragons)
E Fﬂ FESCOFN

B-'Wide Decode

Dispatch / Commit
~630 Reorder-Buffer

INT Rename FP Rename
PRF ~3547¢ Entries FRF ~3847¢¢ Entries

FP/SIMD

-‘-'I
[
L.
i
(|
=
£~
|_||'|
a
L

~15d4e LDQ ~106e 5TQ

L1-DTLE

B 128KEB L1
STUD£I*|'S‘5—|’BI!§!H| =wn _ Uploaded By: Jibreel Bornat

