Chapter 6: Fatigue Failure Resulting from Variable Loading (shigley Book)

STUDENTS-HUB.com

oploaded by. anonymous

Introduction to Fatigue in Metals – Ductile Fracture

Fatigue: When parts are subjected to fluctuating stress, the parts are likely to fail at stress levels that are much less than yielding or ultimate strengths if subjected to large numbers of cycles.

Introduction to Fatigue in Metals – Ductile Fracture

Chapter 6 – Fatigue Failure Resulting from Variable Loading Introduction to Fatigue in Metals – Fracture

Trees

Uploaded By: anonymous 6

Introduction to Fatigue in Metals - Example

Fatigue fracture of an AISI 4320 drive shaft. The fatigue failure initiated at the end of the keyway at points *B* and progressed to final rupture at *C*. The final rupture zone is small, indicating that loads were low.

A fatigue failure has an appearance similar to a brittle fracture, as the fracture surface are flat and perpendicular to the stress axis with absence of necking

STUDENTS-HUB.com

Uploaded By: anonymous 7

Fatigue Failure Surface:

- Crack Propagation
 Zone → <u>Smooth</u>
 <u>Surface</u>
- Final Fracture Zone
 <u>Rough Surface</u> like
 Brittle Fracture

There are 3 major fatigue life methods

- Stress Life Method 🗹
- Strain Life Method 🔀
- Linear Elastic fracture mechanics method 🔀
- > The mostly used fatigue testing device is the R. R. Moore high speed rotating beam machine.
- > This machine subjects the specimen to pure bending (no transverse shear) by means of weights (The specimen should be carefully machined and polished).
- \succ To establish the fatigue strength at the materials, quite a number of tests are necessary because of the statistical nature of fatigue

Chapter 6 – Fatigue Failure Resulting from Variable Loading

R. R. Moore High-Speed Rotating Beam Machine

https://www.youtube.com/watch?v=52knsY5AWIc Uploaded By: anonymous₁₀

R. R. Moore High-Speed Rotating Beam Machine

Uploaded By: anonymous₁₁

STUDENTS-HUB.com

Uploaded By: anonymous₁₂

STUDENTS-HUB.com

Uploaded By: anonymous₁₃

Figure 6-11

S-N bands for representative aluminum alloys, excluding wrought alloys with $S_{ut} < 38$ kpsi. (From R. C. Juvinall, Engineering Considerations of Stress, Strain and Strength. Copyright © 1967 by The McGraw-Hill Companies, Inc. Reprinted by permission.)

Uploaded By: anonymous₁₄

6-7 The Endurance Limit

Figure 6 -17 – Endurance Limit (Wrought Irons and Steels)

Figure A-24

Mechanical Properties of Three Non-Steel Metals (a) Typical Properties of Gray Cast Iron

ASTM Number	Tensile Strength S _{ut} , kpsi	Compressive Strength S _{uc} , kpsi	Shear Modulus of Rupture <i>S_{su},</i> kpsi	Modul Elasticity Tension [†]	us of , Mpsi Torsion	Endurance Limit* <i>S_e,</i> kpsi	Brinell Hardness H _B	Fatigue Stress- Concentration Factor K _f
20	22	83	26	9.6-14	3.9-5.6	10	156	1.00
25	26	97	32	11.5-14.8	4.6-6.0	11.5	174	1.05
30	31	109	40	13-16.4	5.2-6.6	14	201	1.10
35	36.5	124	48.5	14.5-17.2	5.8-6.9	16	212	1.15
40	42.5	140	57	16-20	6.4-7.8	18.5	235	1.25
50	52.5	164	73	18.8-22.8	7.2-8.0	21.5	262	1.35
60	62.5	187.5	88.5	20.4-23.5	7.8-8.5	24.5	302	1.50

Figure A-24

(b) Mechanical Properties of Some Aluminum Alloys

Aluminum Association Number	Temper	Yield <i>, S_y,</i> MPa (kpsi)	Strength Tensile <i>, S_u,</i> MPa (kpsi)	Fatigue, <i>S_f,</i> MPa (kpsi)	Elongation in 2 in, %	Brinell Hardness H _B
Wrought:						
2017	О	70 (10)	179 (26)	90 (13)	22	45
2024	О	76 (11)	186 (27)	90 (13)	22	47
	T3	345 (50)	482 (70)	138 (20)	16	120
3003	H12	117 (17)	131 (19)	55 (8)	20	35
	H16	165 (24)	179 (26)	65 (9.5)	14	47
3004	H34	186 (27)	234 (34)	103 (15)	12	63
	H38	234 (34)	276 (40)	110 (16)	6	77
5052	H32	186 (27)	234 (34)	117 (17)	18	62
	H36	234 (34)	269 (39)	124 (18)	10	74
Cast:						
319.0*	T6	165 (24)	248 (36)	69 (10)	2.0	80
333.0^{\dagger}	T5	172 (25)	234 (34)	83 (12)	1.0	100
	T6	207 (30)	289 (42)	103 (15)	1.5	105
335.0*	T6	172 (25)	241 (35)	62 (9)	3.0	80
	Τ7	248 (36)	262 (38)	62 (9)	0.5	85 Act

Aluminum alloys do not have an endurance limit. The fatigue strengths of some aluminum alloys at <u>STUDENTS-HUB.com</u> 5(10⁸) cycles of reversed stress are given in Table A–24. Uploaded By: anonymous₁₈

6-8 Fatique Strength

STUDENTS-HUB.com

Uploaded By: anonymous₁₉

6-8 Fatique Strength

STUDENTS-HUB.com

Uploaded By: anonymous₂₀

Figure 6-18: Fatigue Strength fraction f of S_{ut} at 10³ cycles

Uploaded By: anonymous₂₁

6-8 Fatique Strength

 $S_f = a N^b$

STUDENTS-HUB.com

Uploaded By: anonymous₂₂

Chapter 6 – Fatigue Failure Resulting from Variable Loading

- *Material:* composition, basis of failure, variability
- Manufacturing: method, heat treatment, fretting corrosion, surface condition, stress concentration
- *Environment:* corrosion, temperature, stress state, relaxation times
- *Design:* size, shape, life, stress state, speed, fretting, galling

$$S_e = k_a k_b k_c k_d k_e k_f S'_e \tag{6-18}$$

 k_a = surface condition modification factor where

 k_b = size modification factor

- $k_c = \text{load modification factor}$
- k_d = temperature modification factor
- $k_e = \text{reliability factor}^{13}$
- k_f = miscellaneous-effects modification factor
- S'_e = rotary-beam test specimen endurance limit
- S_e = endurance limit at the critical location of a machine part in the geometry and condition of use STUDENTS-HUB.com Uploaded By: anonymous

Table 6-2: Parameters for Marin Surface Modification

Surface Factor k_a

$$k_a = aS_{ut}^b$$

	Fact	Exponent	
Surface Finish	S _{ut} , kpsi	<i>S_{ut},</i> MPa	Ь
Ground	1.34	1.58	-0.085
Machined or cold-drawn	2.70	4.51	-0.265
Hot-rolled	14.4	57.7	-0.718
As-forged	39.9	272.	-0.995

Uploaded By: anonymous₂₅

Size Factor k_b

STUDENTS-HUB.com

➤ The results for bending and torsion may be expressed as:

$$k_b = \begin{cases} (d/0.3)^{-0.107} = 0.879d^{-0.107} & 0.11 \le d \le 2 \text{ in} \\ 0.91d^{-0.157} & 2 < d \le 10 \text{ in} \\ (d/7.62)^{-0.107} = 1.24d^{-0.107} & 2.79 \le d \le 51 \text{ mm} \\ 1.51d^{-0.157} & 51 < d \le 254 \text{ mm} \end{cases}$$
(6-20)

➢ For axial loading there is no size effect, so

(6 - 21)

Table 6-3: Areas of Common Nonrotating Structural Shapes

Size Factor k_b

Uploaded By: anonymous

Load Factor k_c

When torsion is combined with other loading, such as bending, set $k_c = 1$, and the combined loading is managed by using the effective von Mises stress as described in Sec. 6-14

Chapter 6 – Fatigue Failure Resulting from Variable Loading

Figure 2-9: Effect of operating temperature on $S_v \& S_{ut}$

Temperature Factor k_d

 $k_d = \frac{S_T}{S_{RT}}$

A fourth-order polynomial curve fit to the data underlying Fig. 2–9 gives

$$k_d = 0.975 + 0.432(10^{-3})T_F - 0.115(10^{-5})T_F^2 + 0.104(10^{-8})T_F^3 - 0.595(10^{-12})T_F^4$$
(6-27)

 $\underset{4/13/202}{\text{STUDERF}} H = 1000^{\circ} F.$

Uploaded By: anonymous₂₉

Table 6-4: Effect of operating temperature on $S_v \& S_{ut}$

Temperature, °C	S _T /S _{RT}	Temperature, °F	S _T /S _{RT}
20	1.000	70	1.000
50	1.010	100	1.008
100	1.020	200	1.020
150	1.025	300	1.024
200	1.020	400	1.018
250	1.000	500	0.995
300	0.975	600	0.963
350	0.943	700	0.927
400	0.900	800	0.872
450	0.843	900	0.797
500	0.768	1000	0.698
550	0.672	1100	0.567
600	0.549		

Figure 6 -17 – Endurance Limit (Wrought Irons and Steels)

بَالْغَنَّهُ بَالْكُنِينِ BIRZEIT UNIVERSITY

Table 6-5: Reliability Factors K_e

Reliability Factor k_e

$$k_e = 1 - 0.08 z_a$$

Reliability, %	Transformation Variate z_a	Reliability Factor k_e
50	0	1.000
90	1.288	0.897
95	1.645	0.868
99	2.326	0.814
99.9	3.091	0.753
99.99	3.719	0.702
99.999	4.265	0.659
99.9999	4.753	0.620

Uploaded By: anonymous₃₂

Miscellaneous Effects Factor k_f

Corrosion

It is to be expected that parts that operate in a corrosive atmosphere will have a lowered fatigue resistance. This is, of course, true, and it is due to the roughening or pitting of the surface by the corrosive material. But the problem is not so simple as the one of finding the endurance limit of a specimen that has been corroded. The reason for this is that the corrosion and the stressing occur at the same time. Basically, this means that in time any part will fail when subjected to repeated stressing in a corrosive atmosphere. There is no fatigue limit. Thus the designer's problem is to attempt to minimize the factors that affect the fatigue life; these are:

- Mean or static stress
- Alternating stress
- Electrolyte concentration
- Dissolved oxygen in electrolyte
- Material properties and composition
- Temperature
- Cyclic frequency
- Fluid flow rate around specimen

Miscellaneous Effects Factor k_{f}

Electrolytic Plating

Metallic coatings, such as chromium plating, nickel plating, or cadmium plating, reduce the endurance limit by as much as 50 percent. In some cases the reduction by coatings has been so severe that it has been necessary to eliminate the plating process. Zinc plating does not affect the fatigue strength. Anodic oxidation of light alloys reduces bending endurance limits by as much as 39 percent but has no effect on the torsional endurance limit.

Metal Spraying

Metal spraying results in surface imperfections that can initiate cracks. Limited tests show reductions of 14 percent in the fatigue strength.

Cyclic Frequency

If, for any reason, the fatigue process becomes time-dependent, then it also becomes frequency-dependent. Under normal conditions, fatigue failure is independent of frequency. But when corrosion or high temperatures, or both, are encountered, the cyclic rate becomes important. The slower the frequency and the higher the temperature, the higher the crack propagation rate and the shorter the life at a given stress level.

Frettage Corrosion

The phenomenon of frettage corrosion is the result of microscopic motions of tightly fitting parts or structures. Bolted joints, bearing-race fits, wheel hubs, and any set of tightly fitted parts are examples. The process involves surface discoloration, pitting, and eventual fatigue. The frettage factor k_f depends upon the material of the mating STUDENTSING conges from 0.24 to 0.90.

- *Material:* composition, basis of failure, variability
- Manufacturing: method, heat treatment, fretting corrosion, surface condition, stress concentration
- *Environment:* corrosion, temperature, stress state, relaxation times
- *Design:* size, shape, life, stress state, speed, fretting, galling

$$S_e = k_a k_b k_c k_d k_e k_f S'_e \tag{6-18}$$

 k_a = surface condition modification factor where

 k_b = size modification factor

- $k_c = \text{load modification factor}$
- k_d = temperature modification factor
- $k_e = \text{reliability factor}^{13}$
- k_f = miscellaneous-effects modification factor
- S'_e = rotary-beam test specimen endurance limit
- S_e = endurance limit at the critical location of a machine part in the geometry and condition of use STUDENTS-HUB.com Uploaded By: anonymous

In the development of the basic stress equations for tension, compression, bending, and torsion, it was assumed that no geometric irregularities occurred in the member under consideration. But it is quite difficult to design a machine without permitting some changes in the cross sections of the members.

Rotating shafts must have shoulders designed on them so that the bearings can be properly seated and so that they will take thrust loads; and the shafts must have key slots machined into them for securing pulleys and gears. A bolt has a head on one end and screw threads on the other end, both of which account for abrupt changes in the cross section. Other parts require holes, oil grooves, and notches of various kinds.

Uploaded By: anonymous $_{\!\!_{39}}$

Chapter 6 – Fatigue Failure Resulting from Variable Loading

6-10 Stress Concentration and Notch Sensitivity

Abrupt change Stress "flow lines" crowd High stress concentration

Smoother change "Flow lines" less crowded Lower stress concentration

Uploaded By: anonymous₄₁

6-10 Stress Concentration

https://www.youtube.com/watch?v=7rXGRPMD-GQ Uploaded By: anonymous₄₂ Chapter 6 – Fatigue Failure Resulting from Variable Loading

6-10 Stress Concentration and Notch Sensitivity

 This index at stress concentration is referred as the stress concentration factor K_t or K_{ts}

$$K_t = \frac{\sigma_{\max}}{\sigma_0} \qquad K_{ts} = \frac{\tau_{\max}}{\tau_0}$$

• The stress concentration factors **K**_t or **K**_{ts} are taken from experiments

Stress Concentration Factor k_t

Figure A-15-1

Bar in tension or simple compression with a transverse hole. $\sigma_0 = F/A$, where A = (w - d)t and t is the thickness.

Stress Concentration Factor k_t

Figure A-15-2

Rectangular bar with a transverse hole in bending. $\sigma_0 = Mc/I$, where $I = (w - d)h^3/12$.

Uploaded By: anonymous₄₅

Stress Concentration Factor k_t

Figure A-15-3

Notched rectangular bar in tension or simple compression. $\sigma_0 = F/A$, where A = dtand t is the thickness.

Uploaded By: anonymous₄₆

Stress Concentration Factor k_t

Figure A-15-4

Notched rectangular bar in bending. $\sigma_0 = Mc/I$, where c = d/2, $I = td^3/12$, and t is the thickness.

Uploaded By: anonymous₄₇

Stress Concentration Factor k_t

Figure A-15-5

Rectangular filleted bar in tension or simple compression. $\sigma_0 = F/A$, where A = dt and t is the thickness.

Stress Concentration Factor k_t

Figure A-15-6

Rectangular filleted bar in bending. $\sigma_0 = Mc/I$, where c = d/2, $I = td^3/12$, t is the thickness.

Stress Concentration Factor k_t

Figure A-15-6

Rectangular filleted bar in bending. $\sigma_0 = Mc/I$, where c = d/2, $I = td^3/12$, t is the thickness.

Stress Concentration Factor k_t

Figure A-15-7

Round shaft with shoulder fillet in tension. $\sigma_0 = F/A$, where $A = \pi d^2/4$.

Stress Concentration Factor k_{ts}

Figure A-15-8

Round shaft with shoulder fillet in torsion. $\tau_0 = Tc/J$, where c = d/2 and $J = \pi d^4/32$.

Stress Concentration Factor k_t

Figure A-15-9

Round shaft with shoulder fillet in bending. $\sigma_0 = Mc/I$, where c = d/2 and $I = \pi d^4/64$.

Stress Concentration Factor *k*_{ts}

Figure A-15-10

Round shaft in torsion with transverse hole.

Stress Concentration Factor k_t

Figure A-15-11

Round shaft in bending with a transverse hole. $\sigma_0 = M/[(\pi D^3/32) - (dD^2/6)],$ approximately.

Uploaded By: anonymous₅₅

Stress Concentration Factor k_t

Figure A-15-12

Plate loaded in tension by a pin through a hole. $\sigma_0 = F/A$, where A = (w - d)t. When clearance exists, increase K_t 35 to 50 percent. (*M. M. Frocht* and H. N. Hill, "Stress-Concentration Factors around a Central Circular Hole in a Plate Loaded through a Pin in Hole," J. Appl. Mechanics, vol. 7, no. 1, March 1940, p. A-5.)

Uploaded By: anonymous₅₆

Stress Concentration Factor k_t

Figure A-15-13

Grooved round bar in tension. $\sigma_0 = F/A$, where $A = \pi d^2/4$.

Stress Concentration Factor k_t

Figure A-15-14

Grooved round bar in bending. $\sigma_0 = Mc/I$, where c = d/2and $I = \pi d^4/64$.

Stress Concentration Factor k_{ts}

Figure A-15-15

Grooved round bar in torsion. $\tau_0 = Tc/J$, where c = d/2and $J = \pi d^4/32$.

Uploaded By: anonymous₅₉

Stress Concentration Factor k_t

Figure A-15-16

Round shaft with flat-bottom groove in bending and/or tension.

$$\sigma_0 = \frac{4F}{\pi d^2} + \frac{32M}{\pi d^3}$$

Source: W. D. Pilkey and D. F. Pilkey, *Peterson's Stress-Concentration Factors*, 3rd ed. John Wiley & Sons, Hoboken, NJ, 2008, p. 115.

STUDENTS-HUB.com

Stress Concentration Factor k_{ts}

Figure A-15-17

Round shaft with flat-bottom groove in torsion.

$$\tau_0 = \frac{16T}{\pi d^3}$$

Source: W. D. Pilkey and D. F. Pilkey, *Peterson's Stress-Concentration Factors*, 3rd ed. John Wiley & Sons, Hoboken, NJ, 2008, p. 133

a/t

Uploaded By: anonymous

Stress Concentration Factor k,

Table A-16

Approximate Stress-Concentration Factor K_t of a Round Bar or Tube with a Transverse Round Hole and Loaded in Bending

Source: R. E. Peterson, Stress-Concentration Factors, Wiley, New York, 1974, pp. 146, 235.

The nominal bending stress is $\sigma_0 = M/Z_{net}$ where Z_{net} is a reduced value of the section modulus and is defined by

$$Z_{\rm net} = \frac{\pi A}{32D} (D^4 - d^4)$$

Values of A are listed in the table. Use d = 0 for a solid bar

			d/	/D			
	0	.9	0.	.6	0		
a/D	А	K _t	А	K _t	А	K _t	
0.050	0.92	2.63	0.91	2.55	0.88	2.42	
0.075	0.89	2.55	0.88	2.43	0.86	2.35	
0.10	0.86	2.49	0.85	2.36	0.83	2.27	
0.125	0.82	2.41	0.82	2.32	0.80	2.20	
0.15	0.79	2.39	0.79	2.29	0.76	2.15	
0.175	0.76	2.38	0.75	2.26	0.72	2.10	
0.20	0.73	2.39	0.72	2.23	0.68	2.07	
0.225	0.69	2.40	0.68	2.21	0.65	2.04	
0.25	0.67	2.42	0.64	2.18	0.61	2.00	
0.275	0.66	2.48	0.61	2.16	0.58	1.97	
0.30	0.64	2.52	0.58	2.14	0.54	1.94	

Uploaded By: anonymous

Stress Concentration Factor k_{ts}

Table A-16 (Continued)

Approximate Stress-Concentration Factors K_{ts} for a Round Bar or Tube Having a Transverse Round Hole and Loaded in Torsion Source: R. E. Peterson, Stress-Concentration Factors, Wiley, New York, 1974, pp. 148, 244.

The maximum stress occurs on the inside of the hole, slightly below the shaft surface. The nominal shear stress is $\tau_0 = TD/2J_{net}$, where J_{net} is a reduced value of the second polar moment of area and is defined by

$$J_{\rm net} = \frac{\pi A (D^4 - d^4)}{32}$$

Values of A are listed in the table. Use d = 0 for a solid bar.

		d/D									
0.9		9 0		0.8 0.		.6 0.4		.4	(
a/D	А	K _{ts}	А	K _{ts}	А	K _{ts}	А	K _{ts}	А	K _{ts}	
0.05	0.96	1.78							0.95	1.77	
0.075	0.95	1.82							0.93	1.71	
0.10	0.94	1.76	0.93	1.74	0.92	1.72	0.92	1.70	0.92	1.68	
0.125	0.91	1.76	0.91	1.74	0.90	1.70	0.90	1.67	0.89	1.64	
0.15	0.90	1.77	0.89	1.75	0.87	1.69	0.87	1.65	0.87	1.62	
0.175	0.89	1.81	0.88	1.76	0.87	1.69	0.86	1.64	0.85	1.60	
0.20	0.88	1.96	0.86	1.79	0.85	1.70	0.84	1.63	0.83	1.58	
0.25	0.87	2.00	0.82	1.86	0.81	1.72	0.80	1.63	0.79	1.54	
0.30	0.80	2.18	0.78	1.97	0.77	1.76	0.75	1.63	0.74	1.51	
0.35	0.77	2.41	0.75	2.09	0.72	1.81	0.69	1.63	0.68	1.47	
EN#S-HUB	. <mark>.</mark>	2.67	0.71	2.25	0.68	1.89	0.64	1.63	0.63	Upploaded	By: and

Stress Concentration factors:

 This index at stress concentration is referred as the stress concentration factor K_t or K_{ts}

$$K_t = \frac{\sigma_{\max}}{\sigma_0} \qquad K_{ts} = \frac{\tau_{\max}}{\tau_0}$$

- The stress concentration factors K_t or K_{ts} are taken from experiments
- The Fatigue stress concentration factors K_f or K_{fs}

$$K_f = \frac{\text{maximum stress in notched specimen}}{\text{stress in notch-free specimen}}$$

Notch sensitivity q is defined by the equation

$$q = rac{K_f - 1}{K_t - 1}$$
 or $q_{ ext{shear}} = rac{K_{fs} - 1}{K_{ts} - 1}$
Uploaded By: anonymous₆₄

STUDENTS-HUB.com

جَامَعَہُ بِلَائِنَتِنَ بِلَائِنَتِنَ بِلَائِنَتِنَ بِلَائِنَتِنَ بِلَائِنَتِنَ بِلَائِنَتِنَ بِلَائِنَتِنَ بِل

Notch Sensitivity q

Figure 6-20

Notch-sensitivity charts for steels and UNS A92024-T wrought aluminum alloys subjected to reversed bending or reversed axial loads. For larger notch radii, use the values of q corresponding to the r = 0.16-in (4-mm) ordinate. (From George Sines and J. L. Waisman (eds.), Metal Fatigue, McGraw-Hill, New York. Copyright © 1969 by The McGraw-Hill Companies, Inc. Reprinted by permission.)

Uploaded By: anonymous₆₅

Notch Sensitivity q_s

Figure 6-21

Notch-sensitivity curves for materials in reversed torsion. For larger notch radii, use the values of q_{shear} corresponding to r = 0.16 in (4 mm).

Notch Sensitivity

STUDENTS-HUB.com

Figure 6-20 has as its basis the Neuber equation, which is given by

$$K_f = 1 + \frac{K_t - 1}{1 + \sqrt{a/r}} \tag{6-33}$$

where \sqrt{a} is defined as the *Neuber constant* and is a material constant. Equating Eqs. (6–31) and (6–33) yields the notch sensitivity equation

$$q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}} \tag{6-34}$$

correlating with Figs. 6-20 and 6-21 as

Bending or axial: $\sqrt{a} = 0.246 - 3.08(10^{-3})S_{ut} + 1.51(10^{-5})S_{ut}^2 - 2.67(10^{-8})S_{ut}^3$ (6-35a)

Torsion:
$$\sqrt{a} = 0.190 - 2.51(10^{-3})S_{ut} + 1.35(10^{-5})S_{ut}^2 - 2.67(10^{-8})S_{ut}^3$$
 (6-35b)

Uploaded By: anonymous₆₇

EXAMPLE 6-6 A steel shaft in bending has an ultimate strength of 690 MPa and a shoulder with a fillet radius of 3 mm connecting a 32-mm diameter with a 38-mm diameter. Estimate K_f using: (a) Figure 6–20.

(*b*) Equations (6–33) and (6–35).

$$K_f = 1 + q(K_t - 1)$$
 or $K_{fs} = 1 + q_{\text{shear}}(K_{ts} - 1)$

EXAMPLE 6-6

A steel shaft in bending has an ultimate strength of 690 MPa and a shoulder with a fillet radius of 3 mm connecting a 32-mm diameter with a 38-mm diameter. Estimate K_f using: (*a*) Figure 6–20.

(*b*) Equations (6–33) and (6–35).

Figure 6-20

Notch-sensitivity charts for steels and UNS A92024-T wrought aluminum alloys subjected to reversed bending or reversed axial loads. For larger notch radii, use the values of q corresponding to the r = 0.16-in (4-mm) ordinate. (From George Sines and J. L. Waisman (eds.), Metal Fatigue, McGraw-Hill, New York. Copyright © 1969 by The McGraw-Hill Companies, Inc. Reprinted by permission.)

EXAMPLE 6-6 A steel shaft in bending has an ultimate strength of 690 MPa and a shoulder with a fillet radius of 3 mm connecting a 32-mm diameter with a 38-mm diameter. Estimate K_f using: (*a*) Figure 6–20. (*b*) Equations (6–33) and (6–35).

Figure A-15-9

Round shaft with shoulder fillet in bending. $\sigma_0 = Mc/I$, where c = d/2 and $I = \pi d^4/64$.

Uploaded By: anonymous₇₀

(b) Equations (6–33) and (6–35).

Bending or axial: $\sqrt{a} = 0.246 - 3.08(10^{-3})S_{ut} + 1.51(10^{-5})S_{ut}^2 - 2.67(10^{-8})S_{ut}^3$ S_{ut} is in kpsi. (6-35a)

$$K_f = 1 + \frac{K_t - 1}{1 + \sqrt{a/r}}$$
(6-33)

- **EXAMPLE 6–6** A steel shaft in bending has an ultimate strength of 690 MPa and a shoulder with a fillet radius of 3 mm connecting a 32-mm diameter with a 38-mm diameter. Estimate K_f using: (*a*) Figure 6–20.
 - (*b*) Equations (6–33) and (6–35).

EXAMPLE 6-7

For the step-shaft of Ex. 6–6, it is determined that the fully corrected endurance limit is $S_e = 280$ MPa. Consider the shaft undergoes a fully reversing nominal stress in the fillet of $(\sigma_{rev})_{nom} = 260$ MPa. Estimate the number of cycles to failure.

$$V = \left(\frac{\sigma_{\rm rev}}{a}\right)^{1/b}$$

$$(\sigma_{\text{rev}})_{\text{max}} = K_f(\sigma_{\text{rev}})_{\text{nom}} = 1.55(260) = 403 \text{ MPa}$$

Uploaded By: anonymous₇₂

EXAMPLE 6–7 For the step-shaft of Ex. 6–6, it is determined that the fully corrected endurance limit is $S_e = 280$ MPa. Consider the shaft undergoes a fully reversing nominal stress in the fillet of $(\sigma_{rev})_{nom} = 260$ MPa. Estimate the number of cycles to failure.

EXAMPLE 6–7 For the step-shaft of Ex. 6–6, it is determined that the fully corrected endurance limit is $S_e = 280$ MPa. Consider the shaft undergoes a fully reversing nominal stress in the fillet of $(\sigma_{rev})_{nom} = 260$ MPa. Estimate the number of cycles to failure.

Uploaded By: anonymous₇₄

EXAMPLE 6-7

For the step-shaft of Ex. 6–6, it is determined that the fully corrected endurance limit is $S_e = 280$ MPa. Consider the shaft undergoes a fully reversing nominal stress in the fillet of $(\sigma_{rev})_{nom} = 260$ MPa. Estimate the number of cycles to failure.

$$a = \frac{(fS_{ut})^2}{S_e} = \frac{[0.845(690)]^2}{280} = 1214 \text{ MPa}$$
$$b = -\frac{1}{3} \log \frac{fS_{ut}}{S_e} = -\frac{1}{3} \log \left[\frac{0.845(690)}{280}\right] = -0.1062$$
$$N = \left(\frac{\sigma_{rev}}{a}\right)^{1/b} = \left(\frac{403}{1214}\right)^{1/-0.1062} = 32.3(10^3) \text{ cycles}$$

EXAMPLE 6-9

Figure 6–22*a* shows a rotating shaft simply supported in ball bearings at *A* and *D* and loaded by a nonrotating force *F* of 6.8 kN. Using ASTM "minimum" strengths, estimate the life of the part.

Figure 6-22

(*a*) Shaft drawing showing all dimensions in millimeters; all fillets 3-mm radius. The shaft rotates and the load is stationary; material is machined from AISI 1050 cold-drawn steel. (*b*) Bendingmoment diagram.

$$N = \left(\frac{\sigma_{\rm rev}}{a}\right)^{1/b}$$

STUDENTS-HUB.com

$$(S_f)_{10^3} = f S_{ut}.$$

$$a = \frac{(fS_{ut})^2}{S_e}$$
$$b = -\frac{1}{3}\log\left(\frac{fS_{ut}}{S_e}\right)$$

Uploaded By: anonymous₇₆

6-10 Stress Concentration - Example 6-9

EXAMPLE 6–9 Figure 6–22*a* shows a rotating shaft simply supported in ball bearings at *A* and *D* and loaded by a nonrotating force *F* of 6.8 kN. Using ASTM "minimum" strengths, estimate the life of the part.

From Table A–20 we find $S_{ut} = 690$ MPa and $S_y = 580$ MPa. The endurance limit S'_e is estimated as

1	2	3	4 Tensile	5 Yield	6	7	8
UNS No.	SAE and/or AISI No.	Process- ing	Strength, MPa (kpsi)	Strength, MPa (kpsi)	Elongation in 2 in, %	Reduction in Area, %	Brinell Hardness
G10060	1006	HR	300 (43)	170 (24)	30	55	86
		CD	330 (48)	280 (41)	20	45	95
G10100	1010	HR	320 (47)	180 (26)	28	50	95
		CD	370 (53)	300 (44)	20	40	105
G10150	1015	HR	340 (50)	190 (27.5)	28	50	101
		CD	390 (56)	320 (47)	18	40	111
G10180	1018	HR	400 (58)	220 (32)	25	50	116
		CD	440 (64)	370 (54)	15	40	126
G10200	1020	HR	380 (55)	210 (30)	25	50	111
		CD	470 (68)	390 (57)	15	40	131
G10300	1030	HR	470 (68)	260 (37.5)	20	42	137
		CD	520 (76)	440 (64)	12	35	149
G10350	1035	HR	500 (72)	270 (39.5)	18	40	143
		CD	550 (80)	460 (67)	12	35	163
G10400	1040	HR	520 (76)	290 (42)	18	40	149
		CD	590 (85)	490 (71)	12	35	170
G10450	1045	HR	570 (82)	310 (45)	16	40	163
		CD	630 (91)	530 (77)	12	35	179
G10500	1050	HR	620 (90)	340 (49.5)	15	35	179
		CD	690 (100)	580 (84)	10	30	197

STUDENTS-HUB.com

Uploaded By: anonymous₇₈

6-10 Stress Concentration - Example 6-9

EXAMPLE 6–9 Figure 6–22*a* shows a rotating shaft simply supported in ball bearings at *A* and *D* and loaded by a nonrotating force *F* of 6.8 kN. Using ASTM "minimum" strengths, estimate the life of the part.

From Table A–20 we find $S_{ut} = 690$ MPa and $S_y = 580$ MPa. The endurance limit S'_e is estimated as

$$S'_{e} = \begin{cases} 0.5S_{ut} & S_{ut} \le 200 \text{ kpsi} (1400 \text{ MPa}) \\ 100 \text{ kpsi} & S_{ut} > 200 \text{ kpsi} \\ 700 \text{ MPa} & S_{ut} > 1400 \text{ MPa} \end{cases}$$
(6-8)

$$S'_e = 0.5(690) = 345$$
 MPa

6-10 Stress Concentration - Example 6-9

EXAMPLE 6–9 Figure 6–22*a* shows a rotating shaft simply supported in ball bearings at *A* and *D* and loaded by a nonrotating force *F* of 6.8 kN. Using ASTM "minimum" strengths, estimate the life of the part.

From Eq. (6–19) and Table 6–2,

$$k_a = 4.51(690)^{-0.265} = 0.798$$

	Fact	Exponent	
Surface Finish	S _{ut} , kpsi	<i>S_{ut},</i> MPa	Ь
Ground	1.34	1.58	-0.085
Machined or cold-drawn	2.70	4.51	-0.265
Hot-rolled	14.4	57.7	-0.718
As-forged	39.9	272.	-0.995

Uploaded By: anonymous₈₀

6-10 Stress Concentration - Example 6-9

EXAMPLE 6–9 Figure 6–22*a* shows a rotating shaft simply supported in ball bearings at *A* and *D* and loaded by a nonrotating force *F* of 6.8 kN. Using ASTM "minimum" strengths, estimate the life of the part.

From Eq. (6–19) and Table 6–2,

$$k_a = 4.51(690)^{-0.265} = 0.798$$

From Eq. (6–20),

$$k_b = (32/7.62)^{-0.107} = 0.858$$

6-9 Endurance Limit Modifying Factors

Size Factor k_b

STUDENTS-HUB.com

➤ The results for bending and torsion may be expressed as:

$$k_b = \begin{cases} (d/0.3)^{-0.107} = 0.879d^{-0.107} & 0.11 \le d \le 2 \text{ in} \\ 0.91d^{-0.157} & 2 < d \le 10 \text{ in} \\ (d/7.62)^{-0.107} = 1.24d^{-0.107} & 2.79 \le d \le 51 \text{ mm} \\ 1.51d^{-0.157} & 51 < d \le 254 \text{ mm} \end{cases}$$
(6-20)

➢ For axial loading there is no size effect, so

(6 - 21)

6-10 Stress Concentration - Example 6-9

EXAMPLE 6–9 Figure 6–22*a* shows a rotating shaft simply supported in ball bearings at *A* and *D* and loaded by a nonrotating force *F* of 6.8 kN. Using ASTM "minimum" strengths, estimate the life of the part.

From Eq. (6-19) and Table 6-2,

$$k_a = 4.51(690)^{-0.265} = 0.798$$

From Eq. (6-20),

$$k_b = (32/7.62)^{-0.107} = 0.858$$

Since $k_c = k_d = k_e = k_f = 1$,
 $S_e = 0.798(0.858)345 = 236$ MPa

Uploaded By: anonymous₈₃

6-10 Stress Concentration - Example 6-9

EXAMPLE 6–9 Figure 6–22*a* shows a rotating shaft simply supported in ball bearings at *A* and *D* and loaded by a nonrotating force *F* of 6.8 kN. Using ASTM "minimum" strengths, estimate the life of the part.

Figure A-15-9

Round shaft with shoulder fillet in bending. $\sigma_0 = Mc/I$, where c = d/2 and $I = \pi d^4/64$.

Uploaded By: anonymous₈₄

6-10 Stress Concentration - Example 6-9

EXAMPLE 6–9 Figure 6–22*a* shows a rotating shaft simply supported in ball bearings at *A* and *D* and loaded by a nonrotating force *F* of 6.8 kN. Using ASTM "minimum" strengths, estimate the life of the part.

To find the geometric stress-concentration factor K_t we enter Fig. A–15–9 with D/d = 38/32 = 1.1875 and r/d = 3/32 = 0.093 75 and read $K_t = 1.65$. Substituting $S_{ut} = 690/6.89 = 100$ kpsi into Eq. (6–35*a*) yields $\sqrt{a} = 0.0622\sqrt{\text{in}} = 0.313\sqrt{\text{mm}}$. Substituting this into Eq. (6–33) gives

$$K_f = 1 + \frac{K_t - 1}{1 + \sqrt{a/r}} = 1 + \frac{1.65 - 1}{1 + 0.313/\sqrt{3}} = 1.55$$

6-10 Stress Concentration - Example 6-9

$$\sigma_{\text{rev}} = K_f \frac{M_B}{I/c} = 1.55 \frac{695.5}{3.217} (10)^{-6} = 335.1 (10^6) \text{ Pa} = 335.1 \text{ MPa}$$

Uploaded By: anonymous₈₆

6-10 Stress Concentration - Example 6-9

$$N = \left(\frac{\sigma_{\rm rev}}{a}\right)^{1/b}$$

For finite life, we will need to use Eq. (6–16). The ultimate strength, $S_{ut} = 690$ MPa = 100 kpsi. From Fig. 6–18, f = 0.844. From Eq. (6–14)

$$a = \frac{(fS_{ut})^2}{S_e} = \frac{[0.844(690)]^2}{236} = 1437 \text{ MPa}$$

and from Eq. (6-15)

$$b = -\frac{1}{3}\log\left(\frac{fS_{ut}}{S_e}\right) = -\frac{1}{3}\log\left[\frac{0.844(690)}{236}\right] = -0.1308$$

From Eq. (6–16),

$$N = \left(\frac{\sigma_{\text{rev}}}{a}\right)^{1/b} = \left(\frac{335.1}{1437}\right)^{-1/0.1308} = 68(10^3) \text{ cycles}$$

STUDENTS-HUB.com

Uploaded By: anonymous₈₇

6 – 11 Characterizing Fluctuating Stresses

6 – 11 Characterizing Fluctuating Stresses

Figure 6-23

Some stress-time relations: (*a*) fluctuating stress with highfrequency ripple; (*b* and *c*) nonsinusoidal fluctuating stress; (*d*) sinusoidal fluctuating stress; (*e*) repeated stress; (*f*) completely reversed sinusoidal stress.

STUDENTS-HUB.com

6 – 11 Characterizing Fluctuating Stresses

$$F_m = \frac{F_{\max} + F_{\min}}{2} \qquad F_a = \left| \frac{F_{\max} - F_{\min}}{2} \right|$$

 $\sigma_{\min} = \min \text{minimum stress}$ $\sigma_{\max} = \max \text{maximum stress}$ $\sigma_a = \text{amplitude component}$

$$\sigma_m = \frac{\sigma_{\max} + \sigma_{\min}}{2}$$
$$\sigma_a = \left| \frac{\sigma_{\max} - \sigma_{\min}}{2} \right|$$

STUDENTS-HUB.com

Uploaded By: anonymous₉₀

Chapter 6 – Fatigue Failure Resulting from Variable Loading

6 – 11 Characterizing Fluctuating Stresses

STUDENTS-HUB.com

Uploaded By: anonymous₉₁

Nacelle arrangement

- 1. Spinner
- 2. Blade
- 3. Pitch bearing
- 4. Rotor hub
- 5. Main bearing
- 6. Main shaft
- 7. Gearbox
- 8. Service crane
- 9. Brake disc
 10. Coupling
 11. Generator
 12. Yaw gear
 13. Tower
 14. Yaw ring
 15. Generator fan
- 16. Carropy

Uploaded By: anonymous₉₂

6 – 11 Characterizing Fluctuating Stresses

BIRZEIT UNIVERSITY

Figure 6-27

Fatigue diagram showing various criteria of failure. For each criterion, points on or "above" the respective line indicate failure. Some point *A* on the Goodman line, for example, gives the strength S_m as the limiting value of σ_m corresponding to the strength S_a , which, paired with σ_m , is the limiting value of σ_a .

Uploaded By: anonymous₉₄

Uploaded By: anonymous₉₅

Uploaded By: anonymous₉₆

STUDENTS-HUB.com

Uploaded By: anonymous₉₇

STUDENTS-HUB.com

EXAMPLE 6–10 A 1.5-in-diameter bar has been machined from an AISI 1050 cold-drawn bar. This part is to withstand a fluctuating tensile load varying from 0 to 16 kip. Because of the ends, and the fillet radius, a fatigue stress-concentration factor K_f is 1.85 for 10⁶ or larger life. Find S_a and S_m and the factor of safety guarding against fatigue and first-cycle yielding, using (*a*) the Gerber fatigue line and (*b*) the ASME-elliptic fatigue line.

We begin with some preliminaries. From Table A–20, $S_{ut} = 100$ kpsi and $S_y = 84$ kpsi. Note that $F_a = F_m = 8$ kip. The Marin factors are, deterministically,

$$k_a = 2.70(100)^{-0.265} = 0.797$$
: Eq. (6–19), Table 6–2, p. 296

Surface Factor k_a

	Fact	Exponent	
Surface Finish	S _{ut} , kpsi	S _{ut} , MPa	Ь
Ground	1.34	1.58	-0.085
Machined or cold-drawn	2.70	4.51	-0.265
Hot-rolled	14.4	57.7	-0.718
As-forged	39.9	272.	-0.995
JDENTS-HUB.com			Uploaded E

EXAMPLE 6–10 A 1.5-in-diameter bar has been machined from an AISI 1050 cold-drawn bar. This part is to withstand a fluctuating tensile load varying from 0 to 16 kip. Because of the ends, and the fillet radius, a fatigue stress-concentration factor K_f is 1.85 for 10⁶ or larger life. Find S_a and S_m and the factor of safety guarding against fatigue and first-cycle yielding, using (*a*) the Gerber fatigue line and (*b*) the ASME-elliptic fatigue line.

We begin with some preliminaries. From Table A–20, $S_{ut} = 100$ kpsi and $S_y = 84$ kpsi. Note that $F_a = F_m = 8$ kip. The Marin factors are, deterministically,

- $k_a = 2.70(100)^{-0.265} = 0.797$: Eq. (6–19), Table 6–2, p. 296
- $k_b = 1$ (axial loading, see k_c)

6-9 Endurance Limit Modifying Factors

Size Factor k_b

STUDENTS-HUB.com

➤ The results for bending and torsion may be expressed as:

$$k_b = \begin{cases} (d/0.3)^{-0.107} = 0.879d^{-0.107} & 0.11 \le d \le 2 \text{ in} \\ 0.91d^{-0.157} & 2 < d \le 10 \text{ in} \\ (d/7.62)^{-0.107} = 1.24d^{-0.107} & 2.79 \le d \le 51 \text{ mm} \\ 1.51d^{-0.157} & 51 < d \le 254 \text{ mm} \end{cases}$$
(6-20)

➢ For axial loading there is no size effect, so

(6 - 21)

6-9 Endurance Limit Modifying Factors

Load Factor k_c

When torsion is combined with other loading, such as bending, set $k_c = 1$, and the combined loading is managed by using the effective von Mises stress as described in Sec. 6-14

EXAMPLE 6–10 A 1.5-in-diameter bar has been machined from an AISI 1050 cold-drawn bar. This part is to withstand a fluctuating tensile load varying from 0 to 16 kip. Because of the ends, and the fillet radius, a fatigue stress-concentration factor K_f is 1.85 for 10⁶ or larger life. Find S_a and S_m and the factor of safety guarding against fatigue and first-cycle yielding, using (*a*) the Gerber fatigue line and (*b*) the ASME-elliptic fatigue line.

We begin with some preliminaries. From Table A–20, $S_{ut} = 100$ kpsi and $S_y = 84$ kpsi. Note that $F_a = F_m = 8$ kip. The Marin factors are, deterministically,

- $k_a = 2.70(100)^{-0.265} = 0.797$: Eq. (6–19), Table 6–2, p. 296
- $k_b = 1$ (axial loading, see k_c)
- $k_c = 0.85$: Eq. (6–26), p. 298

$$k_d = k_e = k_f = 1$$

 $S_e = 0.797(1)0.850(1)(1)(1)0.5(100) = 33.9$ kpsi: Eqs. (6–8), (6–18), p. 290, p. 295

STUDENTS-HUB.com

EXAMPLE 6–10 A 1.5-in-diameter bar has been machined from an AISI 1050 cold-drawn bar. This part is to withstand a fluctuating tensile load varying from 0 to 16 kip. Because of the ends, and the fillet radius, a fatigue stress-concentration factor K_f is 1.85 for 10⁶ or larger life. Find S_a and S_m and the factor of safety guarding against fatigue and first-cycle yielding, using (*a*) the Gerber fatigue line and (*b*) the ASME-elliptic fatigue line.

The nominal axial stress components σ_{ao} and σ_{mo} are

$$\sigma_{ao} = \frac{4F_a}{\pi d^2} = \frac{4(8)}{\pi 1.5^2} = 4.53 \text{ kpsi}$$
 $\sigma_{mo} = \frac{4F_m}{\pi d^2} = \frac{4(8)}{\pi 1.5^2} = 4.53 \text{ kpsi}$

Applying K_f to both components σ_{ao} and σ_{mo} constitutes a prescription of no notch yielding:

$$\sigma_a = K_f \sigma_{ao} = 1.85(4.53) = 8.38 \text{ kpsi} = \sigma_m$$

STUDENTS-HUB.com

EXAMPLE 6-12 A steel bar undergoes cyclic loading such that $\sigma_{max} = 60$ kpsi and $\sigma_{min} = -20$ kpsi. For the material, $S_{ut} = 80$ kpsi, $S_y = 65$ kpsi, a fully corrected endurance limit of $S_e = 40$ kpsi, and f = 0.9. Estimate the number of cycles to a fatigue failure using: (a) Modified Goodman criterion. (b) Gerber criterion.

From the given stresses,

$$\sigma_a = \frac{60 - (-20)}{2} = 40 \text{ kpsi}$$
 $\sigma_m = \frac{60 + (-20)}{2} = 20 \text{ kpsi}$

BIRZEIT UNIVERSITY

EXAMPLE 6-12

- A steel bar undergoes cyclic loading such that $\sigma_{\text{max}} = 60$ kpsi and $\sigma_{\text{min}} = -20$ kpsi. For the material, $S_{ut} = 80$ kpsi, $S_y = 65$ kpsi, a fully corrected endurance limit of $S_e = 40$ kpsi, and f = 0.9. Estimate the number of cycles to a fatigue failure using: (a) Modified Goodman criterion.
 - (b) Gerber criterion.

EXAMPLE 6-12 A steel bar undergoes cyclic loading such that $\sigma_{max} = 60$ kpsi and $\sigma_{min} = -20$ kpsi. For the material, $S_{ut} = 80$ kpsi, $S_y = 65$ kpsi, a fully corrected endurance limit of $S_e = 40$ kpsi, and f = 0.9. Estimate the number of cycles to a fatigue failure using: (a) Modified Goodman criterion. (b) Gerber criterion.

This completely reversed stress can be obtained by replacing S_e with σ_{rev} in Eq. (6–46) for the modified Goodman line resulting in

$$\sigma_{\text{rev}} = \frac{\sigma_a}{1 - \frac{\sigma_m}{S_{ut}}} = \frac{40}{1 - \frac{20}{80}} = 53.3 \text{ kpsi}$$

EXAMPLE 6–12

A steel bar undergoes cyclic loading such that $\sigma_{\text{max}} = 60$ kpsi and $\sigma_{\text{min}} = -20$ kpsi. For the material, $S_{ut} = 80$ kpsi, $S_y = 65$ kpsi, a fully corrected endurance limit of $S_e = 40$ kpsi, and f = 0.9. Estimate the number of cycles to a fatigue failure using: (a) Modified Goodman criterion.

(b) Gerber criterion.

STUDENTS-HUB.com

EXAMPLE 6-12 A steel bar undergoes cyclic loading such that $\sigma_{max} = 60$ kpsi and $\sigma_{min} = -20$ kpsi. For the material, $S_{ut} = 80$ kpsi, $S_y = 65$ kpsi, a fully corrected endurance limit of $S_e = 40$ kpsi, and f = 0.9. Estimate the number of cycles to a fatigue failure using: (a) Modified Goodman criterion. (b) Gerber criterion.

(b) For Gerber, similar to part (a), from Eq. (6-47),

$$\sigma_{\text{rev}} = \frac{\sigma_a}{1 - \left(\frac{\sigma_m}{S_{ut}}\right)^2} = \frac{40}{1 - \left(\frac{20}{80}\right)^2} = 42.7 \text{ kpsi}$$

Brittle Materials 2 Smith Dolan

$$\frac{S_a}{S_e} = \frac{1 - S_m / S_{ut}}{1 + S_m / S_{ut}}$$
(6-50)

$$\frac{n\sigma_a}{S_e} = \frac{1 - n\sigma_m/S_{ut}}{1 + n\sigma_m/S_{ut}}$$
(6-51)

$$S_{a} = \frac{rS_{ut} + S_{e}}{2} \left[-1 + \sqrt{1 + \frac{4rS_{ut}S_{e}}{(rS_{ut} + S_{e})^{2}}} \right]$$

Uploaded By: anonymous I_{116}

6-13 Torsional Fatigue Strength under Fluctuating Stresses

Joerres uses

$$S_{su} = 0.67S_{ut}$$
 (6–54)

Also, from Chap. 5, $S_{sy} = 0.577S_{yt}$ from distortion-energy theory, and the mean load factor k_c is given by Eq. (6–26), or 0.577.

$$k_c = \begin{cases} 1 & \text{bending} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsion} \end{cases}$$
(6–26)

$$n_f = \frac{1}{2} \left(\frac{S_{ut}}{\sigma_m} \right)^2 \frac{\sigma_a}{S_e} \left[-1 + \sqrt{1 + \left(\frac{2\sigma_m S_e}{S_{ut} \sigma_a} \right)^2} \right] \qquad \sigma_m > 0$$

6-9 Endurance Limit Modifying Factors

Load Factor k_c

When torsion is combined with other loading, such as bending, set $k_c = 1$, and the combined loading is managed by using the effective von Mises stress as described in Sec. 6-14

STUDENTS-HUB.com

$$\sigma' = (\sigma_x^2 + 3\tau_{xy}^2)^{1/2}.$$

$$\sigma_a' = \left\{ \left[(K_f)_{\text{bending}}(\sigma_a)_{\text{bending}} + (K_f)_{\text{axial}} \frac{(\sigma_a)_{\text{axial}}}{0.85} \right]^2 + 3\left[(K_{fs})_{\text{torsion}}(\tau_a)_{\text{torsion}} \right]^2 \right\}^{1/2}$$

$$(6-55)$$

$$\sigma'_{m} = \{ [(K_{f})_{\text{bending}}(\sigma_{m})_{\text{bending}} + (K_{f})_{\text{axial}}(\sigma_{m})_{\text{axial}}]^{2} + 3 [(K_{fs})_{\text{torsion}}(\tau_{m})_{\text{torsion}}]^{2} \}^{1/2}$$
(6-56)

EXAMPLE 6–14 A shaft is made of $42 - \times 4$ -mm AISI 1018 cold-drawn steel tubing and has a 6-mmdiameter hole drilled transversely through it. Estimate the factor of safety guarding against fatigue and static failures using the Gerber and Langer failure criteria for the following loading conditions:

- (a) The shaft is rotating and is subjected to a completely reversed torque of $120 \text{ N} \cdot \text{m}$ in phase with a completely reversed bending moment of $150 \text{ N} \cdot \text{m}$.
- (b) The shaft is subjected to a pulsating torque fluctuating from 20 to 160 N \cdot m and a steady bending moment of 150 N \cdot m.

$$\sigma_{a}' = \left\{ \left[(K_{f})_{\text{bending}} (\sigma_{a})_{\text{bending}} + (K_{f})_{\text{axial}} \frac{(\sigma_{a})_{\text{axial}}}{0.85} \right]^{2} + 3 \left[(K_{fs})_{\text{torsion}} (\tau_{a})_{\text{torsion}} \right]^{2} \right\}^{1/2}$$
(6-55)

$$\sigma'_{m} = \{ [(K_{f})_{\text{bending}}(\sigma_{m})_{\text{bending}} + (K_{f})_{\text{axial}}(\sigma_{m})_{\text{axial}}]^{2} + 3 [(K_{fs})_{\text{torsion}}(\tau_{m})_{\text{torsion}}]^{2} \}^{1/2}$$

$$(6-56)$$

EXAMPLE 6–14

A shaft is made of 42- \times 4-mm AISI 1018 cold-drawn steel tubing and has a 6-mmdiameter hole drilled transversely through it. Estimate the factor of safety guarding against fatigue and static failures using the Gerber and Langer failure criteria for the following loading conditions:

(a) The shaft is rotating and is subjected to a completely reversed torque of $120 \text{ N} \cdot \text{m}$ in phase with a completely reversed bending moment of $150 \text{ N} \cdot \text{m}$.

(b) The shaft is subjected to a pulsating torque fluctuating from 20 to 160 N \cdot m and a steady bending moment of 150 N \cdot m.

- a = 6 mm
- l = 34 mm
- D = 42 mm

From Table A–20 we find the minimum strengths to be $S_{ut} = 440$ MPa and $S_y = 370$ MPa. The endurance limit of the rotating-beam specimen is 0.5(440) = 220 MPa.

The surface factor, obtained from Eq. (6–19) and Table 6–2, p. 296, is

$$k_a = 4.51 S_{ut}^{-0.265} = 4.51 (440)^{-0.265} = 0.899$$

From Eq. (6–20) the size factor is

$$k_b = \left(\frac{d}{7.62}\right)^{-0.107} = \left(\frac{1}{7.62}\right)^{-0.107} = 0.833$$

STUDENTS-HUB.com

- a = 6 mm
- d = 34 mm
- D = 42 mm

From Table A–20 we find the minimum strengths to be $S_{ut} = 440$ MPa and $S_y = 370$ MPa. The endurance limit of the rotating-beam specimen is 0.5(440) = 220 MPa.

The surface factor, obtained from Eq. (6-19) and Table 6-2, p. 296, is

$$k_a = 4.51 S_{ut}^{-0.265} = 4.51(440)^{-0.265} = 0.899$$

From Eq. (6–20) the size factor is

$$k_b = \left(\frac{d}{7.62}\right)^{-0.107} = \left(\frac{42}{7.62}\right)^{-0.107} = 0.833$$

The remaining Marin factors are all unity, so the modified endurance strength S_e is

$$S_e = 0.899(0.833)220 = 165$$
 MPa

Stress Concentration Factor k,

Table A-16

Approximate Stress-Concentration Factor K_t of a Round Bar or Tube with a Transverse Round Hole and Loaded in Bending

Source: R. E. Peterson, Stress-Concentration Factors, Wiley, New York, 1974, pp. 146, 235.

The nominal bending stress is $\sigma_0 = M/Z_{net}$ where Z_{net} is a reduced value of the section modulus and is defined by

$$Z_{\rm net} = \frac{\pi A}{32D} (D^4 - d^4)$$

Values of A are listed in the table. Use d = 0 for a solid bar

		d/D							
	0.9		0	.6	0				
a/D	А	K _t	А	K _t	А	K _t			
0.050	0.92	2.63	0.91	2.55	0.88	2.42			
0.075	0.89	2.55	0.88	2.43	0.86	2.35			
0.10	0.86	2.49	0.85	2.36	0.83	2.27			
0.125	0.82	2.41	0.82	2.32	0.80	2.20			
0.15	0.79	2.39	0.79	2.29	0.76	2.15			
0.175	0.76	2.38	0.75	2.26	0.72	2.10			
0.20	0.73	2.39	0.72	2.23	0.68	2.07			
0.225	0.69	2.40	0.68	2.21	0.65	2.04			
0.25	0.67	2.42	0.64	2.18	0.61	2.00			
0.275	0.66	2.48	0.61	2.16	0.58	1.97			
0.30	0.64	2.52	0.58	2.14	0.54	1.94			

Stress Concentration Factor k_{ts}

Table A-16 (Continued)

Approximate Stress-Concentration Factors K_{ts} for a Round Bar or Tube Having a Transverse Round Hole and Loaded in Torsion Source: R. E. Peterson, Stress-Concentration Factors, Wiley, New York, 1974, pp. 148, 244.

The maximum stress occurs on the inside of the hole, slightly below the shaft surface. The nominal shear stress is $\tau_0 = TD/2J_{net}$, where J_{net} is a reduced value of the second polar moment of area and is defined by

$$J_{\rm net} = \frac{\pi A (D^4 - d^4)}{32}$$

Values of A are listed in the table. Use d = 0 for a solid bar.

		d/D									
	0	0.9		0.8		0.6		0.4		0	
a/D	А	K _{ts}	А	K _{ts}	А	K _{ts}	А	K _{ts}	А	K _{ts}	
0.05	0.96	1.78							0.95	1.77	
0.075	0.95	1.82							0.93	1.71	
0.10	0.94	1.76	0.93	1.74	0.92	1.72	0.92	1.70	0.92	1.68	
0.125	0.91	1.76	0.91	1.74	0.90	1.70	0.90	1.67	0.89	1.64	
0.15	0.90	1.77	0.89	1.75	0.87	1.69	0.87	1.65	0.87	1.62	
0.175	0.89	1.81	0.88	1.76	0.87	1.69	0.86	1.64	0.85	1.60	
0.20	0.88	1.96	0.86	1.79	0.85	1.70	0.84	1.63	0.83	1.58	
0.25	0.87	2.00	0.82	1.86	0.81	1.72	0.80	1.63	0.79	1.54	
0.30	0.80	2.18	0.78	1.97	0.77	1.76	0.75	1.63	0.74	1.51	
0.35	0.77	2.41	0.75	2.09	0.72	1.81	0.69	1.63	0.68	1.47	
EN97#S-HI	JB.com	2.67	0.71	2.25	0.68	1.89	0.64	1.63	0.63	Ubloa	

Notch Sensitivity q

Figure 6-20

Notch-sensitivity charts for steels and UNS A92024-T wrought aluminum alloys subjected to reversed bending or reversed axial loads. For larger notch radii, use the values of q corresponding to the r = 0.16-in (4-mm) ordinate. (From George Sines and J. L. Waisman (eds.), Metal Fatigue, McGraw-Hill, New York. Copyright © 1969 by The McGraw-Hill Companies, Inc. Reprinted by permission.)

Notch Radius 3 mm STUDENTS-HUB.com

Notch Sensitivity q_s

Figure 6-21

Notch-sensitivity curves for materials in reversed torsion. For larger notch radii, use the values of q_{shear} corresponding to r = 0.16 in (4 mm).

Notch Radius 3 mm STUDENTS-HUB.com

Fatigue Stress Concentration factors

$$K_f = 1 + q(K_t - 1) = 1 + 0.78(2.366 - 1) = 2.07$$

 $K_{fs} = 1 + 0.81(1.75 - 1) = 1.61$

Thus, for bending,

$$Z_{\text{net}} = \frac{\pi A}{32D} (D^4 - d^4) = \frac{\pi (0.798)}{32(42)} [(42)^4 - (34)^4] = 3.31(10^3) \,\text{mm}^3$$

and for torsion

$$J_{\text{net}} = \frac{\pi A}{32} (D^4 - d^4) = \frac{\pi (0.89)}{32} [(42)^4 - (34)^4] = 155(10^3) \text{ mm}^4$$

The alternating bending stress is now found to be

$$\sigma_{xa} = K_f \frac{M}{Z_{\text{net}}} = 2.07 \frac{150}{3.31(10^{-6})} = 93.8(10^6) \text{Pa} = 93.8 \text{ MPa}$$

and the alternating torsional stress is

$$\tau_{xya} = K_{fs} \frac{TD}{2J_{\text{net}}} = 1.61 \frac{120(42)(10^{-3})}{2(155)(10^{-9})} = 26.2(10^6) \text{Pa} = 26.2 \text{ MPa}$$

The midrange von Mises component σ'_m is zero. The alternating component σ'_a is given by

$$\sigma'_a = (\sigma_{xa}^2 + 3\tau_{xya}^2)^{1/2} = [93.8^2 + 3(26.2^2)]^{1/2} = 104.2 \text{ MPa}$$

$$\sigma' = (\sigma_x^2 + 3\tau_{xy}^2)^{1/2}.$$

$$\sigma_a' = \left\{ \left[(K_f)_{\text{bending}}(\sigma_a)_{\text{bending}} + (K_f)_{\text{axial}} \frac{(\sigma_a)_{\text{axial}}}{0.85} \right]^2 + 3\left[(K_{fs})_{\text{torsion}}(\tau_a)_{\text{torsion}} \right]^2 \right\}^{1/2}$$

$$(6-55)$$

$$\sigma'_{m} = \{ [(K_{f})_{\text{bending}}(\sigma_{m})_{\text{bending}} + (K_{f})_{\text{axial}}(\sigma_{m})_{\text{axial}}]^{2} + 3 [(K_{fs})_{\text{torsion}}(\tau_{m})_{\text{torsion}}]^{2} \}^{1/2}$$
(6-56)

Chapter 6 – Fatigue Failure Resulting from Variable Loading

6 – 11 Characterizing Fluctuating Stresses

Figure 6-23

Some stress-time relations: (*a*) fluctuating stress with highfrequency ripple; (*b* and *c*) nonsinusoidal fluctuating stress; (*d*) sinusoidal fluctuating stress; (*e*) repeated stress; (*f*) completely reversed sinusoidal stress.

STUDENTS-HUB.com

The midrange von Mises component σ'_m is zero. The alternating component σ'_a is given by

$$\sigma'_a = (\sigma_{xa}^2 + 3\tau_{xya}^2)^{1/2} = [93.8^2 + 3(26.2^2)]^{1/2} = 104.2 \text{ MPa}$$

Since $S_a = S_e$, the fatigue factor of safety n_f is

$$n_f = \frac{S_a}{\sigma_a'} = \frac{165}{104.2} = 1.58$$

The midrange von Mises component σ'_m is zero. The alternating component σ'_a is given by

$$\sigma'_a = (\sigma_{xa}^2 + 3\tau_{xya}^2)^{1/2} = [93.8^2 + 3(26.2^2)]^{1/2} = 104.2 \text{ MPa}$$

Since $S_a = S_e$, the fatigue factor of safety n_f is

$$n_f = \frac{S_a}{\sigma_a'} = \frac{165}{104.2} = 1.58$$

The first-cycle yield factor of safety is

$$n_y = \frac{S_y}{\sigma_a'} = \frac{370}{105.6} = 3.50$$

Chapter 6 – Fatigue Failure Resulting from Variable Loading

6 – 11 Characterizing Fluctuating Stresses

Figure 6-23

Some stress-time relations: (*a*) fluctuating stress with highfrequency ripple; (*b* and *c*) nonsinusoidal fluctuating stress; (*d*) sinusoidal fluctuating stress; (*e*) repeated stress; (*f*) completely reversed sinusoidal stress.

6 – 11 Characterizing Fluctuating Stresses

$$F_m = \frac{F_{\max} + F_{\min}}{2} \qquad F_a = \left| \frac{F_{\max} - F_{\min}}{2} \right|$$

 $\sigma_{\min} = \min \text{minimum stress}$ $\sigma_{\max} = \max \text{maximum stress}$ $\sigma_a = \text{amplitude component}$

$$\sigma_m = \frac{\sigma_{\max} + \sigma_{\min}}{2}$$
$$\sigma_a = \left| \frac{\sigma_{\max} - \sigma_{\min}}{2} \right|$$

STUDENTS-HUB.com

Chapter 6 – Fatigue Failure Resulting from Variable Loading

6 – 11 Characterizing Fluctuating Stresses

STUDENTS-HUB.com

Uploaded By: anonymous

Nacelle arrangement

- 1. Spinner
- 2. Blade
- 3. Pitch bearing
- 4. Rotor hub
- 5. Main bearing
- 6. Main shaft
- 7. Gearbox
- 8. Service crane
- 9. Brake disc
 10. Coupling
 11. Generator
 12. Yaw gear
 13. Tower
 14. Yaw ring
 15. Generator fan

Uploaded By: anonymous $_{140}$

6 – 11 Characterizing Fluctuating Stresses

BIRZEIT UNIVERSITY

6-15 Varying, Fluctuating Stresses; Cumulative Fat. Damage

6-15 Varying, Fluctuating Stresses; Cumulative Fat. Damage

STUDENTS-HUB.com

6-4 The Stress-Life Method

STUDENTS-HUB.com

Uploaded By: anonymous₁₄₄

Static Loading Solving Problems

Chapter 6: 12, 13, 14, 15, 16, 17, 18

Uploaded By: anonymous