Bevel Gear

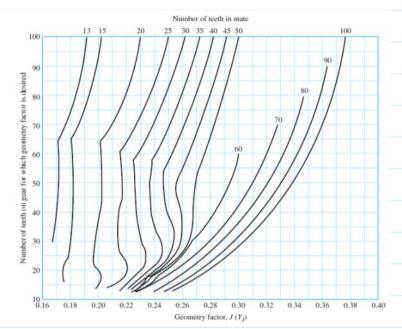
Monday, June 21, 2021 8:45 PM

* Geometry:

$$\delta g = \tan^{-1}\left(\frac{Vg}{Ne}\right) = \tan^{-1}(VR)$$

-> Force Analysis:

Bending Stress Analysis (1)


Monday, June 21, 2021

1) Bending Stress

To find (J):

Figure 15-7 Bending factor $J(Y_J)$ for coniflex straight-bevel gears with a 20° normal pressure angle and 90° shaft angle. (Source: ANSI/AGMA 2003-B97.)

* Find (Jo) and (Jg) hecause 660 + 669

 $K_S = \begin{cases} 0.4867 + 0.2132/P_d \\ 0.5 \end{cases}$

 $0.5 \le P_d \le 16$ teeth/in $P_d > 16$ teeth/in

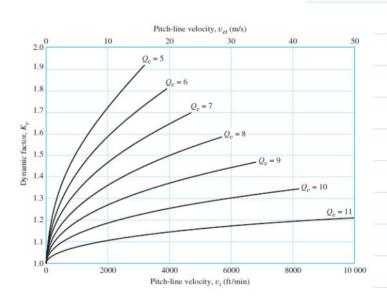
(U.S. customary units) (1.5-10)

 $= \begin{cases} 0.5 \\ 0.4867 + 0.008339 m_{et} \end{cases}$

 $m_{et} < 1.6 \text{ mm}$ $1.6 \le m_{et} \le 50 \text{ mm}$

(SI units)

Dynamic factor K_v .
(Source: ANSI/AGMA 2003-B97.)


Figure 15-5

 $K_{V} = \left(\frac{A + JV'}{A}\right)^{K} USJ$

 $K_V = \left(\frac{A + \sqrt{2\infty V'}}{A}\right)^{\beta} [SI]$

 $B = (12 - Q_V)^{2/3}$

A = 50 + 56(1 - B)

(2)

Monday, June 21, 2021

9:13 PM

To hind (Ko):

Overload Factors $K_a(K_A)$

Character of		Character of L	oad on Driven M	achine
Prime Mover	Uniform	Light Shock	Medium Shock	Heavy Shock
Uniform	1.00	1.25	1.50	1.75 or higher
Light shock	1.10	1.35	1.60	1.85 or higher
Medium shock	1.25	1.50	1.75	2.00 or higher
Heavy shock	1.50	1.75	2.00	2.25 or higher

Note: This table is for speed-decreasing drives. For speed-increasing drives, add 0.01(N/n)2 or 0.01(z₂/z₁)2

(SI units)

To find (Km):

Load-Distribution Factor K_m (K_{HB})

$$K_m = K_{mb} + 0.0036F^2$$

 $K_{HB} = K_{mb} + 5.6(10^{-6})b^2$

(U.S. customary units)

(15 - 11)

where

$$K_{mb} = \begin{cases} 1.00 & \text{both members straddle-mounted} \\ 1.10 & \text{one member straddle-mounted} \\ 1.25 & \text{neither member straddle-mounted} \end{cases}$$

+ The endurance limit of bending (Se): Se = St Ki Kns Kr Table 15-6 Allowable Bending Stress Numbers for Steel Gears, sat (or

Allowable Bending Stress Numbers for Steel Gears, s_{at} ($\sigma_{F \text{ lim}}$) Source: ANSI/AGMA 2003-B97.

Material	Heat	Minimum Surface	/ \ II c/: 2 /bt/		
Designation	Treatment	Hardness	Grade 1*	Grade 2*	Grade 3*
Steel	Through-hardened	Fig. 15-13	Fig. 15-13	Fig. 15-13	
	Flame or induction hardened Unhardened roots Hardened roots	50 HRC	15 000 (85) 22 500 (154)	13 500 (95)	
	Carburized and case hardened [†]	2003-B97 Table 8	30 000 (205)	35 000 (240)	40 000 (275)
AISI 4140	Nitrided ^{†,‡}	84.5 HR15N	20 000 (202)	22 000 (150)	40 000 (270)
Nitralloy 135M	Nitrided ^{†,‡}	90.0 HR15N		24 000 (165)	

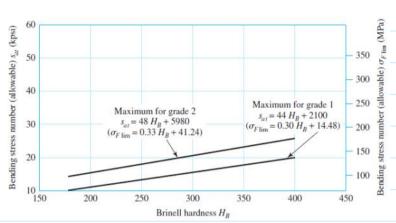
^{*}See ANSI/AGMA 2003-B97, Tables 8-11, for metallurgical factors for each stress grade of steel gears.

Table 15-7

Allowable Bending Stress Number for Iron Gears, s_{at} ($\sigma_{F \text{ lim}}$) Source: ANSI/AGMA 2003-B97.

Material Designation		Heat	Typical Minimum Surface	Bending Stress Number (Allowable), s _{at}	
Material	ASTM	ISO	Treatment	Hardness	$(\sigma_{F \text{ lim}}) \text{ lbf/in}^2 (\text{N/mm}^2)$
Cast iron	ASTM A48 Class 30 Class 40	ISO/DR 185 Grade 200 Grade 300	As cast As cast	175 HB 200 HB	4500 (30) 6500 (45)
Ductile (nodular) iron	ASTM A536 Grade 80-55-06 Grade 120-90-02	ISO/DIS 1083 Grade 600-370-03 Grade 800-480-02	Quenched and tempered	180 HB 300 HB	10 000 (70) 13 500 (95)

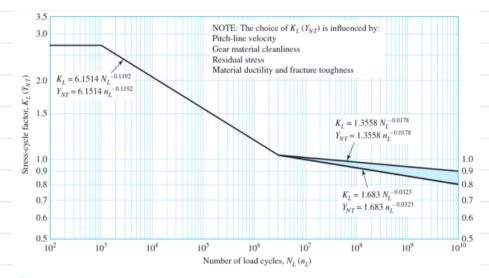
[†]The allowable stress numbers indicated may be used with the case depths prescribed in 21.1, ANSI/AGMA 2003-B97.


[‡]The overload capacity of nitrided gears is low. Since the shape of the effective S-N curve is flat, the sensitivity to shock should be

Monday, June 21, 2021

9:21 PM

Figure 15-13


Allowable bending stress number for through-hardened steel gears, $s_{at}(\sigma_{F \text{ lim}})$. (Source: ANSI/AGMA 2003-B97.)

To find (Kms): Kms = & 1, for idler gear

[1.4, for input & output gears.

To hind (Ke):

Figure 15-9

Stress-cycle factor for bending strength $K_L(Y_{NT})$ for carburized case-hardened steel bevel gears.

(Source: ANSI/AGMA 2003-B9

$$K_L = \begin{cases} 2.7 & 10^2 \le N_L < 10^3 \\ 6.1514N_L^{-0.1192} & 10^3 \le N_L < 3(10^6) \\ 1.683N_L^{-0.0323} & 3(10^6) \le N_L \le 10^{10} & \text{critical} \\ 1.3558N_L^{-0.0178} & 3(10^6) \le N_L \le 10^{10} & \text{general} \end{cases}$$

To hind (Kr):

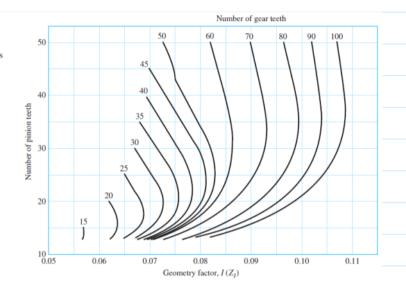
Table 15-3

Reliability Factors Source: ANSI/AGMA 2003-B97.

	Reliability Factors for Steel*		
Requirements of Application	$C_R(Z_Z)$	$K_R (Y_Z)^{\dagger}$	
Fewer than one failure in 10 000	1.22	1.50	
Fewer than one failure in 1000	1.12	1.25	
Fewer than one failure in 100	1.00	1.00	
Fewer than one failure in 10	0.92	0.85^{\ddagger}	
Fewer than one failure in 2	0.84	0.70§	

$$Y_Z = K_R = \begin{cases} 0.50 - 0.25 \log(1 - R) & 0.99 \le R \le 0.999 \\ 0.70 - 0.15 \log(1 - R) & 0.90 \le R < 0.99 \end{cases}$$
 (15-19)

Contact Stress (1)


Monday, June 21, 2021

2) Contact Stress

To find (I):

Figure 15-6

Contact geometry factor $I(Z_l)$ for coniflex straight-bevel gears with a 20° normal pressure angle and a 90° shaft angle. (Source: ANSI/AGMA 2003-B97.)

To hind ((s):

Size Factor for Pitting Resistance C. (Z.) b = face width

$$C_s = \begin{cases} 0.5 & \text{(F)} < 0.5 \text{ in} \\ 0.125F + 0.4375 & 0.5 \le F \le 4.5 \text{ in} \\ 1 & F > 4.5 \text{ in} \\ 0.5 & b < 12.7 \text{ mm} \\ 0.004 92b + 0.4375 & 12.7 \le b \le 114.3 \text{ mm} \end{cases}$$

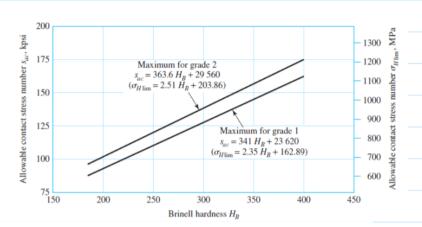
$$F < 0.5 \text{ in}$$

 $0.5 \le F \le 4.5 \text{ in}$

$$0.5 \le F \le 4.5 \text{ in}$$

$$F > 4.5 \text{ in}$$

$$b < 12.7 \text{ mm}$$


$$\leq b \leq 114.3 \text{ mm}$$

$$b > 114.3 \text{ mn}$$

Monday, June 21, 2021 9:37 PM

To Aid (Sc): | Figure 15-12

Allowable contact stress number for through-hardened steel gears, $s_{ac}(\sigma_{H \text{ lim}})$. (Source: ANSI/AGMA 2003-B97.)

The equations are

$$s_{ac} = 341H_B + 23 620 \text{ psi}$$
 grade 1
 $\sigma_{H \text{ lim}} = 2.35H_B + 162.89 \text{ MPa}$ grade 1
 $s_{ac} = 363.6H_B + 29 560 \text{ psi}$ grade 2
 $\sigma_{H \text{ lim}} = 2.51H_B + 203.86 \text{ MPa}$ grade 2

Table 15-4

Allowable Contact Stress Number for Steel Gears, s_{ac} ($\sigma_{H \text{ lim}}$) Source: ANSI/AGMA 2003-B97.

Material	Heat	Minimum Surface*	Allowable Contact Stress Number, $s_{ac}(\sigma_{H \text{ lim}}) \text{ lbf/in}^2 (\text{N/mm}^2)$		
Designation	Treatment	Hardness	Grade 1 [†]	Grade 2 [†]	Grade 3 [†]
Steel	Through-hardened [‡]	Fig. 15-12	Fig. 15-12	Fig. 15-12	
	Flame or induction hardened§	50 HRC	175 000 (1210)	190 000 (1310)	
	Carburized and case hardened§	2003-B97 Table 8	200 000 (1380)	225 000 (1550)	250 000 (1720)
AISI 4140	Nitrided [§]	84.5 HR15N		145 000 (1000)	
Nitralloy 135M	Nitrided [§]	90.0 HR15N		160 000 (1100)	

^{*}Hardness to be equivalent to that at the tooth middepth in the center of the face width.

Table 15-5

Allowable Contact Stress Number for Iron Gears, s_{ac} ($\sigma_{H \text{ lim}}$) Source: ANSI/AGMA 2003-B97.

Material Designation		Heat	Typical Minimum Surface	Allowable Contact Stress Number, sac	
Material	ASTM	ISO	Treatment	Hardness	($\sigma_{H \text{ lim}}$) lbf/in ² (N/mm ²)
Cast iron	ASTM A48	ISO/DR 185			
	Class 30	Grade 200	As cast	175 HB	50 000 (345)
	Class 40	Grade 300	As cast	200 HB	65 000 (450)
Ductile	ASTM A536	ISO/DIS 1083			
(nodular)	Grade 80-55-06	Grade 600-370-03	Quenched	180 HB	94 000 (650)
iron	Grade 120-90-02	Grade 800-480-02	and tempered	300 HB	135 000 (930)

Tuesday, June 22, 2021

12:14 AM

Table 15-3

Reliability Factors Source: ANSI/AGMA 2003-B97.

	Reliability Factors for Steel*		
Requirements of Application	$C_R(Z_Z)$	$K_R (Y_Z)^{\dagger}$	
Fewer than one failure in 10 000	1.22	1.50	
Fewer than one failure in 1000	1.12	1.25	
Fewer than one failure in 100	1.00	1.00	
Fewer than one failure in 10	0.92	0.85^{\ddagger}	
Fewer than one failure in 2	0.84	0.70^{8}	

^{*}At the present time there are insufficient data concerning the reliability of bevel gears made from other materials.

$$Y_Z = K_R = \begin{cases} 0.50 - 0.25 \log(1 - R) & 0.99 \le R \le 0.999 \\ 0.70 - 0.15 \log(1 - R) & 0.90 \le R < 0.99 \end{cases}$$
 (15-19)

[†]Tooth breakage is sometimes considered a greater hazard than pitting. In such cases a greater value of K_R (Y_Z) is selected for bending.

[‡]At this value plastic flow might occur rather than pitting.

[§]From test data extrapolation.