Potential Energy and Conservation of Energy

8-1 POTENTIAL ENERGY

Learning Objectives

After reading this module, you should be able to . . .

- 8.01 Distinguish a conservative force from a nonconservative force.
- 8.02 For a particle moving between two points, identify that the work done by a conservative force does not depend on which path the particle takes.
- **8.03** Calculate the gravitational potential energy of a particle (or, more properly, a particle–Earth system).
- **8.04** Calculate the elastic potential energy of a block–spring system.

Key Ideas

- A force is a conservative force if the net work it does on a particle moving around any closed path, from an initial point and then back to that point, is zero. Equivalently, a force is conservative if the net work it does on a particle moving between two points does not depend on the path taken by the particle. The gravitational force and the spring force are conservative forces; the kinetic frictional force is a nonconservative force.
- ullet Potential energy is energy that is associated with the configuration of a system in which a conservative force acts. When the conservative force does work W on a particle within the system, the change ΔU in the potential energy of the system is

$$\Delta U = -W$$
.

If the particle moves from point x_i to point x_f , the change in the potential energy of the system is

$$\Delta U = -\int_{x_i}^{x_f} F(x) \ dx.$$

• The potential energy associated with a system consisting of Earth and a nearby particle is gravitational potential energy. If the particle moves from height y_i to height y_f , the change in the gravitational potential energy of the particle—Earth system is

$$\Delta U = mg(y_f - y_i) = mg \Delta y.$$

• If the reference point of the particle is set as $y_i = 0$ and the corresponding gravitational potential energy of the system is set as $U_i = 0$, then the gravitational potential energy U when the particle is at any height y is

$$U(y) = mgy$$
.

• Elastic potential energy is the energy associated with the state of compression or extension of an elastic object. For a spring that exerts a spring force F = -kx when its free end has displacement x, the elastic potential energy is

$$U(x) = \frac{1}{2}kx^2.$$

• The reference configuration has the spring at its relaxed length, at which x = 0 and U = 0.

What Is Physics?

One job of physics is to identify the different types of energy in the world, especially those that are of common importance. One general type of energy is **potential energy** U. Technically, potential energy is energy that can be associated with the configuration (arrangement) of a system of objects that exert forces on one another.

Rough Guides/Greg Roden/Getty Images, Inc.

Figure 8-1 The kinetic energy of a bungee-cord jumper increases during the free fall, and then the cord begins to stretch, slowing the jumper.

This is a pretty formal definition of something that is actually familiar to you. An example might help better than the definition: A bungee-cord jumper plunges from a staging platform (Fig. 8-1). The system of objects consists of Earth and the jumper. The force between the objects is the gravitational force. The configuration of the system changes (the separation between the jumper and Earth decreases—that is, of course, the thrill of the jump). We can account for the jumper's motion and increase in kinetic energy by defining a **gravitational potential energy** *U*. This is the energy associated with the state of separation between two objects that attract each other by the gravitational force, here the jumper and Earth.

When the jumper begins to stretch the bungee cord near the end of the plunge, the system of objects consists of the cord and the jumper. The force between the objects is an elastic (spring-like) force. The configuration of the system changes (the cord stretches). We can account for the jumper's decrease in kinetic energy and the cord's increase in length by defining an **elastic potential energy** U. This is the energy associated with the state of compression or extension of an elastic object, here the bungee cord.

Physics determines how the potential energy of a system can be calculated so that energy might be stored or put to use. For example, before any particular bungee-cord jumper takes the plunge, someone (probably a mechanical engineer) must determine the correct cord to be used by calculating the gravitational and elastic potential energies that can be expected. Then the jump is only thrilling and not fatal.

Work and Potential Energy

In Chapter 7 we discussed the relation between work and a change in kinetic energy. Here we discuss the relation between work and a change in potential energy.

Let us throw a tomato upward (Fig. 8-2). We already know that as the tomato rises, the work W_g done on the tomato by the gravitational force is negative because the force transfers energy *from* the kinetic energy of the tomato. We can now finish the story by saying that this energy is transferred by the gravitational force *to* the gravitational potential energy of the tomato–Earth system.

The tomato slows, stops, and then begins to fall back down because of the gravitational force. During the fall, the transfer is reversed: The work W_g done on the tomato by the gravitational force is now positive—that force transfers energy from the gravitational potential energy of the tomato-Earth system to the kinetic energy of the tomato.

For either rise or fall, the change ΔU in gravitational potential energy is defined as being equal to the negative of the work done on the tomato by the gravitational force. Using the general symbol W for work, we write this as

$$\Delta U = -W. \tag{8-1}$$

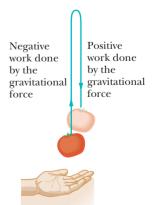


Figure 8-2 A tomato is thrown upward. As it rises, the gravitational force does negative work on it, decreasing its kinetic energy. As the tomato descends, the gravitational force does positive work on it, increasing its kinetic energy.

This equation also applies to a block—spring system, as in Fig. 8-3. If we abruptly shove the block to send it moving rightward, the spring force acts leftward and thus does negative work on the block, transferring energy from the kinetic energy of the block to the elastic potential energy of the spring—block system. The block slows and eventually stops, and then begins to move leftward because the spring force is still leftward. The transfer of energy is then reversed—it is from potential energy of the spring—block system to kinetic energy of the block.

Conservative and Nonconservative Forces

Let us list the key elements of the two situations we just discussed:

- **1.** The *system* consists of two or more objects.
- **2.** A *force* acts between a particle-like object (tomato or block) in the system and the rest of the system.
- **3.** When the system configuration changes, the force does work (call it W_1) on the particle-like object, transferring energy between the kinetic energy K of the object and some other type of energy of the system.
- **4.** When the configuration change is reversed, the force reverses the energy transfer, doing work W_2 in the process.

In a situation in which $W_1 = -W_2$ is always true, the other type of energy is a potential energy and the force is said to be a **conservative force**. As you might suspect, the gravitational force and the spring force are both conservative (since otherwise we could not have spoken of gravitational potential energy and elastic potential energy, as we did previously).

A force that is not conservative is called a **nonconservative force.** The kinetic frictional force and drag force are nonconservative. For an example, let us send a block sliding across a floor that is not frictionless. During the sliding, a kinetic frictional force from the floor slows the block by transferring energy from its kinetic energy to a type of energy called *thermal energy* (which has to do with the random motions of atoms and molecules). We know from experiment that this energy transfer cannot be reversed (thermal energy cannot be transferred back to kinetic energy of the block by the kinetic frictional force). Thus, although we have a system (made up of the block and the floor), a force that acts between parts of the system, and a transfer of energy by the force, the force is not conservative. Therefore, thermal energy is not a potential energy.

When only conservative forces act on a particle-like object, we can greatly simplify otherwise difficult problems involving motion of the object. Let's next develop a test for identifying conservative forces, which will provide one means for simplifying such problems.

Path Independence of Conservative Forces

The primary test for determining whether a force is conservative or nonconservative is this: Let the force act on a particle that moves along any *closed path*, beginning at some initial position and eventually returning to that position (so that the particle makes a *round trip* beginning and ending at the initial position). The force is conservative only if the total energy it transfers to and from the particle during the round trip along this and any other closed path is zero. In other words:

The net work done by a conservative force on a particle moving around any closed path is zero.

We know from experiment that the gravitational force passes this *closed-path test*. An example is the tossed tomato of Fig. 8-2. The tomato leaves the launch point with speed v_0 and kinetic energy $\frac{1}{2}mv_0^2$. The gravitational force acting

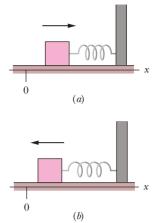


Figure 8-3 A block, attached to a spring and initially at rest at x = 0, is set in motion toward the right. (a) As the block moves rightward (as indicated by the arrow), the spring force does negative work on it. (b) Then, as the block moves back toward x = 0, the spring force does positive work on it.

The force is conservative. Any choice of path between the points gives the same amount of work.

And a round trip gives a total work of zero.

Figure 8-4 (a) As a conservative force acts on it, a particle can move from point a to point b along either path 1 or path 2. (b) The particle moves in a round trip, from point a to point b along path 1 and then back to point a along path 2.

on the tomato slows it, stops it, and then causes it to fall back down. When the tomato returns to the launch point, it again has speed v_0 and kinetic energy $\frac{1}{2}mv_0^2$. Thus, the gravitational force transfers as much energy *from* the tomato during the ascent as it transfers *to* the tomato during the descent back to the launch point. The net work done on the tomato by the gravitational force during the round trip is zero.

An important result of the closed-path test is that:

The work done by a conservative force on a particle moving between two points does not depend on the path taken by the particle.

For example, suppose that a particle moves from point a to point b in Fig. 8-4a along either path 1 or path 2. If only a conservative force acts on the particle, then the work done on the particle is the same along the two paths. In symbols, we can write this result as

$$W_{ab,1} = W_{ab,2}, (8-2)$$

where the subscript *ab* indicates the initial and final points, respectively, and the subscripts 1 and 2 indicate the path.

This result is powerful because it allows us to simplify difficult problems when only a conservative force is involved. Suppose you need to calculate the work done by a conservative force along a given path between two points, and the calculation is difficult or even impossible without additional information. You can find the work by substituting some other path between those two points for which the calculation is easier and possible.

Proof of Equation 8-2

Figure 8-4b shows an arbitrary round trip for a particle that is acted upon by a single force. The particle moves from an initial point a to point b along path 1 and then back to point a along path 2. The force does work on the particle as the particle moves along each path. Without worrying about where positive work is done and where negative work is done, let us just represent the work done from a to b along path 1 as $W_{ab,1}$ and the work done from b back to a along path 2 as $W_{ba,2}$. If the force is conservative, then the net work done during the round trip must be zero:

$$W_{ab,1} + W_{ba,2} = 0,$$

and thus

$$W_{ab,1} = -W_{ba,2}. (8-3)$$

In words, the work done along the outward path must be the negative of the work done along the path back.

Let us now consider the work $W_{ab,2}$ done on the particle by the force when the particle moves from a to b along path 2, as indicated in Fig. 8-4a. If the force is conservative, that work is the negative of $W_{ba,2}$:

$$W_{ab,2} = -W_{ba,2}. (8-4)$$

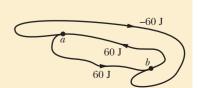
Substituting $W_{ab,2}$ for $-W_{ba,2}$ in Eq. 8-3, we obtain

$$W_{ab.1} = W_{ab.2},$$

which is what we set out to prove.

Checkpoint 1

The figure shows three paths connecting points a and b. A single force \vec{F} does the indicated work on a particle moving along each path in the indicated direction. On the basis of this information, is force \vec{F} conservative?



Sample Problem 8.01 Equivalent paths for calculating work, slippery cheese

The main lesson of this sample problem is this: It is perfectly all right to choose an easy path instead of a hard path. Figure 8-5a shows a 2.0 kg block of slippery cheese that slides along a frictionless track from point a to point b. The cheese travels through a total distance of 2.0 m along the track, and a net vertical distance of 0.80 m. How much work is done on the cheese by the gravitational force during the slide?

KEY IDEAS

(1) We cannot calculate the work by using Eq. 7-12 (W_{σ} = $mgd\cos\phi$). The reason is that the angle ϕ between the directions of the gravitational force \vec{F}_g and the displacement \vec{d} varies along the track in an unknown way. (Even if we did know the shape of the track and could calculate ϕ along it, the calculation could be very difficult.) (2) Because \vec{F}_g is a conservative force, we can find the work by choosing some other path between a and b—one that makes the calculation easy.

Calculations: Let us choose the dashed path in Fig. 8-5b; it consists of two straight segments. Along the horizontal segment, the angle ϕ is a constant 90°. Even though we do not know the displacement along that horizontal segment, Eq. 7-12 tells us that the work W_h done there is

$$W_h = mgd\cos 90^\circ = 0.$$

Along the vertical segment, the displacement d is 0.80 m and, with \vec{F}_g and \vec{d} both downward, the angle ϕ is a constant 0°. Thus, Eq. 7-12 gives us, for the work W_{ν} done along the The gravitational force is conservative. Any choice of path between the points gives the same amount of work.

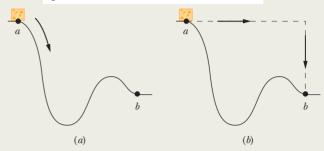


Figure 8-5 (a) A block of cheese slides along a frictionless track from point a to point b. (b) Finding the work done on the cheese by the gravitational force is easier along the dashed path than along the actual path taken by the cheese; the result is the same for both paths.

vertical part of the dashed path,

$$W_v = mgd \cos 0^\circ$$

= $(2.0 \text{ kg})(9.8 \text{ m/s}^2)(0.80 \text{ m})(1) = 15.7 \text{ J}.$

The total work done on the cheese by \vec{F}_g as the cheese moves from point a to point b along the dashed path is then

$$W = W_h + W_v = 0 + 15.7 \text{ J} \approx 16 \text{ J}.$$
 (Answer)

This is also the work done as the cheese slides along the track from a to b.

PLUS Additional examples, video, and practice available at WileyPLUS

Determining Potential Energy Values

Here we find equations that give the value of the two types of potential energy discussed in this chapter: gravitational potential energy and elastic potential energy. However, first we must find a general relation between a conservative force and the associated potential energy.

Consider a particle-like object that is part of a system in which a conservative force \vec{F} acts. When that force does work W on the object, the change ΔU in the potential energy associated with the system is the negative of the work done. We wrote this fact as Eq. 8-1 ($\Delta U = -W$). For the most general case, in which the force may vary with position, we may write the work W as in Eq. 7-32:

$$W = \int_{x_i}^{x_f} F(x) \, dx. \tag{8-5}$$

This equation gives the work done by the force when the object moves from point x_i to point x_f , changing the configuration of the system. (Because the force is conservative, the work is the same for all paths between those two points.)

Substituting Eq. 8-5 into Eq. 8-1, we find that the change in potential energy due to the change in configuration is, in general notation,

$$\Delta U = -\int_{x_i}^{x_f} F(x) \, dx. \tag{8-6}$$

Gravitational Potential Energy

We first consider a particle with mass m moving vertically along a y axis (the positive direction is upward). As the particle moves from point y_i to point y_f , the gravitational force \vec{F}_g does work on it. To find the corresponding change in the gravitational potential energy of the particle-Earth system, we use Eq. 8-6 with two changes: (1) We integrate along the y axis instead of the x axis, because the gravitational force acts vertically. (2) We substitute -mg for the force symbol F, because \vec{F}_g has the magnitude mg and is directed down the y axis. We then have

$$\Delta U = -\int_{y_i}^{y_f} (-mg) \, dy = mg \int_{y_i}^{y_f} dy = mg \left[y \right]_{y_i}^{y_f},$$

which yields

$$\Delta U = mg(y_f - y_i) = mg \, \Delta y. \tag{8-7}$$

Only *changes* ΔU in gravitational potential energy (or any other type of potential energy) are physically meaningful. However, to simplify a calculation or a discussion, we sometimes would like to say that a certain gravitational potential value U is associated with a certain particle—Earth system when the particle is at a certain height y. To do so, we rewrite Eq. 8-7 as

$$U - U_i = mg(y - y_i).$$
 (8-8)

Then we take U_i to be the gravitational potential energy of the system when it is in a **reference configuration** in which the particle is at a **reference point** y_i . Usually we take $U_i = 0$ and $y_i = 0$. Doing this changes Eq. 8-8 to

$$U(y) = mgy$$
 (gravitational potential energy). (8-9)

This equation tells us:

or

The gravitational potential energy associated with a particle–Earth system depends only on the vertical position y (or height) of the particle relative to the reference position y = 0, not on the horizontal position.

Elastic Potential Energy

We next consider the block–spring system shown in Fig. 8-3, with the block moving on the end of a spring of spring constant k. As the block moves from point x_i to point x_f , the spring force $F_x = -kx$ does work on the block. To find the corresponding change in the elastic potential energy of the block–spring system, we substitute -kx for F(x) in Eq. 8-6. We then have

$$\Delta U = -\int_{x_i}^{x_f} (-kx) \, dx = k \int_{x_i}^{x_f} x \, dx = \frac{1}{2} k \left[x^2 \right]_{x_i}^{x_f},$$

$$\Delta U = \frac{1}{2} k x_f^2 - \frac{1}{2} k x_i^2. \tag{8-10}$$

To associate a potential energy value U with the block at position x, we choose the reference configuration to be when the spring is at its relaxed length and the block is at $x_i = 0$. Then the elastic potential energy U_i is 0, and Eq. 8-10

becomes

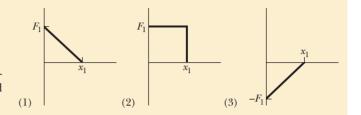
$$U-0=\frac{1}{2}kx^2-0$$
,

which gives us

$$U(x) = \frac{1}{2}kx^2$$
 (elastic potential energy). (8-11)

Checkpoint 2

A particle is to move along an x axis from x = 0 to x_1 while a conservative force, directed along the x axis, acts on the particle. The figure shows three situations in which the x component of that force varies with x. The force has the same maximum magnitude F_1 in all three situations. Rank the situations according to the change in the associated potential energy during the particle's motion, most positive first.



Sample Problem 8.02 Choosing reference level for gravitational potential energy, sloth

Here is an example with this lesson plan: Generally you can choose any level to be the reference level, but once chosen, be consistent. A 2.0 kg sloth hangs 5.0 m above the ground (Fig. 8-6).

(a) What is the gravitational potential energy U of the sloth-Earth system if we take the reference point y=0 to be (1) at the ground, (2) at a balcony floor that is 3.0 m above

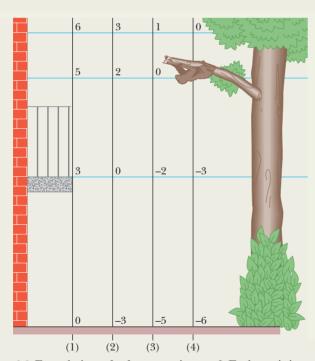


Figure 8-6 Four choices of reference point y = 0. Each y axis is marked in units of meters. The choice affects the value of the potential energy U of the sloth-Earth system. However, it does not affect the change ΔU in potential energy of the system if the sloth moves by, say, falling.

the ground, (3) at the limb, and (4) 1.0 m above the limb? Take the gravitational potential energy to be zero at y = 0.

KEY IDEA

Once we have chosen the reference point for y = 0, we can calculate the gravitational potential energy U of the system relative to that reference point with Eq. 8-9.

Calculations: For choice (1) the sloth is at y = 5.0 m, and

$$U = mgy = (2.0 \text{ kg})(9.8 \text{ m/s}^2)(5.0 \text{ m})$$

= 98 J. (Answer)

For the other choices, the values of U are

- (2) U = mgv = mg(2.0 m) = 39 J,
- (3) U = mgy = mg(0) = 0 J,
- (4) U = mgy = mg(-1.0 m) $= -19.6 J \approx -20 J.$ (Answer)
- (b) The sloth drops to the ground. For each choice of reference point, what is the change ΔU in the potential energy of the sloth-Earth system due to the fall?

KEY IDEA

The change in potential energy does not depend on the choice of the reference point for y = 0; instead, it depends on the change in height Δy .

Calculation: For all four situations, we have the same $\Delta y =$ -5.0 m. Thus, for (1) to (4), Eq. 8-7 tells us that

$$\Delta U = mg \,\Delta y = (2.0 \text{ kg})(9.8 \text{ m/s}^2)(-5.0 \text{ m})$$

= -98 J. (Answer)

PLUS Additional examples, video, and practice available at WileyPLUS

8-2 CONSERVATION OF MECHANICAL ENERGY

Learning Objectives

After reading this module, you should be able to . . .

8.05 After first clearly defining which objects form a system, identify that the mechanical energy of the system is the sum of the kinetic energies and potential energies of those objects. 8.06 For an isolated system in which only conservative forces act, apply the conservation of mechanical energy to relate the initial potential and kinetic energies to the potential and kinetic energies at a later instant.

Key Ideas _____

• The mechanical energy $E_{\rm mec}$ of a system is the sum of its kinetic energy K and potential energy U:

$$E_{\text{mec}} = K + U$$
.

ullet An isolated system is one in which no external force causes energy changes. If only conservative forces do work within an isolated system, then the mechanical energy $E_{
m mec}$ of the

system cannot change. This principle of conservation of mechanical energy is written as

$$K_2 + U_2 = K_1 + U_1$$

in which the subscripts refer to different instants during an energy transfer process. This conservation principle can also be written as

$$\Delta E_{\text{mec}} = \Delta K + \Delta U = 0.$$

Conservation of Mechanical Energy

The **mechanical energy** $E_{\rm mec}$ of a system is the sum of its potential energy U and the kinetic energy K of the objects within it:

$$E_{\text{mec}} = K + U$$
 (mechanical energy). (8-12)

In this module, we examine what happens to this mechanical energy when only conservative forces cause energy transfers within the system—that is, when frictional and drag forces do not act on the objects in the system. Also, we shall assume that the system is *isolated* from its environment; that is, no *external force* from an object outside the system causes energy changes inside the system.

When a conservative force does work W on an object within the system, that force transfers energy between kinetic energy K of the object and potential energy U of the system. From Eq. 7-10, the change ΔK in kinetic energy is

$$\Delta K = W \tag{8-13}$$

and from Eq. 8-1, the change ΔU in potential energy is

$$\Delta U = -W. \tag{8-14}$$

Combining Eqs. 8-13 and 8-14, we find that

$$\Delta K = -\Delta U. \tag{8-15}$$

In words, one of these energies increases exactly as much as the other decreases. We can rewrite Eq. 8-15 as

$$K_2 - K_1 = -(U_2 - U_1),$$
 (8-16)

where the subscripts refer to two different instants and thus to two different arrangements of the objects in the system. Rearranging Eq. 8-16 yields

$$K_2 + U_2 = K_1 + U_1$$
 (conservation of mechanical energy). (8-17)

In words, this equation says:

$$\begin{pmatrix}
\text{the sum of } K \text{ and } U \text{ for} \\
\text{any state of a system}
\end{pmatrix} = \begin{pmatrix}
\text{the sum of } K \text{ and } U \text{ for} \\
\text{any other state of the system}
\end{pmatrix},$$

©AP/Wide World Photos

In olden days, a person would be tossed via a blanket to be able to see farther over the flat terrain. Nowadays, it is done just for fun. During the ascent of the person in the photograph, energy is transferred from kinetic energy to gravitational potential energy. The maximum height is reached when that transfer is complete. Then the transfer is reversed during the fall.

when the system is isolated and only conservative forces act on the objects in the system. In other words:

In an isolated system where only conservative forces cause energy changes, the kinetic energy and potential energy can change, but their sum, the mechanical energy $E_{\rm mec}$ of the system, cannot change.

This result is called the **principle of conservation of mechanical energy.** (Now you can see where *conservative* forces got their name.) With the aid of Eq. 8-15, we can write this principle in one more form, as

$$\Delta E_{\text{mec}} = \Delta K + \Delta U = 0. \tag{8-18}$$

The principle of conservation of mechanical energy allows us to solve problems that would be quite difficult to solve using only Newton's laws:

When the mechanical energy of a system is conserved, we can relate the sum of kinetic energy and potential energy at one instant to that at another instant *without considering the intermediate motion* and *without finding the work done by the forces involved.*

Figure 8-7 shows an example in which the principle of conservation of mechanical energy can be applied: As a pendulum swings, the energy of the

All kinetic energy U(a) (h) The total energy All potential All potential does not change energy energy (it is conserved). UK K (g)(c) (d) (*f*) All kinetic energy U(e)

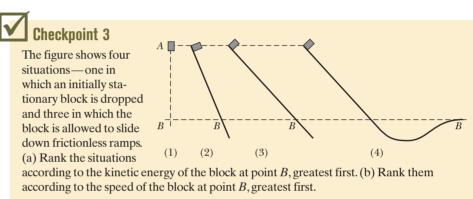
Figure 8-7 A pendulum, with its mass concentrated in a bob at the lower end, swings back and forth. One full cycle of the motion is shown. During the cycle the values of the potential and kinetic energies of the pendulum-Earth system vary as the bob rises and falls, but the mechanical energy $E_{\rm mec}$ of the system remains constant. The energy $E_{\rm mec}$ can be described as continuously shifting between the kinetic and potential forms. In stages (a) and (e), all the energy is kinetic energy. The bob then has its greatest speed and is at its lowest point. In stages (c) and (g), all the energy is potential energy. The bob then has zero speed and is at its highest point. In stages (b), (d), (f), and (h), half the energy is kinetic energy and half is potential energy. If the swinging involved a frictional force at the point where the pendulum is attached to the ceiling, or a drag force due to the air, then E_{mec} would not be conserved, and eventually the pendulum would stop.

pendulum—Earth system is transferred back and forth between kinetic energy K and gravitational potential energy U, with the sum K+U being constant. If we know the gravitational potential energy when the pendulum bob is at its highest point (Fig. 8-7c), Eq. 8-17 gives us the kinetic energy of the bob at the lowest point (Fig. 8-7e).

For example, let us choose the lowest point as the reference point, with the gravitational potential energy $U_2 = 0$. Suppose then that the potential energy at the highest point is $U_1 = 20$ J relative to the reference point. Because the bob momentarily stops at its highest point, the kinetic energy there is $K_1 = 0$. Putting these values into Eq. 8-17 gives us the kinetic energy K_2 at the lowest point:

$$K_2 + 0 = 0 + 20 \text{ J}$$
 or $K_2 = 20 \text{ J}$.

Note that we get this result without considering the motion between the highest and lowest points (such as in Fig. 8-7d) and without finding the work done by any forces involved in the motion.



Sample Problem 8.03 Conservation of mechanical energy, water slide

The huge advantage of using the conservation of energy instead of Newton's laws of motion is that we can jump from the initial state to the final state without considering all the intermediate motion. Here is an example. In Fig. 8-8, a child of mass m is released from rest at the top of a water slide, at height h=8.5 m above the bottom of the slide. Assuming that the slide is frictionless because of the water on it, find the child's speed at the bottom of the slide.

KEY IDEAS

(1) We cannot find her speed at the bottom by using her acceleration along the slide as we might have in earlier chapters because we do not know the slope (angle) of the slide. However, because that speed is related to her kinetic energy, perhaps we can use the principle of conservation of mechanical energy to get the speed. Then we would not need to know the slope. (2) Mechanical energy is conserved in a system *if* the system is isolated and *if* only conservative forces cause energy transfers within it. Let's check.

Forces: Two forces act on the child. The gravitational force, a conservative force, does work on her. The normal force on her from the slide does no work because its direction at any point during the descent is always perpendicular to the direction in which the child moves.

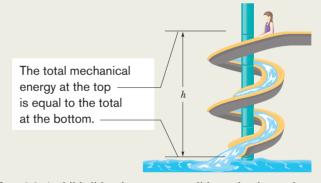


Figure 8-8 A child slides down a water slide as she descends a height h.

System: Because the only force doing work on the child is the gravitational force, we choose the child–Earth system as our system, which we can take to be isolated.

Thus, we have only a conservative force doing work in an isolated system, so we *can* use the principle of conservation of mechanical energy.

Calculations: Let the mechanical energy be $E_{\mathrm{mec},t}$ when the child is at the top of the slide and $E_{\mathrm{mec},b}$ when she is at the bottom. Then the conservation principle tells us

$$E_{\text{mec},b} = E_{\text{mec},t}.$$
 (8-19)

To show both kinds of mechanical energy, we have

$$K_b + U_b = K_t + U_t,$$
 (8-20)

or

$$\frac{1}{2}mv_b^2 + mgy_b = \frac{1}{2}mv_t^2 + mgy_t.$$

Dividing by m and rearranging yield

$$v_b^2 = v_t^2 + 2g(y_t - y_b).$$

Putting $v_t = 0$ and $y_t - y_b = h$ leads to

$$v_b = \sqrt{2gh} = \sqrt{(2)(9.8 \text{ m/s}^2)(8.5 \text{ m})}$$

= 13 m/s.

(Answer)

This is the same speed that the child would reach if she fell 8.5 m vertically. On an actual slide, some frictional forces would act and the child would not be moving quite so fast.

Comments: Although this problem is hard to solve directly with Newton's laws, using conservation of mechanical energy makes the solution much easier. However, if we were asked to find the time taken for the child to reach the bottom of the slide, energy methods would be of no use; we would need to know the shape of the slide, and we would have a difficult problem.

PLUS Additional examples, video, and practice available at WileyPLUS

8-3 READING A POTENTIAL ENERGY CURVE

Learning Objectives

After reading this module, you should be able to ...

- 8.07 Given a particle's potential energy as a function of its position x, determine the force on the particle.
- **8.08** Given a graph of potential energy versus x, determine the force on a particle.
- **8.09** On a graph of potential energy versus x, superimpose a line for a particle's mechanical energy and determine the particle's kinetic energy for any given value of x.
- **8.10** If a particle moves along an x axis, use a potentialenergy graph for that axis and the conservation of mechanical energy to relate the energy values at one position to those at another position.
- **8.11** On a potential-energy graph, identify any turning points and any regions where the particle is not allowed because of energy requirements.
- 8.12 Explain neutral equilibrium, stable equilibrium, and unstable equilibrium.

Kev Ideas ____

• If we know the potential energy function U(x) for a system in which a one-dimensional force F(x) acts on a particle, we can find the force as

$$F(x) = -\frac{dU(x)}{dx}.$$

• If U(x) is given on a graph, then at any value of x, the force F(x) is the negative of the slope of the curve there and the

kinetic energy of the particle is given by

$$K(x) = E_{\rm mec} - U(x),$$

where $E_{\rm mec}$ is the mechanical energy of the system.

- A turning point is a point x at which the particle reverses its motion (there, K = 0).
- The particle is in equilibrium at points where the slope of the U(x) curve is zero (there, F(x) = 0).

Reading a Potential Energy Curve

Once again we consider a particle that is part of a system in which a conservative force acts. This time suppose that the particle is constrained to move along an x axis while the conservative force does work on it. We want to plot the potential energy U(x) that is associated with that force and the work that it does, and then we want to consider how we can relate the plot back to the force and to the kinetic energy of the particle. However, before we discuss such plots, we need one more relationship between the force and the potential energy.

Finding the Force Analytically

Equation 8-6 tells us how to find the change ΔU in potential energy between two points in a one-dimensional situation if we know the force F(x). Now we want to go the other way; that is, we know the potential energy function U(x) and want to find the force.

For one-dimensional motion, the work W done by a force that acts on a particle as the particle moves through a distance Δx is F(x) Δx . We can then write Eq. 8-1 as

$$\Delta U(x) = -W = -F(x) \,\Delta x. \tag{8-21}$$

Solving for F(x) and passing to the differential limit yield

$$F(x) = -\frac{dU(x)}{dx}$$
 (one-dimensional motion), (8-22)

which is the relation we sought.

We can check this result by putting $U(x) = \frac{1}{2}kx^2$, which is the elastic potential energy function for a spring force. Equation 8-22 then yields, as expected, F(x) = -kx, which is Hooke's law. Similarly, we can substitute U(x) = mgx, which is the gravitational potential energy function for a particle—Earth system, with a particle of mass m at height x above Earth's surface. Equation 8-22 then yields F = -mg, which is the gravitational force on the particle.

The Potential Energy Curve

Figure 8-9a is a plot of a potential energy function U(x) for a system in which a particle is in one-dimensional motion while a conservative force F(x) does work on it. We can easily find F(x) by (graphically) taking the slope of the U(x) curve at various points. (Equation 8-22 tells us that F(x) is the negative of the slope of the U(x) curve.) Figure 8-9b is a plot of F(x) found in this way.

Turning Points

In the absence of a nonconservative force, the mechanical energy E of a system has a constant value given by

$$U(x) + K(x) = E_{\text{mec}}.$$
 (8-23)

Here K(x) is the kinetic energy function of a particle in the system (this K(x) gives the kinetic energy as a function of the particle's location x). We may rewrite Eq. 8-23 as

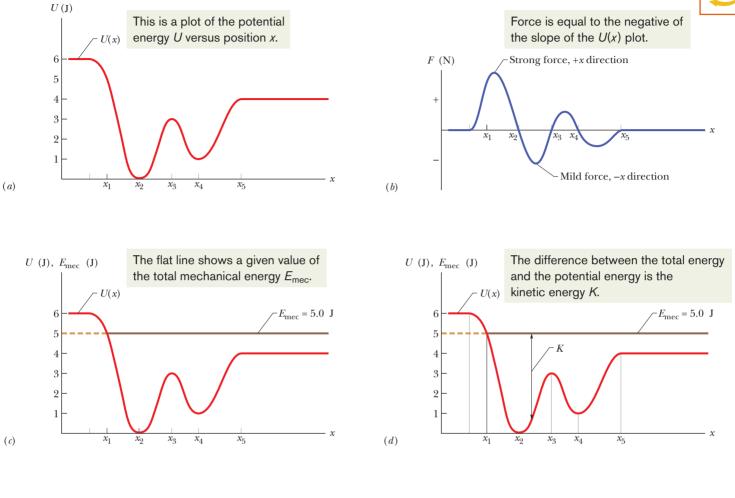
$$K(x) = E_{\text{mec}} - U(x).$$
 (8-24)

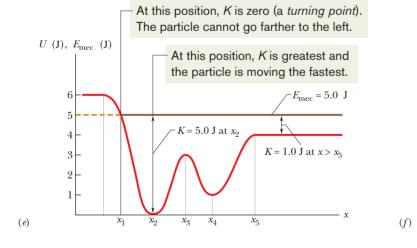
Suppose that E_{mec} (which has a constant value, remember) happens to be 5.0 J. It would be represented in Fig. 8-9c by a horizontal line that runs through the value 5.0 J on the energy axis. (It is, in fact, shown there.)

Equation 8-24 and Fig. 8-9d tell us how to determine the kinetic energy K for any location x of the particle: On the U(x) curve, find U for that location x and then subtract U from E_{mec} . In Fig. 8-9e for example, if the particle is at any point to the right of x_5 , then K = 1.0 J. The value of K is greatest (5.0 J) when the particle is at x_2 and least (0 J) when the particle is at x_1 .

Since K can never be negative (because v^2 is always positive), the particle can never move to the left of x_1 , where $E_{\text{mec}} - U$ is negative. Instead, as the particle moves toward x_1 from x_2 , K decreases (the particle slows) until K = 0 at x_1 (the particle stops there).

Note that when the particle reaches x_1 , the force on the particle, given by Eq. 8-22, is positive (because the slope dU/dx is negative). This means that the particle does not remain at x_1 but instead begins to move to the right, opposite its earlier motion. Hence x_1 is a **turning point**, a place where K = 0 (because U = E) and the particle changes direction. There is no turning point (where K = 0) on the right side of the graph. When the particle heads to the right, it will continue indefinitely.





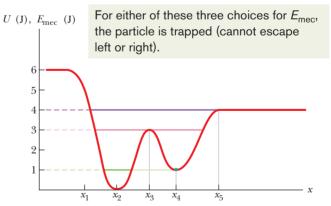


Figure 8-9 (a) A plot of U(x), the potential energy function of a system containing a particle confined to move along an x axis. There is no friction, so mechanical energy is conserved. (b) A plot of the force F(x) acting on the particle, derived from the potential energy plot by taking its slope at various points. (c)–(e) How to determine the kinetic energy. (f) The U(x) plot of (a) with three possible values of E_{mec} shown. In WileyPLUS, this figure is available as an animation with voiceover.

Equilibrium Points

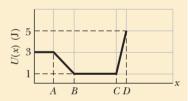
Figure 8-9f shows three different values for $E_{\rm mec}$ superposed on the plot of the potential energy function U(x) of Fig. 8-9a. Let us see how they change the situation. If $E_{\rm mec}=4.0~{\rm J}$ (purple line), the turning point shifts from x_1 to a point between x_1 and x_2 . Also, at any point to the right of x_5 , the system's mechanical energy is equal to its potential energy; thus, the particle has no kinetic energy and (by Eq. 8-22) no force acts on it, and so it must be stationary. A particle at such a position is said to be in **neutral equilibrium.** (A marble placed on a horizontal tabletop is in that state.)

If $E_{\rm mec} = 3.0 \, {\rm J}$ (pink line), there are two turning points: One is between x_1 and x_2 , and the other is between x_4 and x_5 . In addition, x_3 is a point at which K = 0. If the particle is located exactly there, the force on it is also zero, and the particle remains stationary. However, if it is displaced even slightly in either direction, a nonzero force pushes it farther in the same direction, and the particle continues to move. A particle at such a position is said to be in **unstable equilibrium.** (A marble balanced on top of a bowling ball is an example.)

Next consider the particle's behavior if $E_{\rm mec}=1.0~{\rm J}$ (green line). If we place it at x_4 , it is stuck there. It cannot move left or right on its own because to do so would require a negative kinetic energy. If we push it slightly left or right, a restoring force appears that moves it back to x_4 . A particle at such a position is said to be in **stable equilibrium.** (A marble placed at the bottom of a hemispherical bowl is an example.) If we place the particle in the cup-like *potential well* centered at x_2 , it is between two turning points. It can still move somewhat, but only partway to x_1 or x_3 .

Checkpoint 4

The figure gives the potential energy function U(x) for a system in which a particle is in one-dimensional motion. (a) Rank regions AB, BC, and CD according to the magnitude of the force on the particle, greatest first. (b) What is the direction of the force when the particle is in region AB?



Sample Problem 8.04 Reading a potential energy graph

A 2.00 kg particle moves along an x axis in one-dimensional motion while a conservative force along that axis acts on it. The potential energy U(x) associated with the force is plotted in Fig. 8-10a. That is, if the particle were placed at any position between x = 0 and x = 7.00 m, it would have the plotted value of U. At x = 6.5 m, the particle has velocity $\vec{v_0} = (-4.00 \text{ m/s})\hat{i}$.

(a) From Fig. 8-10a, determine the particle's speed at $x_1 = 4.5 \text{ m}$.

KEY IDEAS

(1) The particle's kinetic energy is given by Eq. 7-1 $(K = \frac{1}{2}mv^2)$. (2) Because only a conservative force acts on the particle, the mechanical energy $E_{\rm mec}$ (= K + U) is conserved as the particle moves. (3) Therefore, on a plot of U(x) such as Fig. 8-10a, the kinetic energy is equal to the difference between $E_{\rm mec}$ and U.

Calculations: At x = 6.5 m, the particle has kinetic energy

$$K_0 = \frac{1}{2}mv_0^2 = \frac{1}{2}(2.00 \text{ kg})(4.00 \text{ m/s})^2$$

= 16.0 J.

Because the potential energy there is U = 0, the mechanical energy is

$$E_{\text{mec}} = K_0 + U_0 = 16.0 \,\text{J} + 0 = 16.0 \,\text{J}.$$

This value for $E_{\rm mec}$ is plotted as a horizontal line in Fig. 8-10a. From that figure we see that at x=4.5 m, the potential energy is $U_1=7.0$ J. The kinetic energy K_1 is the difference between $E_{\rm mec}$ and U_1 :

$$K_1 = E_{\text{mec}} - U_1 = 16.0 \,\text{J} - 7.0 \,\text{J} = 9.0 \,\text{J}.$$

Because $K_1 = \frac{1}{2}mv_1^2$, we find

$$v_1 = 3.0 \text{ m/s}.$$
 (Answer)

(b) Where is the particle's turning point located?

KEY IDEA

The turning point is where the force momentarily stops and then reverses the particle's motion. That is, it is where the particle momentarily has v = 0 and thus K = 0.

Calculations: Because K is the difference between $E_{\rm mec}$ and U, we want the point in Fig. 8-10a where the plot of U rises to meet the horizontal line of E_{mec} , as shown in Fig. 8-10b. Because the plot of U is a straight line in Fig. 8-10b, we can draw nested right triangles as shown and then write the proportionality of distances

$$\frac{16 - 7.0}{d} = \frac{20 - 7.0}{4.0 - 1.0},$$

which gives us d = 2.08 m. Thus, the turning point is at

$$x = 4.0 \text{ m} - d = 1.9 \text{ m}.$$
 (Answer)

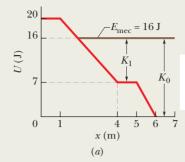
(c) Evaluate the force acting on the particle when it is in the region 1.9 m < x < 4.0 m.

KEY IDEA

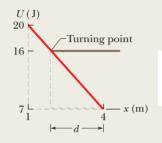
The force is given by Eq. 8-22 (F(x) = -dU(x)/dx): The force is equal to the negative of the slope on a graph of U(x).

Calculations: For the graph of Fig. 8-10b, we see that for the range 1.0 m < x < 4.0 m the force is

$$F = -\frac{20 \text{ J} - 7.0 \text{ J}}{1.0 \text{ m} - 4.0 \text{ m}} = 4.3 \text{ N}.$$
 (Answer)



Kinetic energy is the difference between the total energy and the potential energy.



The kinetic energy is zero at the turning point (the particle speed is zero).

Figure 8-10 (a) A plot of potential energy U versus position x. (b) A section of the plot used to find where the particle turns around.

Thus, the force has magnitude 4.3 N and is in the positive direction of the x axis. This result is consistent with the fact that the initially leftward-moving particle is stopped by the force and then sent rightward.

PLUS Additional examples, video, and practice available at WileyPLUS

8-4 WORK DONE ON A SYSTEM BY AN EXTERNAL FORCE

Learning Objectives

After reading this module, you should be able to . . .

- 8.13 When work is done on a system by an external force with no friction involved, determine the changes in kinetic energy and potential energy.
- 8.14 When work is done on a system by an external force with friction involved, relate that work to the changes in kinetic energy, potential energy, and thermal energy.

Key Ideas

- Work W is energy transferred to or from a system by means of an external force acting on the system.
- When more than one force acts on a system, their net work is the transferred energy.
- When friction is not involved, the work done on the system and the change $\Delta E_{\rm mec}$ in the mechanical energy of the system are equal:

$$W = \Delta E_{\text{mec}} = \Delta K + \Delta U$$
.

• When a kinetic frictional force acts within the system, then the thermal energy $E_{\rm th}$ of the system changes. (This energy is associated with the random motion of atoms and molecules in the system.) The work done on the system is then

$$W = \Delta E_{\rm mec} + \Delta E_{\rm th}.$$

ullet The change $\Delta E_{
m th}$ is related to the magnitude f_k of the frictional force and the magnitude d of the displacement caused by the external force by

$$\Delta E_{\rm th} = f_k d$$
.

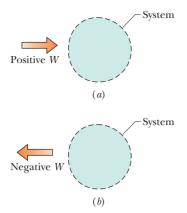


Figure 8-11 (a) Positive work W done on an arbitrary system means a transfer of energy to the system. (b) Negative work W means a transfer of energy from the system.

Your lifting force transfers energy to kinetic energy and potential energy.

Ball–Earth system $\Delta E_{\rm mec} = \Delta K + \Delta U$

Figure 8-12 Positive work W is done on a system of a bowling ball and Earth, causing a change $\Delta E_{\rm mec}$ in the mechanical energy of the system, a change ΔK in the ball's kinetic energy, and a change ΔU in the system's gravitational potential energy.

Work Done on a System by an External Force

In Chapter 7, we defined work as being energy transferred to or from an object by means of a force acting on the object. We can now extend that definition to an external force acting on a system of objects.

Work is energy transferred to or from a system by means of an external force acting on that system.

Figure 8-11a represents positive work (a transfer of energy to a system), and Fig. 8-11b represents negative work (a transfer of energy from a system). When more than one force acts on a system, their net work is the energy transferred to or from the system.

These transfers are like transfers of money to and from a bank account. If a system consists of a single particle or particle-like object, as in Chapter 7, the work done on the system by a force can change only the kinetic energy of the system. The energy statement for such transfers is the work–kinetic energy theorem of Eq. 7-10 ($\Delta K = W$); that is, a single particle has only one energy account, called kinetic energy. External forces can transfer energy into or out of that account. If a system is more complicated, however, an external force can change other forms of energy (such as potential energy); that is, a more complicated system can have multiple energy accounts.

Let us find energy statements for such systems by examining two basic situations, one that does not involve friction and one that does.

No Friction Involved

To compete in a bowling-ball-hurling contest, you first squat and cup your hands under the ball on the floor. Then you rapidly straighten up while also pulling your hands up sharply, launching the ball upward at about face level. During your upward motion, your applied force on the ball obviously does work; that is, it is an external force that transfers energy, but to what system?

To answer, we check to see which energies change. There is a change ΔK in the ball's kinetic energy and, because the ball and Earth become more separated, there is a change ΔU in the gravitational potential energy of the ball-Earth system. To include both changes, we need to consider the ball-Earth system. Then your force is an external force doing work on that system, and the work is

$$W = \Delta K + \Delta U, \tag{8-25}$$

or
$$W = \Delta E_{\text{mec}}$$
 (work done on system, no friction involved), (8-26)

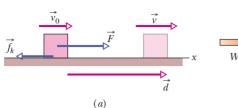
where $\Delta E_{\rm mec}$ is the change in the mechanical energy of the system. These two equations, which are represented in Fig. 8-12, are equivalent energy statements for work done on a system by an external force when friction is not involved.

Friction Involved

We next consider the example in Fig. 8-13a. A constant horizontal force \vec{F} pulls a block along an x axis and through a displacement of magnitude d, increasing the block's velocity from \vec{v}_0 to \vec{v} . During the motion, a constant kinetic frictional force \vec{f}_k from the floor acts on the block. Let us first choose the block as our system and apply Newton's second law to it. We can write that law for components along the x axis ($F_{\text{net},x} = ma_x$) as

$$F - f_k = ma. ag{8-27}$$

The applied force supplies energy. The frictional force transfers some of it to thermal energy. So, the work done by the applied force goes into kinetic energy and also thermal energy.



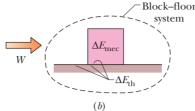


Figure 8-13 (a) A block is pulled across a floor by force \vec{F} while a kinetic frictional force \vec{f}_k opposes the motion. The block has velocity \vec{v}_0 at the start of a displacement \vec{d} and velocity \vec{v} at the end of the displacement. (b) Positive work W is done on the block–floor system by force \vec{F} , resulting in a change $\Delta E_{\rm mec}$ in the block's mechanical energy and a change $\Delta E_{\rm th}$ in the thermal energy of the block and floor.

Because the forces are constant, the acceleration \vec{a} is also constant. Thus, we can use Eq. 2-16 to write

$$v^2 = v_0^2 + 2ad$$
.

Solving this equation for a, substituting the result into Eq. 8-27, and rearranging then give us

$$Fd = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 + f_k d \tag{8-28}$$

or, because $\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = \Delta K$ for the block,

$$Fd = \Delta K + f_k d. \tag{8-29}$$

In a more general situation (say, one in which the block is moving up a ramp), there can be a change in potential energy. To include such a possible change, we generalize Eq. 8-29 by writing

$$Fd = \Delta E_{\text{mec}} + f_k d. \tag{8-30}$$

By experiment we find that the block and the portion of the floor along which it slides become warmer as the block slides. As we shall discuss in Chapter 18, the temperature of an object is related to the object's thermal energy $E_{\rm th}$ (the energy associated with the random motion of the atoms and molecules in the object). Here, the thermal energy of the block and floor increases because (1) there is friction between them and (2) there is sliding. Recall that friction is due to the cold-welding between two surfaces. As the block slides over the floor, the sliding causes repeated tearing and re-forming of the welds between the block and the floor, which makes the block and floor warmer. Thus, the sliding increases their thermal energy $E_{\rm th}$.

Through experiment, we find that the increase $\Delta E_{\rm th}$ in thermal energy is equal to the product of the magnitudes f_k and d:

$$\Delta E_{\rm th} = f_k d$$
 (increase in thermal energy by sliding). (8-31)

Thus, we can rewrite Eq. 8-30 as

$$Fd = \Delta E_{\text{mec}} + \Delta E_{\text{th}}.$$
 (8-32)

Fd is the work W done by the external force \vec{F} (the energy transferred by the force), but on which system is the work done (where are the energy transfers made)? To answer, we check to see which energies change. The block's mechanical energy

changes, and the thermal energies of the block and floor also change. Therefore, the work done by force \vec{F} is done on the block-floor system. That work is

$$W = \Delta E_{\text{mec}} + \Delta E_{\text{th}}$$
 (work done on system, friction involved). (8-33)

This equation, which is represented in Fig. 8-13b, is the energy statement for the work done on a system by an external force when friction is involved.

Checkpoint 5

In three trials, a block is pushed by a horizontal applied force across a floor that is not frictionless, as in Fig. 8-13a. The magnitudes F of the applied force and the results of the pushing on the block's speed are given in the

Trial	F	Result on Block's Speed
a	5.0 N	decreases
b	7.0 N	remains constant
c	8.0 N	increases

table. In all three trials, the block is pushed through the same distance d. Rank the three trials according to the change in the thermal energy of the block and floor that occurs in that distance d, greatest first.

Sample Problem 8.05 Work, friction, change in thermal energy, cabbage heads

A food shipper pushes a wood crate of cabbage heads (total mass $m = 14 \,\mathrm{kg}$) across a concrete floor with a constant horizontal force \vec{F} of magnitude 40 N. In a straight-line displacement of magnitude $d = 0.50 \,\mathrm{m}$, the speed of the crate decreases from $v_0 = 0.60$ m/s to v = 0.20 m/s.

(a) How much work is done by force \vec{F} , and on what system does it do the work?

KEY IDEA

Because the applied force \vec{F} is constant, we can calculate the work it does by using Eq. 7-7 ($W = Fd \cos \phi$).

Calculation: Substituting given data, including the fact that force \vec{F} and displacement \vec{d} are in the same direction, we find

$$W = Fd \cos \phi = (40 \text{ N})(0.50 \text{ m}) \cos 0^{\circ}$$

= 20 J. (Answer)

Reasoning: To determine the system on which the work is done, let's check which energies change. Because the crate's speed changes, there is certainly a change ΔK in the crate's kinetic energy. Is there friction between the floor and the crate, and thus a change in thermal energy? Note that \vec{F} and the crate's velocity have the same direction. Thus, if there is no friction, then \vec{F} should be accelerating the crate to a greater speed. However, the crate is slowing, so there must be friction and a change $\Delta E_{\rm th}$ in thermal energy of the crate and the floor. Therefore, the system on which the work is done is the crate-floor system, because both energy changes occur in that system.

(b) What is the increase $\Delta E_{\rm th}$ in the thermal energy of the crate and floor?

KEY IDEA

We can relate ΔE_{th} to the work W done by \vec{F} with the energy statement of Eq. 8-33 for a system that involves friction:

$$W = \Delta E_{\text{mec}} + \Delta E_{\text{th}}.$$
 (8-34)

Calculations: We know the value of W from (a). The change $\Delta E_{\rm mec}$ in the crate's mechanical energy is just the change in its kinetic energy because no potential energy changes occur, so we have

$$\Delta E_{\text{mec}} = \Delta K = \frac{1}{2} m v^2 - \frac{1}{2} m v_0^2$$

Substituting this into Eq. 8-34 and solving for ΔE_{th} , we find

$$\Delta E_{\text{th}} = W - (\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2) = W - \frac{1}{2}m(v^2 - v_0^2)$$

= 20 J - \frac{1}{2}(14 kg)[(0.20 m/s)^2 - (0.60 m/s)^2]
= 22.2 J \approx 22 J. (Answer)

Without further experiments, we cannot say how much of this thermal energy ends up in the crate and how much in the floor. We simply know the total amount.

PLUS Additional examples, video, and practice available at WileyPLUS

8-5 CONSERVATION OF ENERGY

Learning Objectives

After reading this module, you should be able to . . .

- 8.15 For an isolated system (no net external force), apply the conservation of energy to relate the initial total energy (energies of all kinds) to the total energy at a later instant.
- **8.16** For a nonisolated system, relate the work done on the system by a net external force to the changes in the various types of energies within the system.
- **8.17** Apply the relationship between average power, the associated energy transfer, and the time interval in which that transfer is made.
- **8.18** Given an energy transfer as a function of time (either as an equation or a graph), determine the instantaneous power (the transfer at any given instant).

Key Ideas

- ullet The total energy E of a system (the sum of its mechanical energy and its internal energies, including thermal energy) can change only by amounts of energy that are transferred to or from the system. This experimental fact is known as the law of conservation of energy.
- ullet If work W is done on the system, then

$$W = \Delta E = \Delta E_{\text{mec}} + \Delta E_{\text{th}} + \Delta E_{\text{int}}.$$

If the system is isolated (W = 0), this gives

$$\Delta E_{\rm mec} + \Delta E_{\rm th} + \Delta E_{\rm int} = 0$$

and

$$E_{\text{mec,2}} = E_{\text{mec,1}} - \Delta E_{\text{th}} - \Delta E_{\text{int}},$$

where the subscripts 1 and 2 refer to two different instants.

• The power due to a force is the *rate* at which that force transfers energy. If an amount of energy ΔE is transferred by a force in an amount of time Δt , the average power of the force is

$$P_{\text{avg}} = \frac{\Delta E}{\Delta t}$$
.

• The instantaneous power due to a force is

$$P = \frac{dE}{dt}.$$

On a graph of energy E versus time t, the power is the slope of the plot at any given time.

Conservation of Energy

We now have discussed several situations in which energy is transferred to or from objects and systems, much like money is transferred between accounts. In each situation we assume that the energy that was involved could always be accounted for; that is, energy could not magically appear or disappear. In more formal language, we assumed (correctly) that energy obeys a law called the **law of conservation of energy,** which is concerned with the **total energy** *E* of a system. That total is the sum of the system's mechanical energy, thermal energy, and any type of *internal energy* in addition to thermal energy. (We have not yet discussed other types of internal energy.) The law states that

The total energy E of a system can change only by amounts of energy that are transferred to or from the system.

The only type of energy transfer that we have considered is work W done on a system by an external force. Thus, for us at this point, this law states that

$$W = \Delta E = \Delta E_{\text{mec}} + \Delta E_{\text{th}} + \Delta E_{\text{int}}, \tag{8-35}$$

where $\Delta E_{\rm mec}$ is any change in the mechanical energy of the system, $\Delta E_{\rm th}$ is any change in the thermal energy of the system, and $\Delta E_{\rm int}$ is any change in any other type of internal energy of the system. Included in $\Delta E_{\rm mec}$ are changes ΔK in kinetic energy and changes ΔU in potential energy (elastic, gravitational, or any other type we might find).

This law of conservation of energy is *not* something we have derived from basic physics principles. Rather, it is a law based on countless experiments.

Tyler Stableford/The Image Bank/Getty Images

Figure 8-14 To descend, the rock climber must transfer energy from the gravitational potential energy of a system consisting of him, his gear, and Earth. He has wrapped the rope around metal rings so that the rope rubs against the rings. This allows most of the transferred energy to go to the thermal energy of the rope and rings rather than to his kinetic energy.

Scientists and engineers have never found an exception to it. Energy simply cannot magically appear or disappear.

Isolated System

If a system is isolated from its environment, there can be no energy transfers to or from it. For that case, the law of conservation of energy states:

The total energy E of an isolated system cannot change.

Many energy transfers may be going on *within* an isolated system—between, say, kinetic energy and a potential energy or between kinetic energy and thermal energy. However, the total of all the types of energy in the system cannot change. Here again, energy cannot magically appear or disappear.

We can use the rock climber in Fig. 8-14 as an example, approximating him, his gear, and Earth as an isolated system. As he rappels down the rock face, changing the configuration of the system, he needs to control the transfer of energy from the gravitational potential energy of the system. (That energy cannot just disappear.) Some of it is transferred to his kinetic energy. However, he obviously does not want very much transferred to that type or he will be moving too quickly, so he has wrapped the rope around metal rings to produce friction between the rope and the rings as he moves down. The sliding of the rings on the rope then transfers the gravitational potential energy of the system to thermal energy of the rings and rope in a way that he can control. The total energy of the climber–gear–Earth system (the total of its gravitational potential energy, kinetic energy, and thermal energy) does not change during his descent.

For an isolated system, the law of conservation of energy can be written in two ways. First, by setting W = 0 in Eq. 8-35, we get

$$\Delta E_{\rm mec} + \Delta E_{\rm th} + \Delta E_{\rm int} = 0$$
 (isolated system). (8-36)

We can also let $\Delta E_{\rm mec} = E_{\rm mec,2} - E_{\rm mec,1}$, where the subscripts 1 and 2 refer to two different instants—say, before and after a certain process has occurred. Then Eq. 8-36 becomes

$$E_{\text{mec.2}} = E_{\text{mec.1}} - \Delta E_{\text{th}} - \Delta E_{\text{int}}.$$
 (8-37)

Equation 8-37 tells us:

In an isolated system, we can relate the total energy at one instant to the total energy at another instant without considering the energies at intermediate times.

This fact can be a very powerful tool in solving problems about isolated systems when you need to relate energies of a system before and after a certain process occurs in the system.

In Module 8-2, we discussed a special situation for isolated systems—namely, the situation in which nonconservative forces (such as a kinetic frictional force) do not act within them. In that special situation, $\Delta E_{\rm th}$ and $\Delta E_{\rm int}$ are both zero, and so Eq. 8-37 reduces to Eq. 8-18. In other words, the mechanical energy of an isolated system is conserved when nonconservative forces do not act in it.

External Forces and Internal Energy Transfers

An external force can change the kinetic energy or potential energy of an object without doing work on the object—that is, without transferring energy to the object. Instead, the force is responsible for transfers of energy from one type to another inside the object.

Her push on the rail causes a transfer of internal energy to kinetic energy.

Ice

(a)

(b)

Figure 8-15 (a) As a skater pushes herself away from a railing, the force on her from the railing is \vec{F} . (b) After the skater leaves the railing, she has velocity \vec{v} . (c) External force \vec{F} acts on the skater, at angle ϕ with a horizontal x axis. When the skater goes through displacement \vec{d} , her velocity is changed from \vec{v}_0 (= 0) to \vec{v} by the horizontal component of \vec{F} .

Figure 8-15 shows an example. An initially stationary ice-skater pushes away from a railing and then slides over the ice (Figs. 8-15a and b). Her kinetic energy increases because of an external force \vec{F} on her from the rail. However, that force does not transfer energy from the rail to her. Thus, the force does no work on her. Rather, her kinetic energy increases as a result of internal transfers from the biochemical energy in her muscles.

Figure 8-16 shows another example. An engine increases the speed of a car with four-wheel drive (all four wheels are made to turn by the engine). During the acceleration, the engine causes the tires to push backward on the road surface. This push produces frictional forces \vec{f} that act on each tire in the forward direction. The net external force \vec{F} from the road, which is the sum of these frictional forces, accelerates the car, increasing its kinetic energy. However, \vec{F} does not transfer energy from the road to the car and so does no work on the car. Rather, the car's kinetic energy increases as a result of internal transfers from the energy stored in the fuel.

In situations like these two, we can sometimes relate the external force \vec{F} on an object to the change in the object's mechanical energy if we can simplify the situation. Consider the ice-skater example. During her push through distance d in Fig. 8-15c, we can simplify by assuming that the acceleration is constant, her speed changing from $v_0 = 0$ to v. (That is, we assume \vec{F} has constant magnitude F and angle ϕ .) After the push, we can simplify the skater as being a particle and neglect the fact that the exertions of her muscles have increased the thermal energy in her muscles and changed other physiological features. Then we can apply Eq. 7-5 $(\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = F_x d)$ to write

or
$$K - K_0 = (F\cos\phi)d,$$

$$\Delta K = Fd\cos\phi. \tag{8-38}$$

If the situation also involves a change in the elevation of an object, we can include the change ΔU in gravitational potential energy by writing

$$\Delta U + \Delta K = Fd\cos\phi. \tag{8-39}$$

The force on the right side of this equation does no work on the object but is still responsible for the changes in energy shown on the left side.

Power

Now that you have seen how energy can be transferred from one type to another, we can expand the definition of power given in Module 7-6. There power is

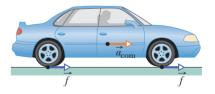


Figure 8-16 A vehicle accelerates to the right using four-wheel drive. The road exerts four frictional forces (two of them shown) on the bottom surfaces of the tires. Taken together, these four forces make up the net external force \vec{F} acting on the car.

defined as the rate at which work is done by a force. In a more general sense, power P is the rate at which energy is transferred by a force from one type to another. If an amount of energy ΔE is transferred in an amount of time Δt , the **average power** due to the force is

$$P_{\text{avg}} = \frac{\Delta E}{\Delta t}.$$
 (8-40)

Similarly, the **instantaneous power** due to the force is

$$P = \frac{dE}{dt}. ag{8-41}$$

Sample Problem 8.06 Lots of energies at an amusement park water slide

Figure 8-17 shows a water-slide ride in which a glider is shot by a spring along a water-drenched (frictionless) track that takes the glider from a horizontal section down to ground level. As the glider then moves along the ground-level track, it is gradually brought to rest by friction. The total mass of the glider and its rider is $m = 200 \, \text{kg}$, the initial compression of the spring is $d = 5.00 \, \text{m}$, the spring constant is $k = 3.20 \times 10^3 \, \text{N/m}$, the initial height is $h = 35.0 \, \text{m}$, and the coefficient of kinetic friction along the ground-level track is $\mu_k = 0.800 \, \text{m}$. Through what distance L does the glider slide along the ground-level track until it stops?

KEY IDEAS

Before we touch a calculator and start plugging numbers into equations, we need to examine all the forces and then determine what our system should be. Only then can we decide what equation to write. Do we have an isolated system (our equation would be for the conservation of energy) or a system on which an external force does work (our equation would relate that work to the system's change in energy)?

Forces: The normal force on the glider from the track does no work on the glider because the direction of this force is always perpendicular to the direction of the glider's displacement. The gravitational force does work on the glider, and because the force is conservative we can associate a potential energy with it. As the spring pushes

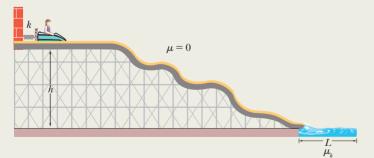


Figure 8-17 A spring-loaded amusement park water slide.

on the glider to get it moving, a spring force does work on it, transferring energy from the elastic potential energy of the compressed spring to kinetic energy of the glider. The spring force also pushes against a rigid wall. Because there is friction between the glider and the ground-level track, the sliding of the glider along that track section increases their thermal energies.

System: Let's take the system to contain all the interacting bodies: glider, track, spring, Earth, and wall. Then, because all the force interactions are within the system, the system is isolated and thus its total energy cannot change. So, the equation we should use is not that of some external force doing work on the system. Rather, it is a conservation of energy. We write this in the form of Eq. 8-37:

$$E_{\text{mec }2} = E_{\text{mec }1} - \Delta E_{\text{th}}.$$
 (8-42)

This is like a money equation: The final money is equal to the initial money *minus* the amount stolen away by a thief. Here, the final mechanical energy is equal to the initial mechanical energy *minus* the amount stolen away by friction. None has magically appeared or disappeared.

Calculations: Now that we have an equation, let's find distance L. Let subscript 1 correspond to the initial state of the glider (when it is still on the compressed spring) and subscript 2 correspond to the final state of the glider (when it has come to rest on the ground-level track). For both states, the mechanical energy of the system is the sum of any potential energy and any kinetic energy.

We have two types of potential energy: the elastic potential energy $(U_e = \frac{1}{2}kx^2)$ associated with the compressed spring and the gravitational potential energy $(U_g = mgy)$ associated with the glider's elevation. For the latter, let's take ground level as the reference level. That means that the glider is initially at height y = h and finally at height y = 0.

In the initial state, with the glider stationary and elevated and the spring compressed, the energy is

$$E_{\text{mec},1} = K_1 + U_{e1} + U_{g1}$$

= $0 + \frac{1}{2}kd^2 + mgh.$ (8-43)

In the final state, with the spring now in its relaxed state and the glider again stationary but no longer elevated, the final mechanical energy of the system is

$$E_{\text{mec},2} = K_2 + U_{e2} + U_{g2}$$
$$= 0 + 0 + 0. \tag{8-44}$$

Let's next go after the change $\Delta E_{\rm th}$ of the thermal energy of the glider and ground-level track. From Eq. 8-31, we can substitute for $\Delta E_{\rm th}$ with $f_k L$ (the product of the frictional force magnitude and the distance of rubbing). From Eq. 6-2, we know that $f_k = \mu_k F_N$, where F_N is the normal force. Because the glider moves horizontally through the region with friction, the magnitude of F_N is equal to mg (the upward force matches the downward force). So, the friction's theft from the mechanical energy amounts to

$$\Delta E_{\rm th} = \mu_k mgL. \tag{8-45}$$

(By the way, without further experiments, we cannot say how much of this thermal energy ends up in the glider and how much in the track. We simply know the total amount.) Substituting Eqs. 8-43 through 8-45 into Eq. 8-42, we find

$$0 = \frac{1}{2}kd^2 + mgh - \mu_k mgL, \tag{8-46}$$

and

$$L = \frac{kd^2}{2\mu_k mg} + \frac{h}{\mu_k}$$

$$= \frac{(3.20 \times 10^3 \text{ N/m})(5.00 \text{ m})^2}{2(0.800)(200 \text{ kg})(9.8 \text{ m/s}^2)} + \frac{35 \text{ m}}{0.800}$$

$$= 69.3 \text{ m}.$$
 (Answer)

Finally, note how algebraically simple our solution is. By carefully defining a system and realizing that we have an isolated system, we get to use the law of the conservation of energy. That means we can relate the initial and final states of the system with no consideration of the intermediate states. In particular, we did not need to consider the glider as it slides over the uneven track. If we had, instead, applied Newton's second law to the motion, we would have had to know the details of the track and would have faced a far more difficult calculation.

PLUS Additional examples, video, and practice available at WileyPLUS

Review & Summary

Conservative Forces A force is a **conservative force** if the net work it does on a particle moving around any closed path, from an initial point and then back to that point, is zero. Equivalently, a force is conservative if the net work it does on a particle moving between two points does not depend on the path taken by the particle. The gravitational force and the spring force are conservative forces; the kinetic frictional force is a nonconservative force.

Potential Energy A potential energy is energy that is associated with the configuration of a system in which a conservative force acts. When the conservative force does work W on a particle within the system, the change ΔU in the potential energy of the system is

$$\Delta U = -W. \tag{8-1}$$

If the particle moves from point x_i to point x_f , the change in the potential energy of the system is

$$\Delta U = -\int_{x}^{x_f} F(x) \, dx. \tag{8-6}$$

Gravitational Potential Energy The potential energy associated with a system consisting of Earth and a nearby particle is **gravitational potential energy.** If the particle moves from height y_i to height y_f , the change in the gravitational potential energy of the particle-Earth system is

$$\Delta U = mg(y_f - y_i) = mg \,\Delta y. \tag{8-7}$$

If the **reference point** of the particle is set as $y_i = 0$ and the corresponding gravitational potential energy of the system is set as $U_i = 0$, then the gravitational potential energy U when the particle is at any height v is

$$U(y) = mgy. (8-9)$$

Elastic Potential Energy Elastic potential energy is the energy associated with the state of compression or extension of an elastic object. For a spring that exerts a spring force F = -kx when its free end has displacement x, the elastic potential energy is

$$U(x) = \frac{1}{2}kx^2. (8-11)$$

The reference configuration has the spring at its relaxed length, at which x = 0 and U = 0.

Mechanical Energy The mechanical energy E_{mec} of a system is the sum of its kinetic energy K and potential energy U:

$$E_{\text{mec}} = K + U. \tag{8-12}$$

An isolated system is one in which no external force causes energy changes. If only conservative forces do work within an isolated system, then the mechanical energy $E_{\rm mec}$ of the system cannot change. This principle of conservation of mechanical energy is written as

$$K_2 + U_2 = K_1 + U_1, (8-17)$$

in which the subscripts refer to different instants during an energy transfer process. This conservation principle can also be written as

$$\Delta E_{\text{mec}} = \Delta K + \Delta U = 0. \tag{8-18}$$

Potential Energy Curves If we know the potential energy function U(x) for a system in which a one-dimensional force F(x) acts on a particle, we can find the force as

$$F(x) = -\frac{dU(x)}{dx}. (8-22)$$

If U(x) is given on a graph, then at any value of x, the force F(x) is the negative of the slope of the curve there and the kinetic energy of the particle is given by

$$K(x) = E_{\text{mec}} - U(x),$$
 (8-24)

where $E_{\rm mec}$ is the mechanical energy of the system. A **turning point** is a point x at which the particle reverses its motion (there, K=0). The particle is in **equilibrium** at points where the slope of the U(x) curve is zero (there, F(x)=0).

Work Done on a System by an External Force Work W is energy transferred to or from a system by means of an external force acting on the system. When more than one force acts on a system, their $net\ work$ is the transferred energy. When friction is not involved, the work done on the system and the change $\Delta E_{\rm mec}$ in the mechanical energy of the system are equal:

$$W = \Delta E_{\text{mec}} = \Delta K + \Delta U.$$
 (8-26, 8-25)

When a kinetic frictional force acts within the system, then the thermal energy $E_{\rm th}$ of the system changes. (This energy is associated with the random motion of atoms and molecules in the system.) The work done on the system is then

$$W = \Delta E_{\text{mec}} + \Delta E_{\text{th}}.$$
 (8-33)

The change $\Delta E_{\rm th}$ is related to the magnitude f_k of the frictional force and the magnitude d of the displacement caused by the external force by

$$\Delta E_{\rm th} = f_k d. \tag{8-31}$$

Conservation of Energy The **total energy** E of a system (the sum of its mechanical energy and its internal energies, including thermal energy) can change only by amounts of energy that are transferred to or from the system. This experimental fact is known as the **law of conservation of energy.** If work E is done on the system, then

$$W = \Delta E = \Delta E_{\text{mec}} + \Delta E_{\text{th}} + \Delta E_{\text{int}}.$$
 (8-35)

If the system is isolated (W = 0), this gives

$$\Delta E_{\text{mec}} + \Delta E_{\text{th}} + \Delta E_{\text{int}} = 0 \tag{8-36}$$

and

$$E_{\text{mec},2} = E_{\text{mec},1} - \Delta E_{\text{th}} - \Delta E_{\text{int}}, \tag{8-37}$$

where the subscripts 1 and 2 refer to two different instants.

Power The **power** due to a force is the *rate* at which that force transfers energy. If an amount of energy ΔE is transferred by a force in an amount of time Δt , the **average power** of the force is

$$P_{\text{avg}} = \frac{\Delta E}{\Delta t}.$$
 (8-40)

The **instantaneous power** due to a force is

$$P = \frac{dE}{dt}. ag{8-41}$$

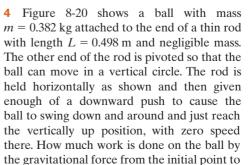
- 1 Adam stretches a spring by some length. John stretches the same spring later by three times the length stretched by Adam. Find the ratio of the stored energy in the first stretch to that in the second stretch.
- **2** In Fig. 8-18, a single frictionless roller-coaster car of mass m = 825 kg tops the first hill with speed $v_0 = 20.0$ m/s at height h = 50.0 m. How much work does the gravitational force do on the car from that point to (a) point A, (b) point B, and (c) point C? If the gravitational potential energy of the car Earth system is taken to be zero at C, what is its value when the car is at (d) B and (e) A? (f) If mass m were doubled, would the change in the gravitational potential energy of the system between points A and B increase, decrease, or remain the same?



Figure 8-18 Problems 2 and 9.

3 You drop a 2.00 kg book to a friend who stands on the ground at distance D = 10.0 m below. Your friend's outstretched

hands are at distance d=1.50 m above the ground (Fig. 8-19). (a) How much work W_g does the gravitational force do on the book as it drops to her hands? (b) What is the change ΔU in the gravitational potential energy of the book–Earth system during the drop? If the gravitational potential energy U of that system is taken to be zero at ground level, what is U (c) when the book is released, and (d) when it reaches her hands? Now take U to be 100 J at ground level and again find (e) W_g , (f) ΔU , (g) U at the release point, and (h) U at her hands.



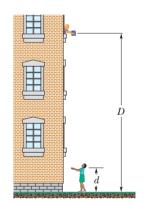


Figure 8-19 Problems 3 and 10.

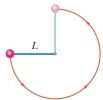


Figure 8-20 Problems 4 and 14.

(a) the lowest point, (b) the highest point, and (c) the point on the

Uploaded By: Ayham Nobani

right level with the initial point? If the gravitational potential energy of the ball–Earth system is taken to be zero at the initial point, what is it when the ball reaches (d) the lowest point, (e) the highest point, and (f) the point on the right level with the initial point? (g) Suppose the rod were pushed harder so that the ball passed through the highest point with a nonzero speed. Would ΔU_g from the lowest point to the highest point then be greater than, less than, or the same as it was when the ball stopped at the highest point?

5 In Fig. 8-21, a 2.00 g ice flake is released from the edge of a hemispherical bowl whose radius r is 22.0 cm. The flake – bowl contact is frictionless. (a) How much work is done on the flake by the gravitational force during the flake's descent to the bottom of the bowl? (b) What is the change in the potential energy of the flake – Earth system during that descent? (c) If that potential energy is taken to be zero at the bottom of the bowl, what is its value when the flake is released? (d) If, instead, the potential energy is taken to be zero at the release point, what is its value when the flake reaches the bottom of the bowl? (e) If the mass of the flake were doubled, would the magnitudes of the answers to (a) through (d) increase, decrease, or remain the same?

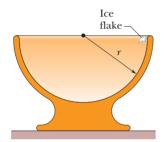


Figure 8-21 Problems 5 and 11.

6 In Fig. 8-22, a small block of mass m = 0.032 kg can slide along the frictionless loop-the-loop, with loop radius R = 10 cm. The block is released from rest at point P, at height h = 5.0R above the bottom of the loop. How much work does the gravitational force do on the block as the block travels from point P to (a) point Q and (b) the top of the loop? If the gravitational potential energy of the block–Earth system is taken to be zero at the bottom of the loop, what is that potential energy when the block is (c) at point P, (d) at point Q, and (e) at the top of the loop? (f) If, instead of merely being released, the block is given some initial speed downward along the track, do the answers to (a) through (e) increase, decrease, or remain the same?

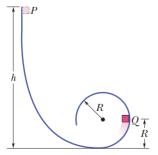


Figure 8-22 Problems 6 and 17.

7 Figure 8-23 shows a thin rod, of length L=2.00 m and negligible mass, that can pivot about one end to rotate in a vertical circle. A ball of mass m=5.00 kg is attached to the other end. The rod is

pulled aside to angle $\theta_0=30.0^\circ$ and released with initial velocity $\vec{v}_0=0$. As the ball descends to its lowest point, (a) how much work does the gravitational force do on it and (b) what is the change in the gravitational potential energy of the ball–Earth system? (c) If the gravitational potential energy is taken to be zero at the lowest point, what is its value just as the ball is released? (d) Do the magnitudes of the answers to (a) through (c) increase, decrease, or remain the same if angle θ_0 is increased?

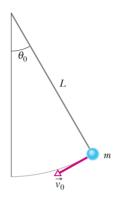


Figure 8-23 Problems 7, 18, and 21.

- **8** A 1.50 kg snowball is fired from a cliff 11.5 m high. The snowball's initial velocity is 16.0 m/s, directed 41.0° above the horizontal. (a) How much work is done on the snowball by the gravitational force during its flight to the flat ground below the cliff? (b) What is the change in the gravitational potential energy of the snowball–Earth system during the flight? (c) If that gravitational potential energy is taken to be zero at the height of the cliff, what is its value when the snowball reaches the ground?
- 9 In Problem 2, what is the speed of the car at (a) point A, (b) point B, and (c) point C? (d) How high will the car go on the last hill, which is too high for it to cross? (e) If we substituted a second car with twice the mass, what then are the answers to parts (a) through (d)?
- 10 (a) In Problem 3, what is the speed of the book when it reaches your friend's hands? (b) If we substituted a second book with twice the mass, what would its speed be? (c) If, instead, the book were thrown down, would the answer to part (a) increase, decrease, or remain the same?
- 11 (a) In Problem 5, what is the speed of the flake when it reaches the bottom of the bowl? (b) If we substituted a second flake with twice the mass, what would its speed be? (c) If, instead, we gave the flake an initial downward speed along the bowl, would the answer to part (a) increase, decrease, or remain the same?
- **12** (a) In Problem 8, using energy techniques rather than the techniques of Chapter 4, find the speed of the snowball as it reaches the ground below the cliff. What is that speed (b) if the launch angle is changed to 41.0° *below* the horizontal and (c) if the mass is changed to 3.00 kg?
- 13 A 5.0 g marble is fired vertically upward using a spring gun. The spring must be compressed 8.0 cm if the marble is to just reach a target 20 m above the marble's position on the compressed spring. (a) What is the change ΔU_g in the gravitational potential energy of the marble–Earth system during the 20 m ascent? (b) What is the change ΔU_s in the elastic potential energy of the

spring during its launch of the marble? (c) What is the spring constant of the spring?

- 14 (a) In Problem 4, what initial speed must be given the ball so that it reaches the vertically upward position with zero speed? What then is its speed at (b) the lowest point and (c) the point on the right at which the ball is level with the initial point? (d) If the ball's mass were doubled, would the answers to (a) through (c) increase, decrease, or remain the same?
- 15 In Fig. 8-24, a runaway truck with failed brakes is moving downgrade at 130 km/h just before the driver steers the truck up a frictionless emergency escape ramp with an inclination of $\theta=15^{\circ}$. The truck's mass is 1.2×10^4 kg. (a) What minimum length L must the ramp have if the truck is to stop (momentarily) along it? (Assume the truck is a particle, and justify that assumption.) Does the minimum length L increase, decrease, or remain the same if (b) the truck's mass is decreased and (c) its speed is decreased?

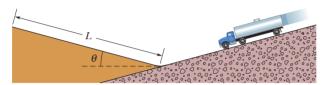


Figure 8-24 Problem 15.

- **16** A 700 g block is released from rest at height h_0 above a vertical spring with spring constant k = 450 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.0 cm. How much work is done (a) by the block on the spring and (b) by the spring on the block? (c) What is the value of h_0 ? (d) If the block were released from height $2.00h_0$ above the spring, what would be the maximum compression of the spring?
- 17 In Problem 6, what are the magnitudes of (a) the horizontal component and (b) the vertical component of the *net* force acting on the block at point Q? (c) At what height h should the block be released from rest so that it is on the verge of losing contact with the track at the top of the loop? (On the verge of losing contact means that the normal force on the block from the track has just then become zero.) (d) Graph the magnitude of the normal force on the block at the top of the loop versus initial height h, for the range h = 0 to h = 6R.
- **18** (a) In Problem 7, what is the speed of the ball at the lowest point? (b) Does the speed increase, decrease, or remain the same if the mass is increased?
- 19 A 1.0 kg block moving at 8.0 m/s strikes a spring fixed at one end to a wall and compresses the spring by 0.40 m, where its speed gets reduced to 2.0 m/s. After this event, the spring is mounted upright by fixing its bottom end to a floor, and a stone of mass 2.0 kg is placed on it; the spring is now compressed by 0.50 m from its rest length. The system is then released. How far above the rest-length point does the stone rise?
- **20** A pendulum consists of a 2.0 kg stone swinging on a 4.5 m string of negligible mass. The stone has a speed of 8.0 m/s when it passes its lowest point. (a) What is the speed when the string is at 60° to the vertical? (b) What is the greatest angle with the vertical that the string

- will reach during the stone's motion? (c) If the potential energy of the pendulum-Earth system is taken to be zero at the stone's lowest point, what is the total mechanical energy of the system?
- **21** Figure 8-23 shows a pendulum of length L = 1.25 m. Its bob (which effectively has all the mass) has speed v_0 when the cord makes an angle $\theta_0 = 40.0^\circ$ with the vertical. (a) What is the speed of the bob when it is in its lowest position if $v_0 = 8.00$ m/s? What is the least value that v_0 can have if the pendulum is to swing down and then up (b) to a horizontal position, and (c) to a vertical position with the cord remaining straight? (d) Do the answers to parts (b) and (c) increase, decrease, or remain the same if θ_0 is increased by a few degrees?
- 22 A 70 kg skier starts from rest at height H = 22 m above the end of a ski-jump ramp (Fig. 8-25) and leaves the ramp at angle $\theta = 28^{\circ}$. Neglect the effects of air resistance and assume the ramp is frictionless. (a) What is the maximum height h of his jump above the end of the ramp? (b) If he increased his weight by putting on a backpack, would h then be greater, less, or the same?

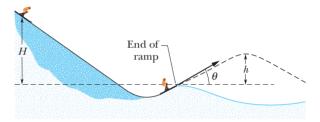


Figure 8-25 Problem 22.

23 The string in Fig. 8-26 is L = 120 cm long, has a ball attached to one end, and is fixed at its other end. The distance d from the fixed end to a fixed peg at point P is 75.0 cm. When the initially stationary ball is released with the string horizontal as shown, it will swing along the dashed arc. What is its speed when it reaches (a) its lowest point and (b) its highest point after the string catches on the peg?

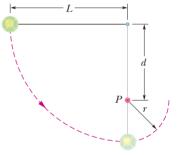


Figure 8-26 Problem 23.

24 A block of mass m = 2.0 kg is dropped from height h = 50 cm onto a spring of spring constant k = 1960 N/m (Fig. 8-27). Find the maximum distance the spring is compressed.

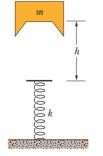
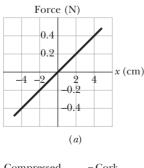


Figure 8-27 Problem 24.

- **25** At t = 0 a 1.0 kg ball is thrown from a tall tower with $\vec{v} = (18 \text{ m/s})\hat{i} + (24 \text{ m/s})\hat{j}$. What is ΔU of the ball-Earth system between t = 0 and t = 6.0 s (still free fall)?
- **26** A conservative force $\vec{F} = (6.0x 12)\hat{i}$ N, where x is in meters, acts on a particle moving along an x axis. The potential energy U associated with this force is assigned a value of 27 J at x = 0. (a) Write an expression for U as a function of x, with U in joules and x in meters. (b) What is the maximum positive potential energy? At what (c) negative value and (d) positive value of x is the potential energy equal to zero?
- 27 Tarzan, who weighs 688 N, swings from a cliff at the end of a vine 18 m long (Fig. 8-28). From the top of the cliff to the bottom of the swing, he descends by 3.2 m. The vine will break if the force on it exceeds 950 N. (a) Does the vine break? (b) If it does not, what is the greatest force on it during the swing? If it does, at what angle with the vertical does it break?

Figure 8-28 Problem 27.

28 Figure 8-29a applies to the spring in a cork gun (Fig. 8-29b); it shows the spring force as a function of the stretch or compression of the spring. The spring is compressed by 5.5 cm and used to propel a 4.2 g cork from the gun. (a) What is the speed of the cork if it is released as the spring passes through its relaxed position? (b) Suppose, instead, that the cork sticks to the spring and stretches it 1.5 cm before separation occurs. What now is the speed of the cork at the time of release?



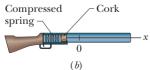


Figure 8-29 Problem 28.

29 A 4.00 kg block moves on a horizontal, frictionless surface and collides with a spring of spring constant *k* that is fixed to a wall. When the block momentarily stops, the spring has been compressed by 0.20 m. After rebound-

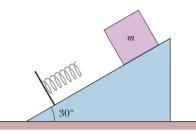


Figure 8-30 Problems 29 and 35.

ing, the block has a speed of 4.00 m/s. Next, the spring is put on an inclined surface with its lower end fixed in place (Fig. 8-30). The same block is now released on the incline at a distance of 5.00 m from the spring's free end. When the block momentarily stops, the spring has been compressed by 0.30 m. (a) What is the coefficient of kinetic friction between the block and the incline? (b) How far does the block then move up the incline from the stopping point?

30 A 2.0 kg breadbox on a frictionless incline of angle $\theta = 40^{\circ}$ is connected, by a cord that runs over a pulley, to a light spring of spring constant k = 105 N/m, as shown in Fig. 8-31. The box is released from rest when the spring is unstretched. Assume that the pulley is massless and frictionless. (a) What is the speed of the box when it has moved 10 cm down the incline? (b) How far down the incline from its point of release does the box slide before momentarily stopping, and what are the (c) magnitude and (d) direction (up or down the incline) of the box's acceleration at the instant the box momentarily stops?

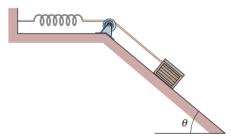


Figure 8-31 Problem 30.

31 As shown in Fig. 8-32, the right end of a spring is fixed to a wall. A 1.00 kg block is then pushed against the free end so that the spring is compressed by 0.25 m. After the block is released, it slides along a horizontal floor and (after leaving the spring) up an incline; both floor and incline are frictionless. Its maximum (vertical) height on the incline is 5.00 m. What are (a) the spring constant and (b) the maximum speed? (c) If the angle of the incline is increased, what happens to the maximum (vertical) height?

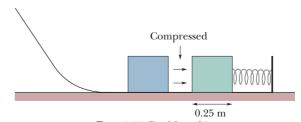


Figure 8-32 Problem 31.

32 In Fig. 8-33, a chain is held on a frictionless table with one-fourth of its length hanging over the edge. If the chain has length L = 24 cm and mass m = 0.016 kg, how much work is required to pull the hanging part back onto the table?

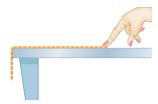


Figure 8-33 Problem 32.

33 In Fig. 8-34, a spring with k = 170 N/m is at the top of a frictionless incline of angle $\theta = 37.0^{\circ}$. The lower end of the incline is distance D = 1.00 m from the end of the spring, which is at its relaxed length. A 2.00 kg canister is pushed against the spring until the spring is compressed 0.200 m and released from rest. (a) What is the speed of the canister at the instant the spring returns to its relaxed length (which is when the canister loses contact with the spring)? (b) What is the speed of the canister when it reaches the lower end of the incline?

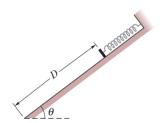


Figure 8-34 Problem 33.

34 A boy is initially seated on the top of a hemispherical ice mound of radius R = 12.8 m. He begins to slide down the ice, with a negligible initial speed (Fig. 8-35). Approximate the ice as being frictionless. At what height does the boy lose contact with the ice?

Figure 8-35 Problem 34.

35 In Fig. 8-30, a block of mass m = 3.20 kg slides from rest a distance d down a frictionless incline at angle $\theta = 30.0^{\circ}$ where it runs into a spring of spring constant 431 N/m. When the block momentarily stops, it has compressed the spring by 21.0 cm. What are (a) distance d and (b) the distance between the point of the first block–spring contact and the point where the block's speed is greatest?

36 Two children are playing a game in which they try to hit a small box on the floor with a marble fired from a spring-loaded gun that is mounted on a table. The target box is horizontal distance D=2.20 m from the edge of the table; see Fig. 8-36. Bobby compresses the spring 1.10 cm, but the center of the marble falls 26.3 cm short of the center of the box. How far should Rhoda compress the spring to score a direct hit? Assume that neither the spring nor the ball encounters friction in the gun.

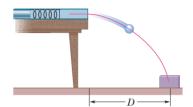


Figure 8-36 Problem 36.

- **37** At a lunar base, a uniform chain hangs over the edge of a horizontal platform. A machine does 1.0 J of work in pulling the rest of the chain onto the platform. The chain has a mass of 2.0 kg and a length of 3.0 m. What length was initially hanging over the edge? On the Moon, the gravitational acceleration is 1/6 of 9.8 m/s².
- 38 Figure 8-37 shows a plot of potential energy U versus position x of a 0.200 kg particle that can travel only along an x axis under the influence of a conservative force. The graph has these values: $U_A = 9.00 \text{ J}$, $U_C = 20.00 \text{ J}$, and $U_D = 24.00 \text{ J}$. The particle is released at the point where U forms a "potential hill" of "height" $U_B = 12.00 \text{ J}$, with kinetic energy 4.00 J. What is the speed of the particle at (a) x = 3.5 m and (b) x = 6.5 m? What is the position of the turning point on (c) the right side and (d) the left side?

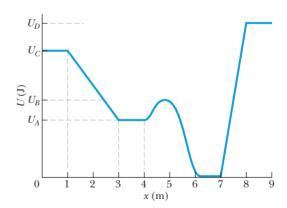


Figure 8-37 Problem 38.

39 Figure 8-38 shows a plot of potential energy U versus position x of a 0.90 kg particle that can travel only along an x axis. (Nonconservative forces are not involved.) Three values are $U_A = 15.0 \text{ J}$, $U_B = 35.0 \text{ J}$, and $U_C = 45.0 \text{ J}$. The particle is released at x = 4.5 m with an initial speed of 7.0 m/s, headed in the negative x direction. (a) If the particle can reach x = 1.0 m, what is its speed there, and if it cannot, what is its turning point? What are the (b) magnitude and (c) direction of the force on the particle as it begins to move to the left of x = 4.0 m? Suppose, instead, the particle is

headed in the positive x direction when it is released at x = 4.5 m at speed 7.0 m/s. (d) If the particle can reach x = 7.0 m, what is its speed there, and if it cannot, what is its turning point? What are the (e) magnitude and (f) direction of the force on the particle as it begins to move to the right of x = 5.0 m?

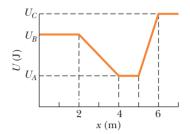


Figure 8-38 Problem 39.

40 The potential energy of a diatomic molecule (a two-atom system like H_2 or O_2) is given by

$$U = \frac{A}{r^{12}} - \frac{B}{r^6},$$

where r is the separation of the two atoms of the molecule and A and B are positive constants. This potential energy is associated with the force that binds the two atoms together. (a) Find the *equilibrium separation*—that is, the distance between the atoms at which the force on each atom is zero. Is the force repulsive (the atoms are pushed apart) or attractive (they are pulled together) if their separation is (b) smaller and (c) larger than the equilibrium separation?

41 A single conservative force F(x) acts on a 1.0 kg particle that moves along an x axis. The potential energy U(x) associated with F(x) is given by

$$U(x) = -4x e^{-x/4} J$$

where x is in meters. At x = 5.0 m the particle has a kinetic energy of 2.0 J. (a) What is the mechanical energy of the system? (b) Make a plot of U(x) as a function of x for $0 \le x \le 10$ m, and on the same graph draw the line that represents the mechanical energy of the system. Use part (b) to determine (c) the least value of x the particle can reach and (d) the greatest value of x the particle can reach. Use part (b) to determine (e) the maximum kinetic energy of the particle and (f) the value of x at which it occurs. (g) Determine an expression in newtons and meters for F(x) as a function of x. (h) For what (finite) value of x does F(x) = 0?

- **42** A worker pushed a 23 kg block 8.4 m along a level floor at constant speed with a force directed 32° below the horizontal. If the coefficient of kinetic friction between block and floor was 0.20, what were (a) the work done by the worker's force and (b) the increase in thermal energy of the block floor system?
- 43 In Fig. 8-39, a 3.5 kg block is accelerated from rest by a compressed spring of spring constant 640 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction $\mu_k = 0.25$. The frictional force stops the block in distance D = 7.8 m. What are (a) the increase in the thermal energy of the block–floor system, (b) the maximum kinetic energy of the block, and (c) the original compression distance of the spring?

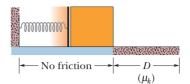


Figure 8-39 Problem 43.

- 44 A horizontal force of magnitude 41.0 N pushes a block of mass 4.00 kg across a floor where the coefficient of kinetic friction is 0.600. (a) How much work is done by that applied force on the block –floor system when the block slides through a displacement of 2.00 m across the floor? (b) During that displacement, the thermal energy of the block increases by 40.0 J. What is the increase in thermal energy of the floor? (c) What is the increase in the kinetic energy of the block?
- 45 A loaded truck of mass 3000 kg moves on a level road at a constant speed of 6.000 m/s. The frictional force on the truck from the road is 1000 N. Assume that air drag is negligible. (a) How much work is done by the truck engine in 10.00 min? (b) After 10.00 min, the truck enters a hilly region whose inclination is 30° and continues to move with the same speed for another 10.00 min. What is the total work done by the engine during that period against the gravitational force and the frictional force? (c) What is the total work done by the engine in the full 20 min?
- 46 An outfielder throws a baseball with an initial speed of 83.2 mi/h. Just before an infielder catches the ball at the same level, the ball's speed is 110 ft/s. In foot-pounds, by how much is the mechanical energy of the ball–Earth system reduced because of air drag? (The weight of a baseball is 9.0 oz.)
- 47 A small block of mass 1/4 kg has an initial kinetic energy of 500 J while moving over the frictionless surface shown in Fig. 8-40. (a) Find the kinetic energy of block at Q. (b) If we assume that the potential energy at P is equal to zero, what is the potential energy of the block at R? (c) Find the speed of the block at R. (d) Find the change in the potential energy as the block moves from Q to R.

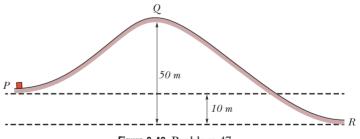


Figure 8-40 Problem 47.

48 In Fig. 8-41, a block slides down an incline. As it moves from point A to point B, which are 5.9 m apart, force \vec{F} acts on the block, with magnitude 2.0 N and directed down the incline. The magnitude of the frictional force acting on the block is 10 N. If the kinetic energy of the block

Figure 8-41 Problem 48.

increases by 35 J between A and B, how much work is done on the block by the gravitational force as the block moves from A to B?

49 In Fig. 8-42, a 50 kg child rides a 2.0 kg seat down a frictionless slope from a height of 7.0 m. Upon reaching the floor, the child and seat slide along it. There the coefficient of kinetic friction is 0.30. How far along the floor do they slide?

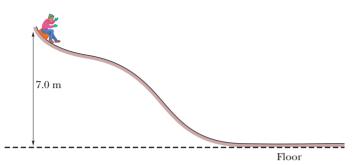


Figure 8-42 Problem 49.

- **50** A 60 kg skier leaves the end of a ski-jump ramp with a velocity of 27 m/s directed 25° above the horizontal. Suppose that as a result of air drag the skier returns to the ground with a speed of 22 m/s, landing 14 m vertically below the end of the ramp. From the launch to the return to the ground, by how much is the mechanical energy of the skier–Earth system reduced because of air drag?
- 51 In Fig. 8-43, a block of mass m slides down three slides, each from a height H. The coefficient of kinetic friction is the same value μ for the slides. In terms of m, H, μ , and g, what is the final kinetic energy of the block as it emerges from (a) slide a, (b) slide b, and (c) slide c?

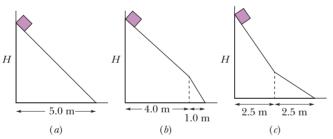


Figure 8-43 Problem 51.

- 52 A large fake cookie sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant k = 360 N/m; the other end of the spring is fixed in place. The cookie has a kinetic energy of 20.0 J as it passes through the spring's equilibrium position. As the cookie slides, a frictional force of magnitude 10.0 N acts on it. (a) How far will the cookie slide from the equilibrium position before coming momentarily to rest? (b) What will be the kinetic energy of the cookie as it slides back through the equilibrium position?
- **53** A swimmer moves through the water at an average speed of 0.22 m/s. The average drag force is 110 N. What average power is required of the swimmer?
- **54** A child whose weight is 267 N slides down a 6.5 m playground slide that makes an angle of 20° with the horizontal. The coefficient of kinetic friction between slide and child is 0.10. (a) How much energy is transferred to thermal energy? (b) If she starts at the top with a speed of 0.457 m/s, what is her speed at the bottom?

- 55 The total mechanical energy of a 2.00 kg particle moving along an x axis is 5.00 J. The potential energy is given as $U(x) = (x^4 2.00x^2)$ J, with x in meters. Find the maximum velocity.
- 56 You push a 2.0 kg block against a horizontal spring, compressing the spring by 12 cm. Then you release the block, and the spring sends it sliding across a tabletop. It stops 75 cm from where you released it. The spring constant is 170 N/m. What is the block–table coefficient of kinetic friction?
- 57 A block of mass 6.0 kg is pushed up an incline to its top by a man and then allowed to slide down to the bottom. The length of incline is 10 m and its height is 5.0 m. The coefficient of friction between block and incline is 0.40. Calculate (a) the work done by the gravitational force over the complete round trip of the block, (b) the work done by the man during the upward journey, (c) the mechanical energy loss due to friction over the round trip, and (d) the speed of the block when it reaches the bottom.
- 58 A cookie jar is moving up a 40° incline. At a point 45 cm from the bottom of the incline (measured along the incline), the jar has a speed of 1.4 m/s. The coefficient of kinetic friction between jar and incline is 0.15. (a) How much farther up the incline will the jar move? (b) How fast will it be going when it has slid back to the bottom of the incline? (c) Do the answers to parts (a) and (b) increase, decrease, or remain the same if we decrease the coefficient of kinetic friction (but do not change the given speed or location)?
- 59 A stone with a weight of 5.29 N is launched vertically from ground level with an initial speed of 20.0 m/s, and the air drag on it is 0.265 N throughout the flight. What are (a) the maximum height reached by the stone and (b) its speed just before it hits the ground?
- 60 A 4.0 kg bundle starts up a 30° incline with 150 J of kinetic energy. How far will it slide up the incline if the coefficient of kinetic friction between bundle and incline is 0.36?
- 61 A 10.0 kg block falls 30.0 m onto a vertical spring whose lower end is fixed to a platform. When the spring reaches its maximum compression of 0.200 m, it is locked in place. The block is then removed and the spring apparatus is transported to the Moon, where the gravitational acceleration is *g*/6. A 50.0 kg astronaut then sits on top of the spring and the spring is unlocked so that it propels the astronaut upward. How high above that initial point does the astronaut rise?
- 62 In Fig. 8-44, a block slides along a path that is without friction until the block reaches the section of length L=0.65 m, which begins at height h=2.0 m on a ramp of angle $\theta=30^{\circ}$. In that section, the coefficient of kinetic friction is 0.40. The block passes through point A with a speed of 8.0 m/s. If the block can reach point B (where the friction ends), what is its speed there, and if it cannot, what is its greatest height above A?

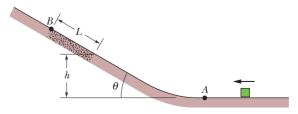


Figure 8-44 Problem 62.

The cable of the 1800 kg elevator cab in Fig. 8-45 snaps when the cab is at rest at the first floor, where the cab bottom is a distance d = 3.7 m above a spring of spring constant k = 0.15 MN/m. A safety device clamps the cab against guide rails so that a constant frictional force of 4.4 kN opposes the cab's motion. (a) Find the speed of the cab just before it hits the spring. (b) Find the maximum distance x that the spring is compressed (the frictional force still acts during this compression). (c) Find the distance that the cab will bounce back up the shaft. (d) Using conservation of energy, find the approximate total distance that the cab will move before coming to rest. (Assume that the frictional force on the cab is negligible when the cab is stationary.)

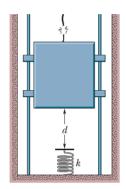


Figure 8-45 Problem 63.

64 In Fig. 8-46, a block is released from rest at height d=40 cm and slides down a frictionless ramp and onto a first plateau, which has length d and where the coefficient of kinetic friction is 0.50. If the block is still moving, it then slides down a second frictionless ramp through height d/2 and onto a lower plateau, which has length d/2 and where the coefficient of kinetic friction is

again 0.50. If the block is still moving, it then slides up a frictionless ramp until it (momentarily) stops. Where does the block stop? If its final stop is on a plateau, state which one and give the distance L from the left edge of that plateau. If the block reaches the ramp, give the height H above the lower plateau where it momentarily stops.

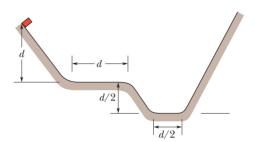


Figure 8-46 Problem 64.

65 A particle can slide along a track with elevated ends and a flat central part, as shown in Fig. 8-47. The flat part has length L=40 cm. The curved portions of the track are frictionless, but for the flat part the coefficient of kinetic friction is $\mu_k=0.20$. The particle is released from rest at point A, which is at height h=L/2. How far from the left edge of the flat part does the particle finally stop?

Figure 8-47 Problem 65.