

CYBERSECURITY MATHEMATICS

Chapter 4

MATRIX: Describe by number of rows (m) multiply by number of column (n), A m*n

$$= \begin{pmatrix} q_{11} & \alpha_{11} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{23} & \alpha_{23} & \alpha_{33} \end{pmatrix}$$

$$EX : A = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}_{2 \times 2}, B = \begin{pmatrix} 1 & 3 & 3 \\ 4 & 5 & 6 \end{pmatrix}_{3 \times 3}, C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}_{3 \times 3}$$

STUDENTS-HUB.com

SPECIAL MATRIX :

1-Zero matrix (notation O), all elements are zero

a- Identity matrix : it is diagonal are ones

$$A = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad I \quad I \quad M \times M = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

ADDITION & SUBTRACTION : THE TWO MATRICES MUST HAVE THE SAME NUMBER OF ROWS AND COLUMNS.

$$A = \begin{pmatrix} 1 & 3 & 3 \\ 4 & 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 7 & 3 & 3 \\ 1 & 0 & 10 \end{pmatrix}, C \begin{pmatrix} 2 & 4 \\ 3 & 0 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 8 + 6 \\ 5 & 0 & 15 \end{pmatrix}$$

$$A - B = \begin{pmatrix} -5 & 0 & 0 \\ 3 & 0 & -5 \end{pmatrix}$$

$$A + C \xrightarrow{} Because A and C don't have the same m, N$$

MULTIPLICATION :

$A m^*r X B r^*n = (AB) m^*n$

If A , B is squared matrix where \underline{m} is number of rows and \underline{n} is number of columns Then A * B not equal B *A

Rules:

- 1) (AB) C = A(BC)
- 2) K(AB) = A(KB) = (KA)B
- 3) A(B + C) = AB + AC and (B + C)A = BA + CA
- 4) $IA = AI = A \longrightarrow I$: identity matrix
- 5) $OA = AO = O \longrightarrow 0$: Zero matrix

Note:

You can multiply two square matrices, but if the matrices are not square, the number of rows in the first matrix must be equal to the number of columns in the second matrix. Vice versa

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 0 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 1 & 1 & 0 \\ (1 \times 1) + (3 \times 2) & (1 \times 1) + (3 \times 0) & (1 \times 0) + (3 \times 1) \\ (3 \times 1) + (4 \times 3) & (3 \times 1) + (4 \times 0) & (3 \times 0) + (4 \times 1) \end{pmatrix} = \begin{pmatrix} 1 & 1 & -2 \\ 3 & 0 & -2 & -2 \\$$

$$\begin{array}{c} \lambda \end{array} & K \end{array} & (A & B) \end{array} & K = -1 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} & \begin{pmatrix} A & B \end{pmatrix} = \begin{pmatrix} -7 & -1 & -3 \\ -3 & -3 & 0 \\ -1^{\circ} & -3 & -4 \end{pmatrix} \end{array}$$

STUDENTS-HUB.com

TRANSPOSE OF MATRIX :

 $if A m^*r$ then $A^T m^*r$

Example:

$$A = \begin{pmatrix} 2 & 15 \\ 3 & 46 \end{pmatrix}_{2\times 3} \text{ find } A^{\dagger} ?? \longrightarrow A^{\dagger} = \begin{pmatrix} 2 & 3 \\ 5 & 6 \end{pmatrix}_{3\times 3}$$

Rules:

1) $(A^{T})^{T} = A$

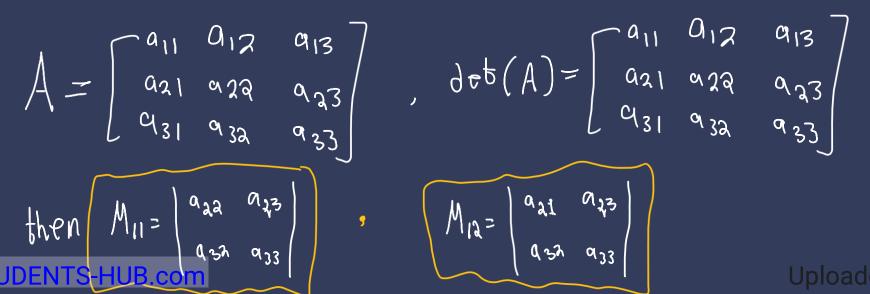
2) $(KA^{T})^{T} = KA^{T}$

3) $(A + B)^{T} = A^{T} + B^{T}$

STUDENTS HUBAB = B^T * A^T $\longrightarrow A^T + B^T + B^T + A^T$ what elements

MINORS OF MATRICES :

if A is squared matrix , then the minor denoted by Mij of element aij is determinate of submatrix that remains after the ith row and jth column deleted

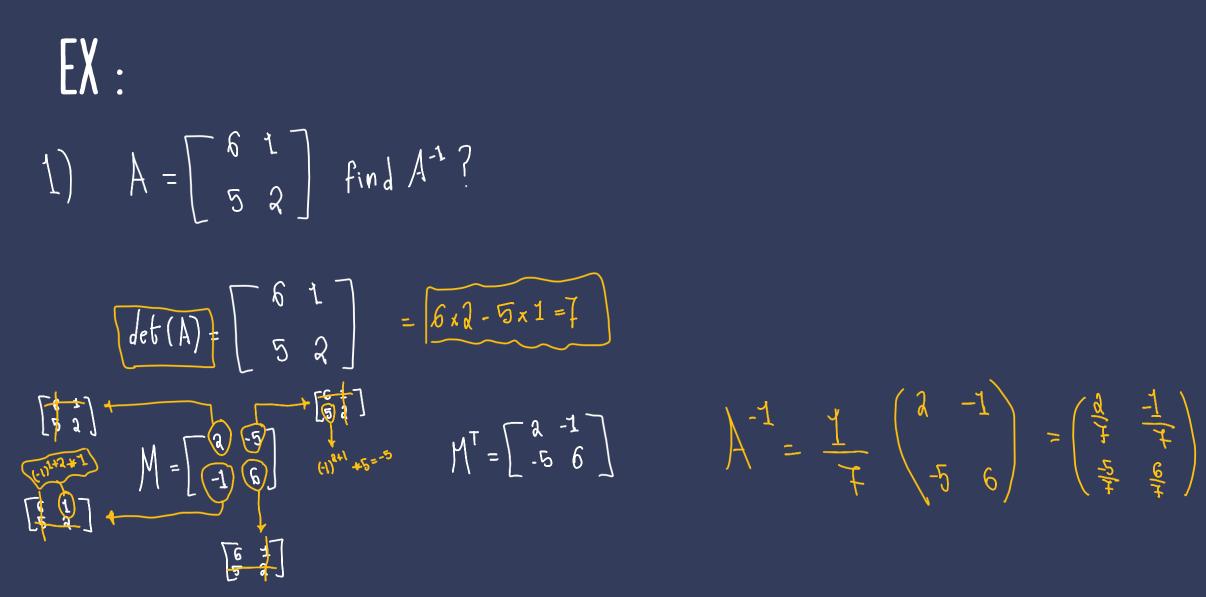


COFACTORS :

The number Cij = $(-1)^{i+j}$ * Mij Adjoint of matrix adj(A) = M^T

$$M = \begin{bmatrix} c_{11} & c_{13} & c_{13} \\ c_{21} & c_{23} & c_{23} \\ c_{31} & c_{32} & c_{23} \end{bmatrix}$$
, the $A^{-1} = \frac{1}{det(A)} + adj(A)$

STUDENTS-HUB.com



STUDENTS-HUB.com

Example: A. 0 3 2 find at ? Motes to find the determinate for any matrix we will take one 5 3 2 🖸 det(A) = FOW or on column (But we should aware of the sign of every index) $= (1) \begin{vmatrix} 3 & 2 \\ 0 & 2 \end{vmatrix} + (-5) \begin{vmatrix} 0 & 2 \\ 0 & 2 \end{vmatrix} + (0) \begin{vmatrix} 0 & 3 \\ 0 & 3 \end{vmatrix}$ = 1(6) + -5(-2) + D(-3)= 6 + 10 = 16 - in our Example have we took the first row 2 $C_{ij} = (-1)^{i+j} M_{ij}$ Mar = (5x2) - (0x0) = 10 M = (312)-(012) =6 Mai = (5×2)-(0x3) = 10 $C_{11} = (-1)^2 \cdot 6 = 6$ $\mathcal{M}_{12} = (0x_2) - (2x_1) = -2$ M22 = (1x2) - (0x1) = 2 M32 = / 1x2) - (0x0) = 2 $C_{12} = (-1)^3 \cdot -2 = 2$ $M_{13} = (0x0) - (3x1) = -3$ $M_{10} = (/x_0) - (5x_1) = -5$ M23 = (1x3) - (5x0) = 3 $C_{13} = (-1)^{1} \cdot -3 = -3$ $C_{21} = (-1)^2 \cdot 10 = -10$ -3 C22 = (-1)". 2 = 2 , M = 5 M = -10 22 -35 2 C23 = (-1)⁶. -5 = 5 3 $C_{31} = (-1)^{4} \cdot 10 = 10$ 10 -2 C32 = [1] 2 = -2 C23 = (1)6. 3 = 3 stransfor: Let the row be column and the column be row det(A) -10 10 6 5 A -' -2 -1 8 16 -3 5 Э

STUDENTS-HUB.com

