
Verilog
Part I

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Presentation Outline
v Hardware Description Language

v Logic Simulation versus Synthesis

v Verilog Module

v Gate-Level Description and Gate Delays

v Module Instantiation

v Continuous Assignment

v Writing a Simple Test Bench

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Hardware Description Language
v Describes the hardware of digital systems in a textual form

v Describes the hardware structures and behavior

v Can represent logic diagrams, expressions, and complex circuits

v NOT a software programming language

v Two standard hardware description languages (HDLs)

1. Verilog (will be studied in this course)

2. VHDL (harder to learn than Verilog)

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Verilog = "Verifying Logic"
v Invented as a simulation language in 1984 by Phil Moorby

v Opened to public in 1990 by Cadence Design Systems

v Became an IEEE standard in 1995 (Verilog-95)

v Revised and upgraded in 2001 (Verilog-2001)

v Revised also in 2005 (Verilog-2005)

v Verilog allows designers to describe hardware at different levels

² Can describe anything from a single gate to a full computer system

v Verilog is supported by the majority of electronic design tools

v Verilog can be used for logic simulation and synthesis
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Logic Simulation
v Logic simulator interprets the Verilog (HDL) description

v Produces timing diagrams

v Predicts how the hardware will behave before it is fabricated

v Simulation allows the detection of functional errors in a design

² Without having to physically implement the circuit

v Errors detected during the simulation can be corrected

² By modifying the appropriate statements in the Verilog description

v Simulating and verifying a design requires a test bench

v The test bench is also written in Verilog

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Logic Synthesis
v Logic synthesis is similar to translating a program

v However, the output of logic synthesis is a digital circuit

v A digital circuit modeled in Verilog can be translated into a list
of components and their interconnections, called netlist

v Synthesis can be used to fabricate an integrated circuit

v Synthesis can also target a Field Programmable Gate Array

² An FPGA chip can be configured to implement a digital circuit

² The digital circuit can also be modified by reconfiguring the FPGA

v Logic simulation and synthesis are automated

² Using special software, called Electronic Design Automation (EDA) tools

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

HDL Verilog
vA module can be described in any one (or a

combination) of the following modeling techniques:
1. Gate – level modeling using instantiation of primitive

gates and user - defined modules

2. Data flow modeling using continuous assignment
statements with keyword assign

3. Behavioral modeling using procedural assignment
statements with keyword always

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Structure Description in Verilog

Module portsModule name

Verilog keywords

module Add_half(sum,c_out,a,b);
input a,b;

output sum,c_out;

wire c_out_bar;

xor Gate1 (sum,a,b);
nand (c_out_bar,a,b);

not (c_out,c_out_bar);

endmodule

c_out

a

b sum

c_out_bar

Declaration of port modes

Declaration of internal signal

Instantiation of primitive gatesInstance name

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Basic Gates
v Basic gates: and, nand, or, nor, xor, xnor, not, buf

v Verilog define these gates as keywords

v Each gate has an optional name

v Each gate has an output (listed first) and one or more inputs

v The not and buf gates can have only one input

v Examples:

and g1(x,a,b); // 2-input and gate named g1

or g2(y,a,b,c); // 3-input or gate named g2

nor g3(z,a,b,c,d); // 4-input nor gate named g3

inputsoutputname
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Verilog Module
v A digital circuit is described in Verilog as a set of modules

v A module is the design entity in Verilog

v A module is declared using the module keyword

v A module is terminated using the endmodule keyword

v A module has a name and a list of input and output ports

v A module is described by a group of statements

v The statements can describe the module structure or behavior

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Verilog Syntax
v Keywords: have special meaning in Verilog

Many keywords: module, input, output, wire, and, or, etc.

Keywords cannot be used as identifiers

v Identifiers: are user-defined names for modules, ports, etc.

Verilog is case-sensitive: A and a are different names

v Comments: can be specified in two ways (similar to C)

² Single-line comments begin with // and terminate at end of line

² Multi-line comments are enclosed between /* and */

v White space: space, tab, newline can be used freely in Verilog

v Operators: operate on variables (similar to C: ~ & | ^ + - etc.)
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Verilog Four-Valued Logic

vVerilog Value Set consists of four basic values:

0 – represents a logic zero, or false condition

1 – represents a logic one, or true condition

X – represents an unknown logic value

Z – represents a high-impedance value

x or X represents an unknown or uninitialized value

z or Z represents the output of a disabled tri-state buffer

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Gate level representation example: Half
Adder

A half adder adds two bits: a and b

Two output bits:

1. Carry bit: cout = a · b

2. Sum bit: sum = a Å b

module Half_Adder(a, b, cout, sum);

input a, b;
output sum, cout;

and (cout, a, b);

xor (sum, a, b);

endmodule

a b cout sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Truth Table

ba

cout sum

Half_Adder

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Full Adder
v Full adder adds 3 bits: a, b, and c

v Two output bits:

1. Carry bit: cout

2. Sum bit: sum

v Sum bit is 1 if the number of 1's in
the input is odd (odd function)

sum = (a Å b) Å c

v Carry bit is 1 if the number of 1's in
the input is 2 or 3

cout = a·b + (a Å b)·c

a b c cout sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Truth Table

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Full Adder Module

module Full_Adder(input a, b, c, output cout, sum);

wire w1, w2, w3;

and (w1, a, b);

xor (w2, a, b);

and (w3, w2, c);

xor (sum, w2, c);

or (cout, w1, w3)

endmodule

a b c

sumcout

w1

w2w3

Full_Adder

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modular Design
A full adder can be designed using
two half adders and one OR gate

First Half Adder: HA1

w1 = a·b

w2 = a Å b

Second Half Adder: HA2

w3 = w2·c = (a Å b)·c

sum = w2 Å c = (a Å b) Å c

cout = w1 + w3 = a·b + (a Å b)·c

a b

cout sum

Half_Adder
a b

cout sum

HA
1

HA
2

c

Half_Adder
a b

cout sum

w2w1

w3

a b c

cout sum

Full_Adder

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Module Instantiation
v Module declarations are like templates

v Module instantiation is like creating an object

v Modules are instantiated inside other modules at different levels

v The top-level module does not require instantiation

v Module instantiation defines the structure of a digital design

v It produces a tree of module instances at different levels

v The ports of a module instance must match those declared

v The matching of the ports can be done by name or by position

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Example of Module Instantiation
module Full_Adder (input a, b, c, output cout, sum);

wire w1, w2, w3;

// Instantiate two Half Adders: HA1, HA2

// The ports are matched by position

Half_Adder HA1 (a, b, w1, w2);

Half_Adder HA2 (w2, c, w3, sum);

or (cout, w1, w3);

// Can also match the ports by name

// Half_Adder HA2

// (.a(w2), .b(c), .cout(w3), .sum(sum));

endmodule

a b

cout sum

Half_Adder
a b

cout sum

HA
1

HA
2

c

Half_Adder
a b

cout sum

w2w1

w3

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Number Representation in Verilog

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Bit Vectors in Verilog
v A Bit Vector is multi-bit declaration that uses a single name

v A Bit Vector is specified as a Range [msb:lsb]

v msb is most-significant bit and lsb is least-significant bit

v Examples:

input [15:0] A; // A is a 16-bit input vector

output [0:15] B; // Bit 0 is most-significant bit

wire [3:0] W; // Bit 3 is most-significant bit

v Bit select: W[1] is bit 1 of W

v Part select: A[11:8] is a 4-bit select of A with range [11:8]

v The part select range must be consistent with vector declaration
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

4-bit Binary Adder Example

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

4-bit Binary Adder Example
module adder4(sum,C4,A,B,C0);

output [3:0] sum;

output C4;

input [3:0] A,B;

input C0;

wire C1,C2,C3; // Intermediate carries

// Instantiate chain of full adders
Add_full FA0(sum[0],C1,A[0],B[0],C0);

Add_full FA1(sum[1],C2,A[1],B[1],C1);

Add_full FA2(sum[2],C3,A[2],B[2],C2);

Add_full FA3(sum[3],C4,A[3],B[3],C3);

endmodule
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Dataflow Modeling
vDataflow modeling provides the means of describing

combinational circuits by their function rather than by their
gate structure.

v Used mostly for describing Boolean equations and
combinational logic

v Synthesis tool can map a dataflow model into a target
technology

v Can describe: adders, comparators, multiplexers, etc.

vDataflow modeling uses a number of operators that act on
operands to produce desired results

vDataflow modeling uses continuous assignments and the
keyword assign.

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Continuous Assignment
v The assign statement defines continuous assignment

v Syntax: assign net_name = expression;

v Assigns expression value to net_name (wire or output port)

v Continuous assignment statements are concurrent

v Can appear in any order inside a module

v Continuous assignment can model combinational circuits

v Describes the flow of data between input and output

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Continuous Assignment
v Examples:

assign x = a&b | c&~d; // x = ab + cd'

assign y = (a|b) & ~c; // y = (a+b)c'

assign z = ~(a|b|c); // z = (a+b+c)'

assign sum = (a^b) ^ c; // sum = (a Å b) Å c

v Verilog uses the bit operators: ~ (not), & (and), | (or), ^ (xor)

v Operator precedence: (parentheses), ~ , & , | , ^

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Verilog Operators
Bitwise Operators
~a Bitwise NOT

a & b Bitwise AND
a | b Bitwise OR
a ^ b Bitwise XOR
a ~^ b Bitwise XNOR
a ^~ b Same as ~^

Arithmetic Operators
a + b ADD
a – b Subtract
-a Negate

a * b Multiply
a / b Divide
a % b Remainder

Shift Operators
a << n Shift Left
a >> n Shift Right

Reduction Operators
&a AND all bits
|a OR all bits
^a XOR all bits
~&a NAND all bits
~|a NOR all bits
~^a XNOR all bits

Relational Operators
a == b Equality
a != b Inequality
a < b Less than
a > b Greater than
a <= b Less or equal
a >= b Greater or equal

Reduction operators produce a 1-bit result
Relational operators produce a 1-bit result
{a, b} concatenates the bits of a and b

Miscellaneous Operators
sel?a:b Conditional
{a, b} Concatenate

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Nets and Variables
Verilog has two major data types:
1. Net data types: are connections between parts of a design

2. Variable data types: can store data values

v The wire is a net data type (physical connection)
² A wire cannot store the value of a procedural assignment

² However, a wire can be driven by continuous assignment

v The reg is a variable data type
² Can store the value of a procedural assignment

² However, cannot be driven by continuous assignment

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Reduction Operators
module Reduce

(input [3:0] A, B, output X, Y, Z);

// A, B are input vectors, X, Y, Z are 1-bit outputs

// X = A[3] | A[2] | A[1] | A[0];

assign X = |A;

// Y = B[3] & B[2] & B[1] & B[0];
assign Y = &B;

// Z = X & (B[3] ^ B[2] ^ B[1] ^ B[0]);

assign Z = X & (^B);

endmodule
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Concatenation Operator { }
module Concatenate

(input [7:0] A, B, output [7:0] X, Y, Z);

// A, B are input vectors, X, Y, Z are output vectors

// X = A is right-shifted 3 bits using { } operator

assign X = {3'b000, A[7:3]};

// Y = A is right-rotated 3 bits using { } operator
assign Y = {A[2:0], A[7:3]};

// Z = selecting and concatenating bits of A and B

assign Z = {A[5:4], B[6:3], A[1:0]};

endmodule
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modeling a 16-bit Adder
module Adder16

(input [15:0] A, B, input cin,

output [15:0] Sum, output cout);

// A and B are 16-bit input vectors

// Sum is a 16-bit output vector

// {cout, Sum} is a concatenated 17-bit vector
// A + B + cin is 16-bit addition + input carry

// The + operator is translated into an adder

assign {cout, Sum} = A + B + cin;

endmodule
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modeling a Magnitude Comparator

// n-bit magnitude comparator, No default value for n
module Comparator (input [1:0] A, B, output GT, EQ,
LT);

// A and B are n-bit input vectors (unsigned)

// GT, EQ, and LT are 1-bit outputs

assign GT = (A > B);
assign EQ = (A == B);

assign LT = (A < B);

endmodule

n-bit

Magnitude

Comparator

A[n–1:0]
n

B[n–1:0]
n

GT

EQ

LT

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Conditional Operator

v Syntax:

Boolean_expr ? True_expression : False_expression

If Boolean_expr is true then select True_expression

Else select False_Expression

v Examples:

assign max = (a>b)? a : b; // maximum of a and b

assign min = (a>b)? b : a; // minimum of a and b

v Conditional operators can be nested

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modeling a 2-Input Multiplexer

// Parametric 2-input Mux, default value for n = 1
module Mux2(input [1:0] A, B, input sel,

output [1:0] Z);

// A and B are n-bit input vectors

// Z is the n-bit output vector

// if (sel==0) Z = A; else Z = B;
// Conditional operator used for selection

assign Z = (sel == 0)? A : B;

endmodule

Z
n

sel

0A
n

1B
n

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modeling a 4-Input Multiplexer
// Parametric 4-input Mux, default value for n = 1

module Mux4 #(parameter n = 1)

(input [n-1:0] A, B, C, D,

input [1:0] sel,

output [n-1:0] Z);

// sel is a 2-bit vector

// Nested conditional operators

assign Z = (sel == 'b00)? A :

(sel == 'b01)? B :

(sel == 'b10)? C : D;

endmodule

Z
n

sel

0A
n

1B
n

2C
n

3D
n

2

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Dataflow and Behavioral Modeling
vBehavioral Modeling using Procedural Blocks and

Statements

² Describes what the circuit does at a functional and
algorithmic level

² Encourages designers to rapidly create a prototype

² Can be verified easily with a simulator

² Some procedural statements are synthesizable (Others are
NOT)

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Behavioral Modeling
v Uses procedural blocks and procedural statements

v There are two types of procedural blocks in Verilog

1. The initial block
² Executes the enclosed statement(s) one time only

2. The always block
² Executes the enclosed statement(s) repeatedly until simulation terminates

v The body of the initial and always blocks is procedural
² Can enclose one or more procedural statements

² Procedural statements are surrounded by begin … end

v Multiple procedural blocks can appear in any order inside a
module and run in parallel inside the simulator

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Example of Initial and Always Blocks
module behave;

reg clk; // 1-bit variable
reg [15:0] A; // 16-bit variable
initial begin // executed once

clk = 0; // initialize clk
a = 16'h1234; // initialize a
#200 $finish

end
always begin // executed always

#10 clk = ~clk; // invert clk every 10 ns
end
always begin // executed always

#20 A = A + 1; // increment A every 20 ns
end

endmodule
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

The initial Statement
v The initial statement is a procedural block of statements

v The body of the initial statement surrounded by begin-end is
sequential, like a sequential block in a programming language

v Procedural assignments are used inside the initial block

v Procedural assignment statements are executed in sequence

Syntax: variable = expression;

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Always Block with Sensitivity List
v Syntax:

always @(sensitivity list) begin

procedural statements

end

v An always block can have a sensitivity list

v Sensitivity list is a list of signals: @(signal1, signal2, …)

The sensitivity list triggers the execution of the always block

When there is a change of value in any listed signal

Otherwise, the always block does nothing until another
change occurs on a signal in the sensitivity list

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Sensitivity List for Combinational Logic
v For combinational logic, the sensitivity list must include:

ALL the signals that are read inside the always block

Example: A, B, and sel must be in the sensitivity list below:

always @(A, B, sel) begin
if (sel == 0) Z = A;
else Z = B;

end

v Combinational logic can also use: @(*) or @*

@(*) is automatically sensitive to all the signals that are read
inside the always block

A, B, and sel are
read inside the
always block

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

If Statement
v The if statement is procedural

v Can only be used inside a procedural block

v Syntax:

if (expression) statement

[else statement]

v The else part is optional

A statement can be simple or compound

A compound statement is surrounded by begin ... end

v if statements can be nested

v Can be nested under if or under else part
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modeling a 2-Input Multiplexer
// Behavioral Modeling of a Parametric 2-input Mux

module Mux2 (input [1:0] A, B, input sel,

output reg [1:0] Z);

// Output Z must be of type reg

// Sensitivity list = @(A, B, sel)

always @(A, B, sel) begin

if (sel == 0) Z = A;

else Z = B;

end

endmodule

Z
n

sel

0A
n

1B
n

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modeling a 3x8 Decoder
module Decoder3x8 (input [2:0] A, output reg [7:0] D);

// Sensitivity list = @(A)
always @(A) begin

if (A == 0) D = 8'b00000001;
else if (A == 1) D = 8'b00000010;
else if (A == 2) D = 8'b00000100;
else if (A == 3) D = 8'b00001000;
else if (A == 4) D = 8'b00010000;
else if (A == 5) D = 8'b00100000;
else if (A == 6) D = 8'b01000000;
else D = 8'b10000000;

end
endmodule

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modeling a 4x2 Priority Encoder
module Priority_Encoder4x2

(input [3:0] D, output reg V, output reg [1:0] A);

// sensitivity list = @(D)

always @(D) begin

if (D[3]) {V, A} = 3'b111;

else if (D[2]) {V, A} = 3'b110;

else if (D[1]) {V, A} = 3'b101;

else if (D[0]) {V, A} = 3'b100;

else {V, A} = 3'b000;

end

endmodule
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modeling a Magnitude Comparator
// Behavioral Modeling of a Magnitude Comparator
module Comparator #(parameter n = 1)

(input [n-1:0] A, B, output reg GT, EQ, LT);
// Sensitivity list = @(A, B)

always @(A, B) begin
if (A > B)

{GT,EQ,LT}='b100;
else if (A == B)

{GT,EQ,LT}='b010;
else

{GT,EQ,LT}='b001;
end

endmodule

n-bit

Magnitude

Comparator

A[n–1:0]
n

B[n–1:0]
n

GT

EQ

LT

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modeling a 4-Input Multiplexer
// Behavioral Modeling of a 4-input Mux
module Mux4 #(parameter n = 1)

(input [n-1:0] A, B, C, D, input [1:0] sel,
output reg [n-1:0] Z);

// @(*) is @(A, B, C, D, sel)
always @(*) begin

if (sel == 'b00) Z = A;

else if (sel == 'b01) Z = B;

else if (sel == 'b10) Z = C;

else Z = D;

end
endmodule

Z
n

sel

0A
n

1B
n

2C
n

3D
n

2

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Case Statement
v The case statement is procedural (used inside always block)
v Syntax:

case (expression)

case_item1: statement

case_item2: statement

. . .
default: statement

endcase

The default case is optional
A statement can be simple or compound
A compound statement is surrounded by begin ... end

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modeling a Mux with a Case Statement
module Mux4(input [1:0] A, B, C, D, input [1:0]

sel, output reg [1:0] Z);

// @(*) is @(A, B, C, D, sel)
always @(*) begin

case (sel)
2'b00: Z = A;
2'b01: Z = B;
2'b10: Z = C;
default: Z = D;

endcase
end

endmodule

Z
n

sel

0A
n

1B
n

2C
n

3D
n

2

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modeling a Multifunction ALU
// Behavioral Modeling of an ALU
module ALU #(parameter n = 16)

(input [n-1:0] A, B, input [1:0] F,
output reg [n-1:0] Z, output reg Cout);

// @(*) is @(A, B, F)
always @(*) begin

case (F)
2'b00: {Cout,Z} = A+B;
2'b01: {Cout,Z} = A-B;
2'b10: {Cout,Z} = A&B;
default: {Cout,Z} = A|B;

endcase
end

endmodule

ALUF [1:0]
2

n
A [n-1:0]

n
B [n-1:0]

Z [n-1:0]

nCout

ALU Symbol

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Modeling a BCD to 7-Segment Decoder
module BCD_to_7Seg_Decoder

(input [3:0] BCD, output reg [6:0] Seg)
always @(BCD) begin

case (BCD)
0: Seg = 7'b1111110; 1: Seg = 7'b0110000;
2: Seg = 7'b1101101; 3: Seg = 7'b1111001;
4: Seg = 7'b0110011; 5: Seg = 7'b1011011;
6: Seg = 7'b1011111; 7: Seg = 7'b1110000;
8: Seg = 7'b1111111; 9: Seg = 7'b1111011;
default: Seg = 7'b0000000;

endcase
end

endmodule
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

