Thermal Fluid Engineering ENMC4411 Chapter 5 Viscous flow in ducts

Afif Akel Hasan

Mechanical & Mechatronics Engineering Department

Birzeit University

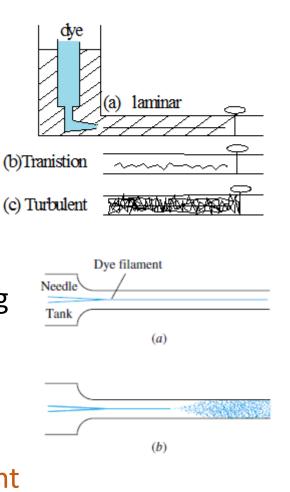
STUDENTS-HUB.com

Outline

- Laminar and Turbulent flow
- Entrance effect
- Friction losses in smooth pipes
- Friction losses in rough pipes
- Minor losses
- Energy equation for pipe flow
- Pipe flow problems.

laminar & turbulent flow

- <u>laminar flow</u>: in laminar flow a well ordered pattern prevails, where by fluid layers are assumed to slide over each other.
- Reynold experiment;
 - when the valve is opened slightly the dye will move through p intact forming a thread , in this case flow is laminar.
 - when valve is progressively opened the dye assumed fluctuating motion as it flows through the pipe here transitions is taking place
 - further opening of valve results in a condition where by an irregular fluctuation is developed in the flow . When the dye is completely dispersed in the pipe . This irregular flow is turbulent flow .



Laminar & Turbulent Flow

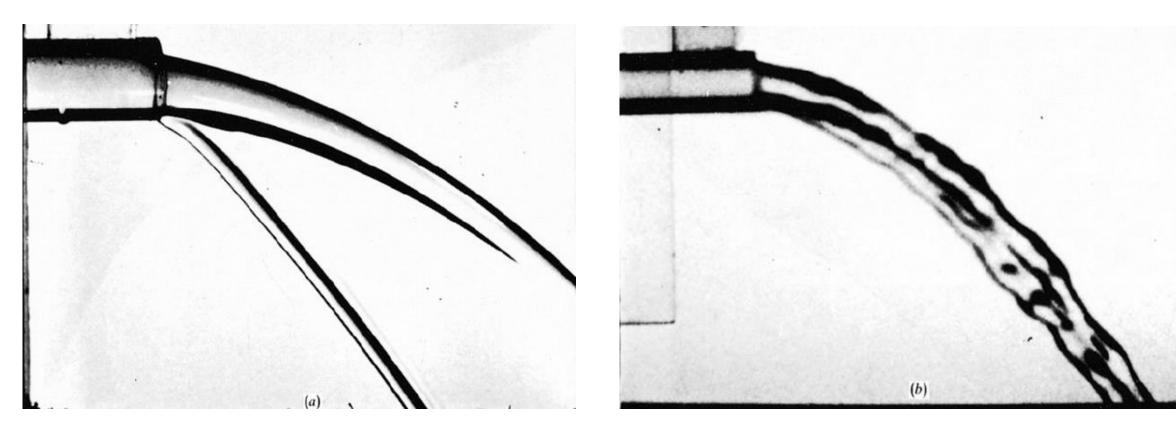


Fig. 6.2 Flow issuing at constant speed from a pipe: (*a*) high viscosity, low-Reynolds-number, laminar flow; (*b*) low-viscosity, high-Reynolds-number, turbulent flow.

STUDENTS-HUB.com

Afif Hasan - Birzeit University

Laminar & Turbulent Flow

• Re is the criteria of transition from laminar to Turbulent

Re = $(\rho VD/\mu) = (VD/\nu) = (Inertial force / Viscous force)$

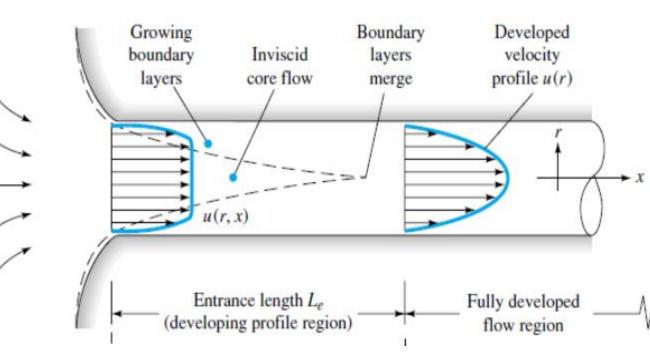
• For pipe flow $Re_{critical} = 2300$

200<Re <4000 transition

Re > 4000 well developed turbulent flow .

Entrance effect

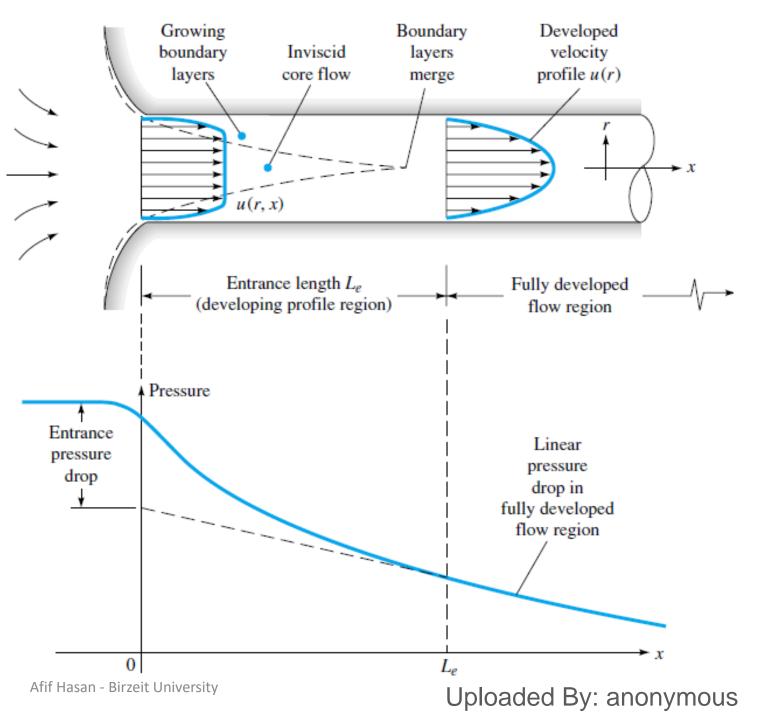
- An internal flow is constrained by the bounding walls, and the viscous effects will grow and meet and permeate the entire flow.
- Viscous boundary layers grow downstream, retarding the axial flow u(r, x) at the wall and thereby accelerating the center-core flow to maintain the incompressible continuity requirement.
- At a finite distance from the entrance, the boundary layers merge and the inviscid core disappears.
- The tube flow is then entirely viscous, and the axial velocity adjusts
- slightly further until at x = Le it no longer changes with x and is said to be fully developed, u = u(r) only.



Entrance effect

Downstream of x ≥ Le the velocity profile is constant, the wall shear is constant, and the pressure drops linearly with x, for either laminar or turbulent flow.

STUDENTS-HUB.com



Entrance length

 Dimensional analysis shows that the Reynolds number is the only parameter affecting entrance length.

 $L_e = f(d, V, \rho, \mu)$

 $\frac{L_e}{d} = g\left(\frac{\rho V d}{\mu}\right) = g(\text{Re})$

• For laminar flow the accepted correlation is $\frac{L_e}{d} \approx 0.06$ Re

laminar

• In turbulent flow the boundary layers grow faster, and *Le* is relatively shorter, according to the approximation for smooth walls

$$\frac{L_e}{d} \approx 4.4 \text{ Re}_d^{1/6}$$
 turbulent

• A ½ in-diameter water pipe is 60 ft long and delivers water at 5 gal/min at 20°C. What fraction of this pipe is taken up by the entrance region?

$$Q = (5 \text{ gal/min}) \frac{0.00223 \text{ ft}^3/\text{s}}{1 \text{ gal/min}} = 0.0111 \text{ ft}^3/\text{s}$$
$$V = \frac{Q}{A} = \frac{0.0111 \text{ ft}^3/\text{s}}{(\pi/4)[(\frac{1}{2}/12) \text{ ft}]^2} = 8.17 \text{ ft/s}$$
$$\text{Re}_d = \frac{\text{V}d}{\nu} = \frac{(8.17 \text{ ft/s})[(\frac{1}{2}/12) \text{ ft}]}{1.09 \times 10^{-5} \text{ ft}^2/\text{s}} = 31,300$$

This is greater than 2300; hence the flow is fully turbulent

$$\frac{L_e}{d} \approx 4.4 \text{ Re}_d^{1/6} = (4.4)(31,300)^{1/6} = 25 \qquad \qquad \frac{L_e}{L} = \frac{25}{1440} = 0.017 = 1.7\%$$

STUDENTS-HUB.com

Afif Hasan - Birzeit University

Flow in a Circular Pipe, h_f

• The steady-flow energy equation for pipe section 1 to 2

$$\frac{P_1}{\gamma} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2 + hf$$

It can be shown theoretically, derived from mass, linear momentum and energy equation that friction head loss hf

$$h_f = 128 \mu QL/\pi \gamma d^4$$

• This formula is known as Hagen- Poiseuille equation and used for friction losses for laminar flow in smooth pipes.

An oil with 900 kg/m³ and 0.0002 m²/s flows upward through an inclined pipe as shown in Fig. E6.4. The pressure and elevation are known at sections 1 and 2, 10 m apart. Assuming steady laminar flow, (a) verify that the flow is up, (b) compute hf between 1 and 2, and compute (c) Q, (d) V, and (e) Red. Is the flow really laminar?

$$\mu = \rho \nu = (900 \text{ kg/m}^3)(0.0002 \text{ m}^2/\text{s}) = 0.18 \text{ kg/(m} \cdot \text{s})$$

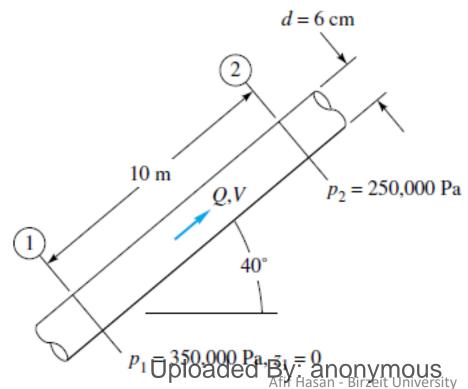
$$z_2 = \Delta L \sin 40^\circ = (10 \text{ m})(0.643) = 6.43 \text{ m}$$

$$\text{HGL}_1 = z_1 + \frac{p_1}{\rho g} = 0 + \frac{350,000}{900(9.807)} = 39.65 \text{ m}$$

$$\text{HGL}_2 = z_2 + \frac{p_2}{\rho g} = 6.43 + \frac{250,000}{900(9.807)} = 34.75 \text{ m}$$

$$hf = \frac{p_1}{\gamma} - \frac{p_2}{\gamma} + Z_1 - Z_2$$

STUDENTS-HUB.com $HGL_2 = 39.65 \text{ m} - 34.75 \text{ m} = 4.9 \text{ m}$



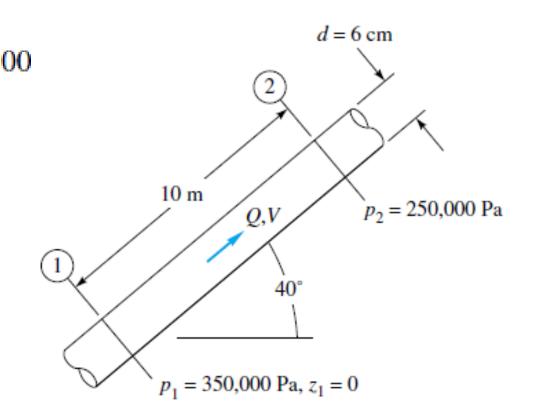
$$h_{f} = 128\mu QL/\pi\gamma d^{4}$$

$$Q = \frac{\pi\rho g d^{4} h_{f}}{128\mu L} = \frac{\pi(900)(9.807)(0.06)^{4}(4.9)}{128(0.18)(10)} = 0.0$$

$$V = \frac{Q}{\pi R^{2}} = \frac{0.0076}{\pi(0.03)^{2}} = 2.7 \text{ m/s}$$

$$\operatorname{Re}_{d} = \frac{Vd}{\nu} = \frac{2.7(0.06)}{0.0002} = 810$$
This is well below the transition value

This is well below the transition value Red 2300, and so we are fairly certain the flow is laminar.



STUDENTS-HUB.com

Viscometers

• Saybolt viscometer

 $h_f \approx z_1 - z_2 - \frac{V_2^2}{2g}$ $hf = 32\mu V L / \gamma d^2$ $h_f = 128 \mu Q L / \pi \gamma d^4$

Viscosity in centipoise from seconds Saybot

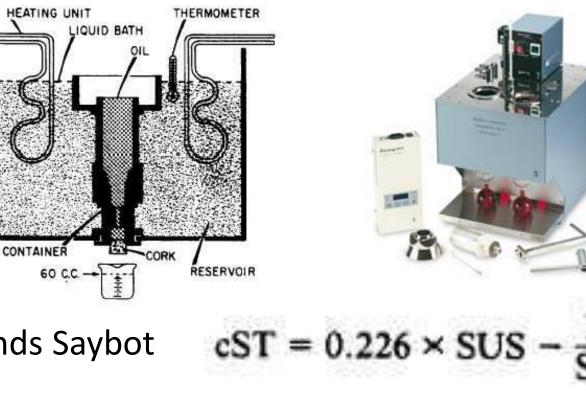
195 SUS $cST = 0.226 \times SUS$

UPPER MARK OWER MARK

STUDENTS-HUB.com

 h_{f} Viscous liquid Capillary Collecting tube Constant tank head tank

Afif Hasan - Birzeit University



Friction losses

• For smooth pipes use Hagen- Poiseuille formula if laminar flow.

$$h_f = 128 \mu Q L / \pi \gamma d^4$$

• For rough and turbulent use correlations based on dimensional analysis.

$$\Delta P = f(d, l, \mu, V, \rho, \varepsilon)$$

$$\Delta P / \rho V^2 = f(\frac{l}{d}, \frac{\varepsilon}{d}, \frac{\rho V d}{\mu})$$

Friction head loss

$$hf = \frac{V^2 l}{2gd} f\left(\frac{\varepsilon}{d}, \frac{\rho V d}{\mu}\right) = \left(\frac{l}{d}\right) \frac{V^2}{2g} f$$

Where f is known as friction factor and it is a function of Reynold number and pipe roughness. This formula is known as Darcy – Weisback formula. Friction factor is given as

$$f = F(\frac{\varepsilon}{d}, \frac{\rho V d}{\mu}) = F(\frac{\varepsilon}{d}, \text{Re})$$

Various correlations exist for friction factor including;

for smooth pipe

$$f = \begin{cases} 0.316 \text{ Re}_d^{-1/4} & 4000 < \text{Re}_d < 10^5 & \text{H. Blasius (1911)} \\ \left(1.8 \log \frac{\text{Re}_d}{6.9}\right)^{-2} & \text{Ref. 9} \end{cases}$$

 $\frac{1}{f^{1/2}} = 2.0 \log (\text{Re}_d f^{1/2}) - 0.8$ STUDENT S-HUB.com

Afif Hasan - Birzeit University

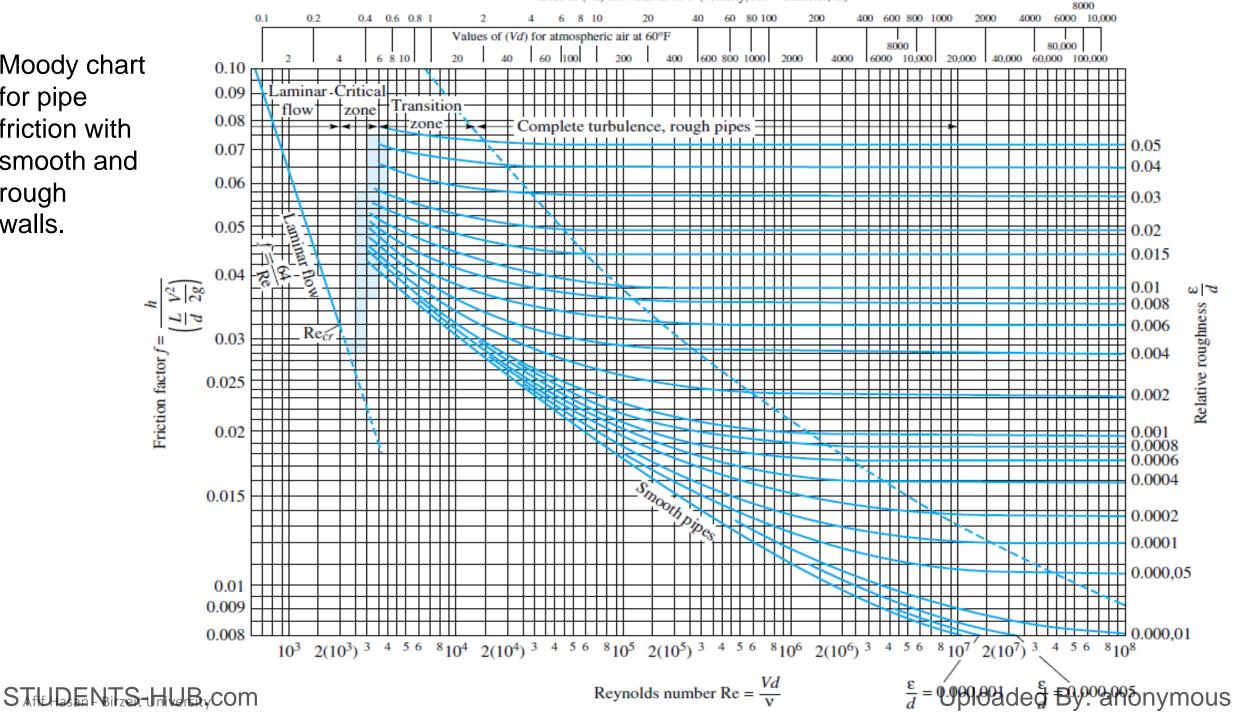
Friction head loss

- For rough pipes
 - Colebrook equation

$$\frac{1}{f^{1/2}} = -2.0 \log \left(\frac{\epsilon/d}{3.7} + \frac{2.51}{\text{Re}_d f^{1/2}}\right)$$

- It was plotted in 1944 by Moody into what is now called the *Moody chart* for pipe friction
- An alternate explicit formula given by Haaland

$$\frac{1}{f^{1/2}} \approx -1.8 \log \left[\frac{6.9}{\operatorname{Re}_d} + \left(\frac{\epsilon/d}{3.7}\right)^{1.11}\right]$$



Moody chart for pipe friction with smooth and rough walls.

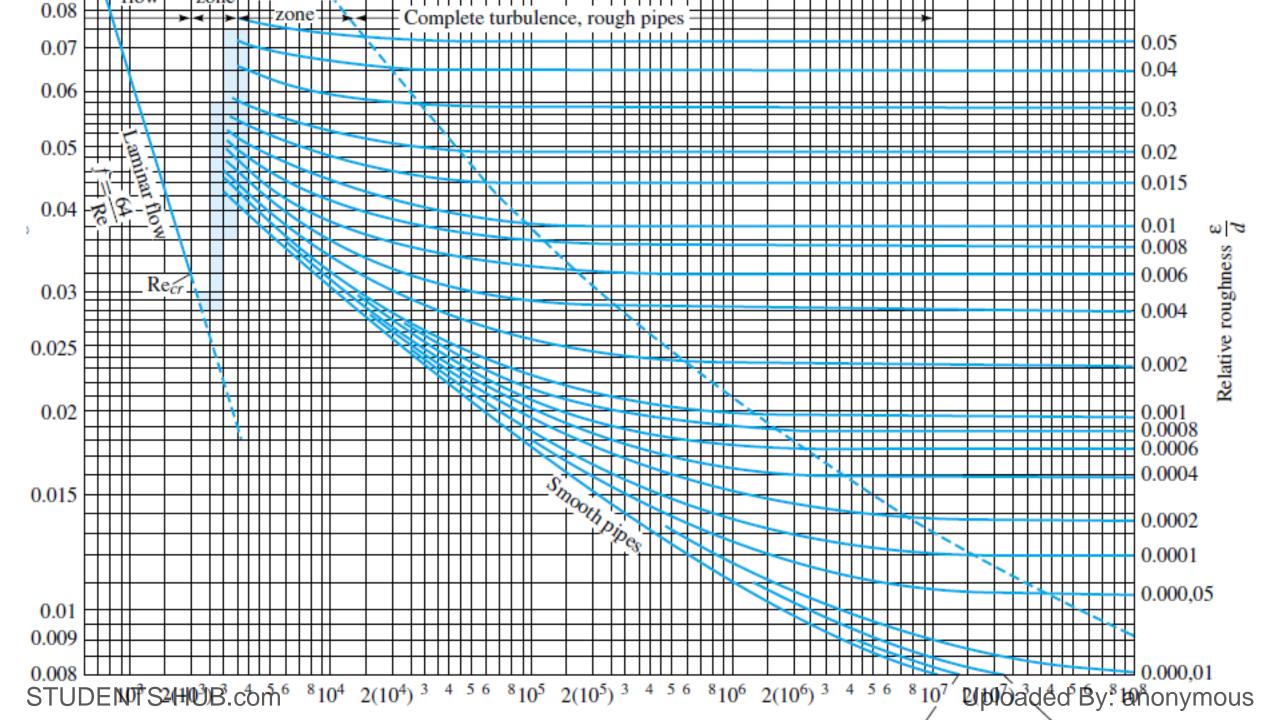


Table 6.1 Recommended Roughness Values for Commercial Ducts

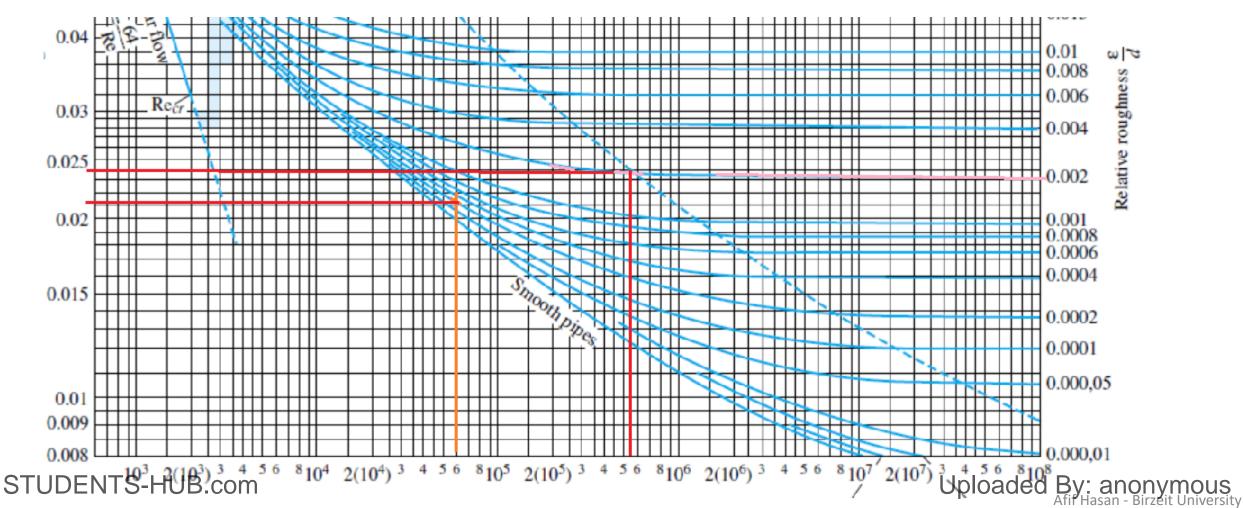
		E			
Material	Condition	ft	mm		
Steel	Sheet metal, new	0.00016	0.05		
	Stainless, new	0.000007	0.002		
	Commercial, new	0.00015	0.046		
	Riveted	0.01	3.0		
	Rusted	0.007	2.0		
Iron	Cast, new	0.00085	0.26		
	Wrought, new	0.00015	0.046		
	Galvanized, new	0.0005	0.15		
	Asphalted cast	0.0004	0.12		
Brass	Drawn, new	0.000007	0.002		
Plastic	Drawn tubing	0.000005	0.0015		
Glass	_ `	Smooth	Smooth		
Concrete	Smoothed	0.00013	0.04		
	Rough	0.007	2.0		
Rubber	Smoothed	0.000033	0.01		
Wood	Stave	0.0016	0.5		

STUDENTS-HUB.com

Afif Hasan - Birzeit University

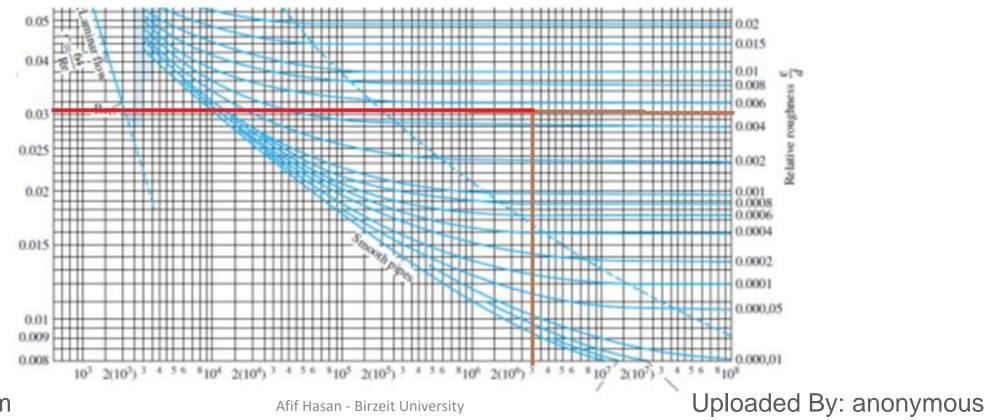
Examples Moody chart

- (a) Re = 550000=5.5x10⁵ , ϵ/d =0. 002, and (b) for Re = 6x10⁴ , ϵ/d =0.0002
- From chart (a) f =0.021, (b) f =0.024 . What is f for (b) if smooth pipe?



Examples Moody chart

- Cast iron pipe with d = 5 cm and Re=3x10⁶
- For cast iron roughness ϵ = 0.26 mm then $\frac{\epsilon}{d} = \frac{0.26}{50} = 0.0052$
- From chart f = 0.03



STUDENTS-HUB.com

- Compute the loss of head and pressure drop in 200 ft of horizontal 6in-diameter asphalted cast-iron pipe carrying water with a mean velocity of 6 ft/s.
- Re = $(\rho VD/\mu) = (VD/\nu) = 2.7 \times 10^5$
- $\epsilon/d = 0.0004/(6/12) = 0.0008$
- $\epsilon / d = 0.0008$, and Re 2.7x 10⁵ approximately, f = 0.02

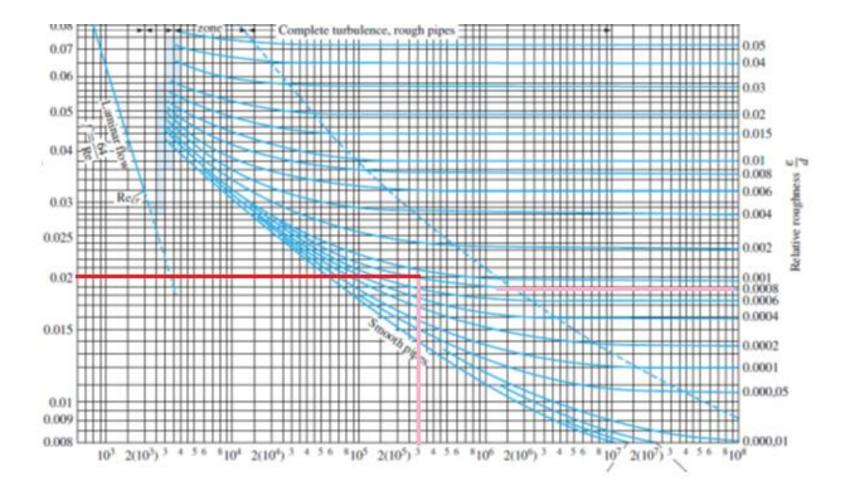
$$h_f = f \frac{L}{d} \frac{V^2}{2g} = (0.02) \frac{200}{0.5} \frac{(6 \text{ ft/s})^2}{2(32.2 \text{ ft/s}^2)} = 4.5 \text{ ft}$$

• The pressure drop for a horizontal pipe (z1=z2) is

$$\Delta p = \rho g h_f = (62.4 \text{ lbf/ft}^3)(4.5 \text{ ft}) = 280 \text{ lbf/ft}^2$$

• $\epsilon / d = 0.0008$, and Re 2.7x 10⁵ approximately, *f* = 0.02

STUDENTS-HUB.com



Oil, with 900 kg/m3 and v= 0.00001 m²/s, flows at 0.2 m³/s through 500 m of 200-mmdiameter cast-iron pipe. Determine (*a*) the head loss and (*b*) the pressure drop if the pipe slopes down at 10° in the flow direction.

$$V = \frac{Q}{\pi R^2} = \frac{0.2 \text{ m}^3/\text{s}}{\pi (0.1 \text{ m})^2} = 6.4 \text{ m/s}$$
$$\text{Re}_d = \frac{Vd}{\nu} = \frac{(6.4 \text{ m/s})(0.2 \text{ m})}{0.00001 \text{ m}^2/\text{s}} = 128,000$$
$$\frac{\epsilon}{d} = \frac{0.26 \text{ mm}}{200 \text{ mm}} = 0.0013$$

Enter the Moody chart on the right at $\epsilon / d = 0.0013$ with Re= 128,000, f = 0.0225

$$h_f = f \frac{L}{d} \frac{V^2}{2g} = (0.0225) \frac{500 \text{ m}}{0.2 \text{ m}} \frac{(6.4 \text{ m/s})^2}{2(9.81 \text{ m/s}^2)} = 117 \text{ m}$$

$$h_f = \frac{\Delta p}{\rho g} + z_1 - z_2 = \frac{\Delta p}{\rho g} + L \sin 10^\circ$$

$$\Delta p = \rho g [h_f - (500 \text{ m}) \sin 10^\circ] = \rho g (117 \text{ m} - 87 \text{ m})$$

$$= (900 \text{ kg/m}^3)(9.81 \text{ m/s}^2)(30 \text{ m}) = 265,000 \text{ kg/(m} \cdot \text{s}^2) = 265,000 \text{ Pa}$$

Minor losses

• Head loss :

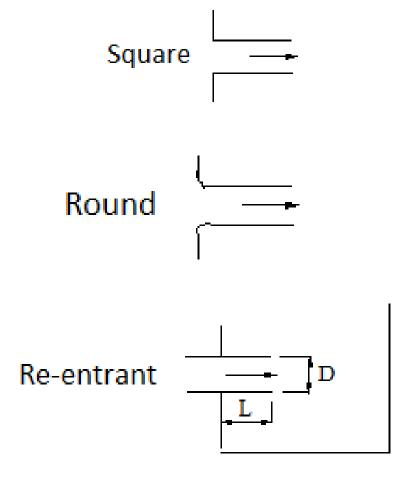
1) Friction losses (Major losses) 2) Minor losses : (i) entrance and exit. (ii) enlargement and contraction. (iii) fittings. • Minor losses : $h_{minor} = K (V^2/2g) = h_m$ K : coefficient is given for various fitting Total head losses are $\Delta h_{\rm tot} = h_f + \sum h_m = \frac{V^2}{2g} \left(\frac{fL}{d} + \sum K \right)$

Exit and entrance

- For all types of exits : inward , rounded , K = 1
- Entrance losses

(i)square entrance K = 0.5

(ii)Rounded K = 0.01 – 0.05 or F. White p.372 fig 6.21 (b)

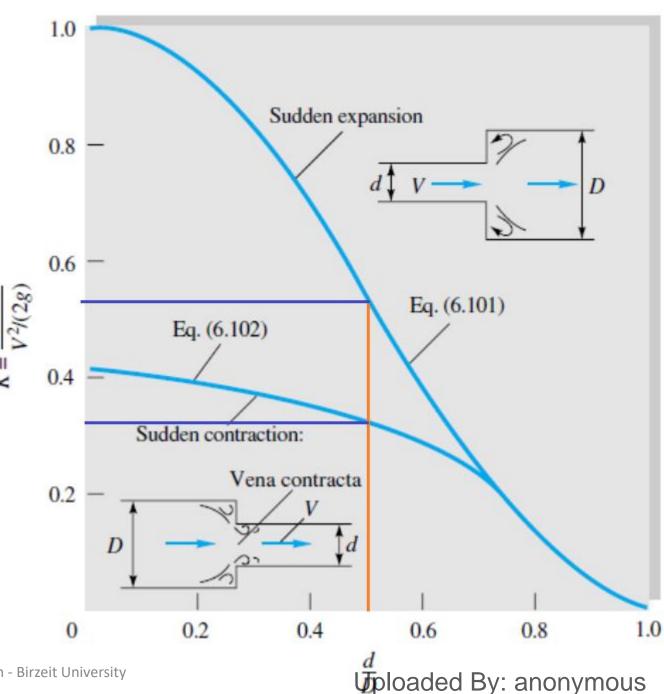


Sudden expansion/ Contraction

 It can be shown using continuity , Bernoulli's ,and moment equations that for a sudden expansion,

h_m = K_{SE}(V²/2g)
where
$$K_{SE} = \left(1 - \frac{d^2}{D^2}\right)^2$$

- Sudden contraction may use , $K_{\rm SC} \approx 0.42 \left(1 - \frac{d^2}{D^2}\right)$
- See (fig 6.22 P.372 F. White)
- Example if d=1 in and D=2 in: find K_{SF} and K_{SC} Then d/D=0.5 and $K_{s_{F}} = 0.55$ while $K_{s_{C}} = 0.32$



STUDENTS-HUB.com

Afif Hasan - Birzeit University

Pipe fittings

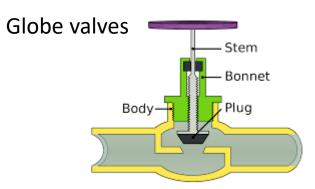
- $h_{minor} = K (V^2/2g)$
- K depends on type of fitting, pipe diameter, type of connection.
- Pipe connections : screwed or flanged
- Type of fittings include; valves, elbows, tees.

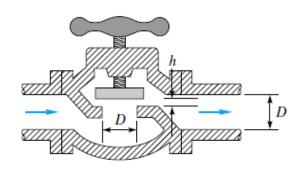
STUDENTS-HUB.com

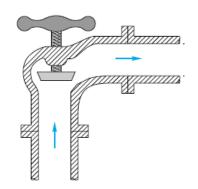
Uploaded By: anonymous

Afif Hasan - Birzeit University

Valves





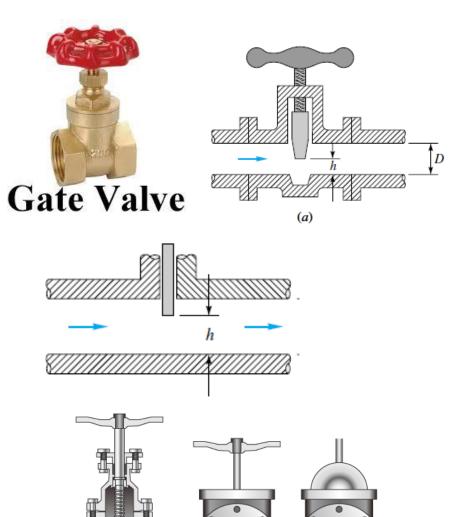


STUDENT Steller

Non-return valves

Afif Hasan - Birzeit University

Gate valves



Uploaded By: anonymous

Open

Closed

Pipe fittings

90 deg elbow	45 deg elbow	street elbow	tee	reducing tee
square plug	hexagon plug	hexagon bushing	hexagon head cap	hexagon nut
hexagon nipple	reduced hex nipple	union FF	union MF	union MM
	guanyu			
cross	socket banded	reducer socket	full coupling	half coupling
hose nipple	barrel nipple	parallel nipple	welding nipple	round cap
	Manna Manna			Uploaded B

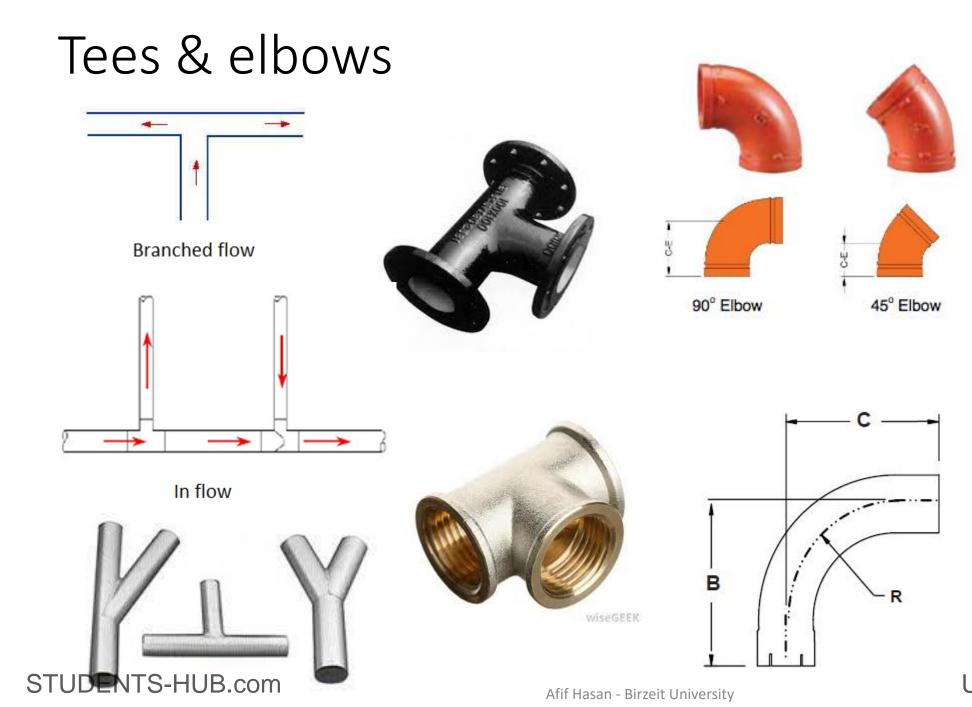
STUDEINTSS-HUB.COM

Resistance Coefficients -fittings $h_{minor} = K (V^2/2g)$

0	Nominal diameter, in								
		Scr	ewed		Flanged				
	$\frac{1}{2}$	1	2	4	1	2	4	8	20
Valves (fully open):									
Globe	14	8.2	6.9	5.7	13	8.5	6.0	5.8	5.5
Gate	0.30	0.24	0.16	0.11	0.80	0.35	0.16	0.07	0.03
Swing check	5.1	2.9	2.1	2.0	2.0	2.0	2.0	2.0	2.0
Angle	9.0	4.7	2.0	1.0	4.5	2.4	2.0	2.0	2.0
Elbows:									
45° regular	0.39	0.32	0.30	0.29					
45° long radius					0.21	0.20	0.19	0.16	0.14
90° regular	2.0	1.5	0.95	0.64	0.50	0.39	0.30	0.26	0.21
90° long radius	1.0	0.72	0.41	0.23	0.40	0.30	0.19	0.15	0.10
180° regular	2.0	1.5	0.95	0.64	0.41	0.35	0.30	0.25	0.20
180° long radius					0.40	0.30	0.21	0.15	0.10
lees:									
Line flow	0.90	0.90	0.90	0.90	0.24	0.19	0.14	0.10	0.07
Branch flow	2.4	1.8	1.4	1.1	1.0	0.80	0.64	0.58	0.41

STUDENTS-HUB.com

Afif Hasan - Birzeit University



Uploaded By: anonymous

221/2° Elbow

1114° Elbow

Examples

- Find K for 2 inch screwed 90 regular elbow? K=0.95
- Find K for 2 inch flanged 90 regular elbow? K=0.39
- Find K for 4 inch gate valve fully open if flanged, if screwed?

Flanged K=0.16, screwed K=0.11

	Nominal diameter, in									
		Screwed				Flanged				
	12	1	2	4	1	2	4	8		
Valves (fully open):										
Globe	14	8.2	6.9	5.7	13	8.5	6.0	5.8		
Gate	0.30	0.24	0.16	0.11	0.80	0.35	0.16	0.07		
Swing check	5.1	2.9	2.1	2.0	2.0	2.0	2.0	2.0		
Angle	9.0	4.7	2.0	1.0	4.5	2.4	2.0	2.0		
Elbows:										
45° regular	0.39	0.32	0.30	0.29						
45° long radius					0.21	0.20	0.19	0.16		
90° regular	2.0	1.5	0.95	0.64	0.50	0.39	0.30	0.26		
90° long radius	1.0	0.72	0.41	0.23	0.40	0.30	0.19	0.15		
180° regular	2.0	1.5	0.95	0.64	0.41	0.35	0.30	0.25		
180° long radius					0.40	0.30	0.21	0.15		

Equivalent length

- Minor losses expressed in terms of equivalent length $\rm L_e$ of pipe that has the same head losses for the same flow.
- $f(L_e/D)(V^2/2g) = K(V^2/2g)$

then $L_e = KD/f$

- L_e is added to pipe length in $L_l = [(L_e + L)/D] (V^2/2g) f$
- Example if K = 20 for a pipe where f = 0.02 and D = 300 mm then

 $L_e = (20*(0.3)/0.02) = 300 \text{ m}$

• In general $L_e = (D/f) \sum K_i$

S

• Water, $\rho=1.94$ slugs/ft3 and v=0.000011 ft2/s, is pumped between two reservoirs at 0.2 ft3/s through 400 ft of 2-in-diameter pipe and several minor losses, as shown in Fig. E6.16. The roughness ratio is $\epsilon/d = 0.001$. Compute the pump horsepower required.

$$\frac{p_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \left(\frac{p_2}{\rho g} + \frac{V_2^2}{2g} + z_2\right) + h_f + \sum h_m - h_p$$

$$V = \frac{Q}{A} = \frac{0.2 \text{ ft}^3/\text{s}}{\frac{1}{4}\pi(\frac{2}{12} \text{ ft})^2} = 9.17 \text{ ft/s}$$

$$Re_d = \frac{Vd}{\nu} = \frac{9.17(\frac{2}{12})}{0.000011} = 139,000$$

$$TUDENLS-HUB_sCOM$$

$$h_p = z_2 - z_1 + h_f + \sum h_m = 120 \text{ ft} - 20 \text{ ft} + \frac{V^2}{2g} \left(\frac{fL}{d} + \sum K\right)$$

Loss	K	
Sharp entrance (Fig. 6.21)	0.5	Screwed regular 90° elbow $z_2 = 120 \text{ ft}$
Open globe valve (2 in, Table 6.5)	6.9	
12-in bend (Fig. 6.20)	0.15	$z_1 = 20 \text{ ft}$ Sharp
Regular 90° elbow (Table 6.5)	0.95	entrance Half-open gate valve
Half-closed gate valve (from Fig. 6.18b)	2.7	
Sharp exit (Fig. 6.21)	1.0	Pump bend radius
	$\Sigma K = 12.2$	Open globe valve 400 ft of pipe, $d = \frac{2}{12}$ ft

For $\epsilon/d = 0.001$, from the Moody chart read f = 0.0216.

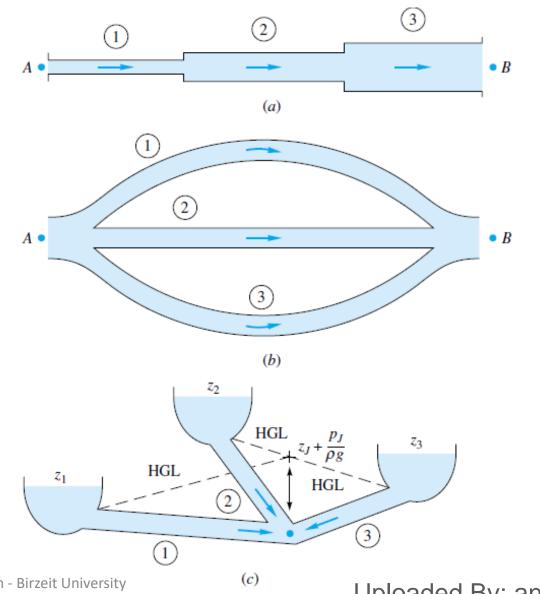
 $h_p = 100 \text{ ft} + \frac{(9.17 \text{ ft/s})^2}{2(32.2 \text{ ft/s}^2)} \left[\frac{0.0216(400)}{\frac{2}{12}} + 12.2 \right] = 100 \text{ ft} + 84 \text{ ft} = 184 \text{ ft}$ pump head

 $P = \rho g Q h_p = [1.94(32.2) \text{ lbf/ft}^3](0.2 \text{ ft}^3/\text{s})(184 \text{ ft}) = 2300 \text{ ft} \cdot \text{lbf/s}$ $P = \frac{2300}{550} = 4.2 \text{ hp}$ STUDENTS-HUB.com $P = \frac{2300}{550} = 4.2 \text{ hp}$ Uploaded By:

Multiple pipe problems

Fig. 6.24 Examples of multiple-pipe systems: (a) pipes in series; (b) pipes in parallel; (c) the three-reservoir junction problem

Only single path pipe problems are covered in this course.



STUDENTS-HUB.com

Afif Hasan - Birzeit University

Pipe problems

- Three Types of Pipe-Flow Problems; only type 1 is required
 - Pressure drop, power unknown Type 1

Given *d*, *L*, and *V* or *Q*, ρ , μ , and *g*, compute the head loss *hf* (head-loss problem).

• Flow rate is unknown Type 2

Given *d*, *L*, h_f , ρ , μ , and *g*, compute the velocity *V* or flow rate *Q* (flow-rate problem).

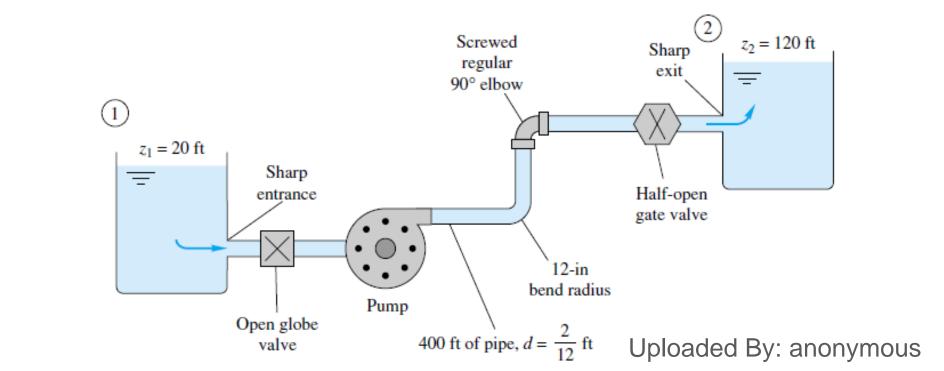
• Pipe diameter is unknown Type 3

Given Q, L, hf, ρ , μ and g, compute the diameter d of the pipe (sizing problem).

Type 1 Pressure is unknown

STUDENTBEHUBGOM

- Straight forward solution . Conditions at one section , I, ε , geometry ,flow are all given and the condition at other section is desired (P_2 or ΔP).
- See example 6.16 pump head and power are required.

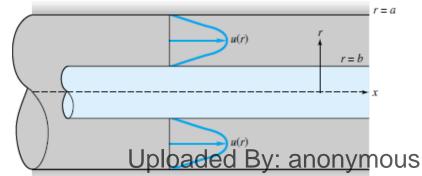


Non circular Conduits

- For non circular cross section ,you may solve using all previous relation and method by replacing the diameter with hydraulic diameter.
- $D_h = 4$ (cross section Area / wetted perimeter) = $4A/P_w$
- Example:
- (i) Circular $D_h = 4\pi (D^2/4)/\pi D = D$
- (ii) Rectangular $D_h = 4ba/(2b+2a) = 2ba/(b+a)$
 - For two parallel sheets where length **b** is much larger than separation **a** between the sheets $D_h = 2 \text{ ba}/(b+a) = 2a$

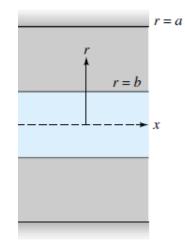
(iii) Circular annulus

$$D_{h} = 4[\pi(D_{1}^{2}/4) - \pi(D_{2}^{2}/4)] / [\pi D_{1} + \pi D_{2}] = [(D_{1}^{2} - D_{2}^{2}) / (D_{1} + D_{2})] = (D_{1} - D_{2})$$



hydraulic diameter

$$\operatorname{Re}_{D_h} = \frac{VD_h}{\nu} \qquad f = F\left(\frac{VD_h}{\nu}, \frac{\epsilon}{D_h}\right) \qquad h_f \approx f \frac{L}{D_h} \frac{V^2}{2g}$$



 V^2

 $D_{\text{eff}} = D_h = \frac{4A}{\mathscr{P}}$ reasonable accuracy

Fluid flows at an average velocity of 6 ft/s between horizontal parallel plates a distance of 2.4 in apart. Find the head loss and pressure drop for each 100 ft of length for p= 1.9 slugs/ft3 and (*a*) v=0.00002 ft3/s and (*b*) v=0.002 ft3/s. Assume smooth walls.

The spacing is 2h = 2.4 in= 0.2 ft, and Dh = 4h = 0.4 ft.

con esta con a cas

separation **a** between the sheets

$$\operatorname{Re}_{D_h} = \frac{VD_h}{\nu} = \frac{(6.0 \text{ ft/s})(0.4 \text{ ft})}{0.00002 \text{ ft}^2/\text{s}} = 120,000 \qquad D_h = 2a$$

For reasonable accuracy, simply look on the Moody chart for smooth walls

$$f \approx 0.0173 \quad h_f \approx f \frac{L}{D_h} \frac{V^2}{2g} = 0.0173 \frac{100}{0.4} \frac{(6.0)^2}{2(32.2)} \approx 2.42 \text{ ft}$$
$$\Delta p = \rho g h_f = 1.9(32.2)(2.42) = 148 \text{ lbf/ft}^2$$

STUDENTS-HUB.com

Afif Hasan - Birzeit University

 What should the reservoir level h be to maintain a flow of 0.01 m3/s through the commercial steel annulus 30 m long shown in Fig. E6.14? Neglect entrance effects and take p=1000 kg/m3 and v=1.02x10⁶ m2/s for water.

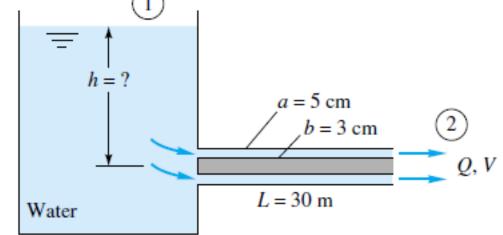
$$V = \frac{Q}{A} = \frac{0.01 \text{ m}^3\text{/s}}{\pi[(0.05 \text{ m})^2 - (0.03 \text{ m})^2]} = 1.99 \text{ m/s}$$

$$D_h = 2(a - b) = 2(0.05 - 0.03) \text{ m} = 0.04 \text{ m}$$

$$\frac{p_1}{\rho} + \frac{1}{2}V_1^2 + gz_1 = \left(\frac{p_2}{\rho} + \frac{1}{2}V_2^2 + gz_2\right) + gh_f$$

But $p_1 = p_2 = p_a$, $V_1 \approx 0$, and $V_2 = V$ in the pipe.

$$h_f = f \frac{L}{D_h} \frac{V^2}{2g} = z_1 - z_2 - \frac{V^2}{2g} \qquad h = \frac{V^2}{2g} \left(1 + f \frac{L}{D_h}\right)$$



$$\operatorname{Re}_{D_h} = \frac{VD_h}{\nu} = \frac{1.99(0.04)}{1.02 \times 10^{-6}} = 78,000$$
$$\frac{\epsilon}{D_h} = \frac{0.046 \text{ mm}}{40 \text{ mm}} = 0.00115$$

where 0.046 mm has been read from Table 6.1 for commercial steel surfaces. From the Moody chart, read f = 0.0232.

$$h \approx \frac{(1.99 \text{ m/s})^2}{2(9.81 \text{ m/s}^2)} \left(1 + 0.0232 \frac{30 \text{ m}}{0.04 \text{ m}}\right) = 3.71 \text{ m}$$

STUDENTS-HUB.com

End of pipe flow