Chapter 3
Transport Layer

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students,
readers). They’re in PowerPoint form so you see the animations; and
can add, modify, and delete slides (including this one) and slide content

to suit your needs. They obviously represent a /ot of work on our part.
In return for use, we only ask the following:

i

= If you use these slides (e.g., in a class) that you mention their
source (after all, we'd like people to use our book!)

A@'ﬁ@P-DQWN APPROACH -
@ — Eighth Fdition
= If you post any slides on a www site, that you note that they are ' = == —

adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

VI A

Computer Networking: A
Top-Down Approach

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR 8th edition
All material copyright 1996-2020 Jim Kurose, Keith Ross
J.F Kurose and K.W. Ross, All Rights Reserved Pearson, 2020

STUDENTS-HUB.com Uploaded By: Mohammed-Saatla

Internet protocol stack

" application: supporting network applications
* IMAP, SMTP, HTTP

" transport: process-process data transfer

application

 TCP, UDP transport
" network: routing of datagrams from source to y
destination networ

* IP, routing protocols link
" [ink: data transfer between neighboring
network elements physical

* Ethernet, 802.11 (WiFi), PPP
" physical: bits “on the wire”

STUDENTS-HUB.com Uploaded By: Mohammed-Saada

Transport layer: overview

Our goal:
" understand principles " learn about Internet transport
behind transport layer layer protocols:
services: * UDP: connectionless transport
* multiplexing, * TCP: connection-oriented reliable
demultiplexing transport
* reliable data transfer * TCP congestion control

 flow control
e congestion control

STUDENTS-HUB.com Uploaded By: Mohammed-Saaca

Transport layer: roadmap

" Transport-layer services

=" Multiplexing and demultiplexing

= Connectionless transport: UDP

" Principles of reliable data transfer

= Connection-oriented transport: TCP
" Principles of congestion control

= TCP congestion control

" Evolution of transport-layer
functionality

STUDENTS-HUB.com Uploaded By: Mohammed-Saatla

Transport services and protocols

= provide logical communication
between application processes
running on different hosts

" transport protocols actions in end
systems:

* sender: breaks application messages
into segments, passes to network layer

* receiver: reassembles segments into
messages, passes to application layer

= two transport protocols available to
Internet applications

* TCP, UDP
STUDENTS-HUB.com

PP
transport

Uploaded By: Mohammed-S&acla

Transport vs. network layer services and protocols

— household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

" hosts = houses
" processes = kids

" app messages = letters in
envelopes

© 1922, WM. EvANS,
HERE was an old woman who lived in a shce,
She had so many children, she didn’t know what to do.
* She gave them some milk and nice butter bread, -
She kissed them all round and put them to bed.

~

STUDENTS-HUB.com | Uploaded By: Mohammed-S&acla

Transport vs. network layer services and protocols

" network layer: logical
communication between
hosts

=transport layer: logical
communication between
processes

* relies on, enhances, network
layer services

STUDENTS-HUB.com

— household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

" hosts = houses
" processes = kids

" app messages = letters in
envelopes

Uploaded By: Mohammed-S&atla

Transport Layer Actions

Sender:
= js passed an application- app. msg
layer message
= determines segment T, |app. msg

header fields values
= creates segment

= passes segment to IP

STUDENTS-HUB.com Uploaded By: Mohammed-Saatla

Transport Layer Actions

Receiver:
= receives segment from IP
. = checks header values
C)!pp- msg = extracts application-layer

message

= demultiplexes message up
to application via socket

T, |app. msg

STUDENTS-HUB.com Uploaded By: Mohammed-Saatla

Two principal Internet transport protocols

networ
data link

" TCP: Transmission Control Protocol
* reliable, in-order delivery
e congestion control
 flow control
* connection setup
= UDP: User Datagram Protocol

* unreliable, unordered delivery
* no-frills extension of “best-effort” IP

= services not available:

e delay guarantees
* bandwidth guarantees

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Chapter 3: roadmap

" Multiplexing and demultiplexing

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

HTTP server

client

application

errux @

transport

HTTP msg

network
link
physical

STUDENTS-HUB.com

application

e

transport

network

link

physical

Uploaded By: Mohammed: Saada

HTTP server

client

application

errux @

transport

H. HTTP msg

network
link
physical

STUDENTS-HUB.com

application

e

transport

network

link

physical

Uploaded By: Mohammed: Saada

HTTP server

client

application application

NETFLIX Q Q
transport H,H; HTTP msg transport
network network

link link
physical physical

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

HTTP server

client

application application

NETFLIX Q Q
transport transport
network network
link link
physical physical

<«— |H H, HTTP msg

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

client, client,

application application

NETFLIX Q Q
transport transpoft
network networ

link link
physical physic

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Multiplexing/demultiplexing

- multiplexing at sender: —— - demultiplexing at receiver: —
handle data from multiple use header info to deliver

sockets, add transport header received segments to correct
(later used for demultiplexing) socket

application

application [1=] socket
R O process

|

application

—lo[4] o}
netwaork trandport
Ik netyork
: physical
'J ‘ B | I‘ll.k ' \\
/ ! physical
e V’/.ﬂ
-

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

How demultiplexing works

" host receives IP datagrams

e each datagram has source IP
address, destination IP address

e each datagram carries one
transport-layer segment

e each segment has source,
destination port number

" host uses IP addresses & port
numbers to direct segment to
appropriate socket

STUDENTS-HUB.com

32 bits -

source port dest port #

S—

other header fields

application
data

(payload)

TCP/UDP segment format

Uploaded By: Mohammed: Saada

Connectionless demultiplexing

Recall: when receiving host receives
= when creating socket, must U?Pr‘:’egkmjn? . Cu
specify host-local port #: gegr‘;;ntes Nation port #1in
DatagramSocket mysSog * directs UDP segment to
= new DatagramSocKet (12534); socket with that port "
= when creating datagram to 1
send into UDP socket, must _
- IP/UDP datagrams with same dest.
specify .
o port #, but different source IP
* destination IP address

addresses and/or source port
numbers will be directed to same
socket at receiving host

 destination port #

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Connectionless demultiplexing: an example

DatagramSocket
serverSocket = new
DatagramSocket
DatagramSocket mySocket2 = 6428) : DatagramSocket mySocketl =
new DatagramSocket () / new DatagramSocket (5775);
(9157) ; application
application application
“i!’ 44 “H’D
. transport e,
tramgport Network trangport
network link netwprk
link link

. physical
N hydical hyical ‘

physica pny \
= I— =

source port: 6428 source port: ?
. dest port: 9157 . dest port: ?
> le v
source port: 9157 source port: ?
dest port: 6428 dest port: ?

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Connection-oriented demultiplexing

= TCP socket identified by
4-tuple:
e source |IP address
* source port number
e dest IP address
e dest port number

" demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

STUDENTS-HUB.com

" server may support many
simultaneous TCP sockets:

e each socket identified by its
owhn 4-tuple

e each socket associated with
a different connecting client

Uploaded By: Mohammed: Saada

Connection-oriented demultiplexing: example

m—f APACHE
application application
I\ -andport | T
tran|5port Hetwork transpo_rtA_
network ! lidk network
link = hydical link -
g’ ‘(phypical I server: |P physical 5 ?\
e address B g
host: |P source IP,port: B,80 e host: IP
address A dest IP,port: A,9157 source JP-port—6 775 address C
dest IR, port: B,80

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

STUDENTS-HUB.com

source [Ppertl 9157
dest If,port: B,80

Uploaded By: Mohammed: Saada

Summary

= Multiplexing, demultiplexing: based on segment, datagram
header field values

= UDP: demultiplexing using destination port number (only)

" TCP: demultiplexing using 4-tuple: source and destination IP
addresses, and port numbers

= Multiplexing/demultiplexing happen at all layers

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Chapter 3: roadmap

= Connectionless transport: UDP

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

UDP: User Datagram Protocol

= “no frills,” “bare bones”
Internet transport protocol

= “best effort” service, UDP
segments may be:

* |ost
* delivered out-of-order to app

®m connectionless:

* no handshaking between UDP
sender, receiver

* each UDP segment handled
independently of others

STUDENTS-HUB.com

- Why is there a UDP?

no connection
establishment (which can
add RTT delay)

simple: no connection state
at sender, receiver

small header size

no congestion control

= UDP can blast away as fast as
desired!

= can function in the face of
congestion

Uploaded By: Mohammed: Saada

UDP: User Datagram Protocol

= UDP use:
" streaming multimedia apps (loss tolerant, rate sensitive)
=" DNS
= SNMP
= HTTP/3

= if reliable transfer needed over UDP (e.g., HTTP/3):
" add needed reliability at application layer
= add congestion control at application layer

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

UDP: User Datagram Protocol [RFC 768]

INTERNET STANDARD

RFC 768 J. Postel
ISI
28 August 1980

User Datagram Protocol

Introduction

This User Datagram Protocol (UDP) is defined to make available a
datagram mode of packet-switched computer communication in the
environment of an interconnected set of computer networks. This
protocol assumes that the Internet Protocol (IP) [1l] is used as the
underlying protocol.

This protocol provides a procedure for application programs to send
messages to other programs with a minimum of protocol mechanism. The
protocol 1is transaction oriented, and delivery and duplicate protection
are not guaranteed. Applications requiring ordered reliable delivery of
streams of data should use the Transmission Control Protocol (TCP) [2].

0 78 15 16 23 24 31

R R R R —— +

Source Destination
Port Port

R R R R —— +
Length | Checksum |

S S —— S S —— S S —— S R +

data octets ...

STUDENTS-HUB.com Semssssscmssszace Uploaded By: Mohammed: Saada

UDP: Transport Layer Actions

SNMP client

application

transport
(UDP)

network (IP)
link
physical

=< —

STUDENTS-HUB.com

SNMP server

application

transport
(UDP)

network (IP)

link

physical

/

Uploaded By: Mohammed: Saada

UDP: Transport Layer Actions

SNMP server
UDP sender actions:

= js passed an application- SNMP msg
layer message
= determines UDP segment UDP, [SNMP msg

header fields values
= creates UDP segment

= passes segment to IP

— /

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

UDP: Transport Layer Actions

SNMP client

QNMP msg

UDP,

SNMP msg

-

\

STUDENTS-HUB.com

UDP receiver actions:

= receives segment from IP

= checks UDP checksum
header value

= extracts application-layer
message

= demultiplexes message up
to application via socket

SNMP server

/

Uploaded By: Mohammed: Saada

UDP segment header

32 bits

M

application
data

length, in bytes of
UDP segment,
including header

\ data to/from

UDP segment format application layer

/[

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

UDP checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

15t number 2nd number sum

Transmitted: 5 6 11

D 4

Received: 4 6 11
\] J l_'_l
receiver-computed sender-computed
checksum checksum (as received)

0,

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Internet checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

sender: receiver:

" treat contents of UDP = compute checksum of received
segment (including UDP header segment

fields and IP addresses) as _
sequence of 16-bit integers " check if computed checksum equals

= checksum: addition (one’s checksum field value:
complement sum) of segment * not equal - error detected
content e equal - no error detected. But maybe

. ?
= checksum value out into errors nonetheless? More later

UDP checksum field

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Internet checksum: an example

example: add two 16-bit integers

11100110011 00110
11 01010101010101

wraparound (1)1 01 1101110111011

sum 1 0111011101111 00
checksum 0100010001 000O0O1I1

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Internet checksum: weak protection!

example: add two 16-bit integers

111001100 1 g (1)
110101010 1
wraparound @1 01110111 011 71 Even though
' > numbers have
sum 101110111 1 00 [changed (bit
checksum 010001000 011 flips), no change

STUDENTS-HUB.com

in checksum!

Uploaded By: Mohammed: Saada

Summary: UDP

" “no frills” protocol:

e segments may be lost, delivered out of order

e best effort service: “send and hope for the best”
= UDP has its plusses:

* no setup/handshaking needed (no RTT incurred)
e can function when network service is compromised

* helps with reliability (checksum)

" build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

STUDENTS-HUB.com Uploaded By: Mohammed Saada

Chapter 3: roadmap

" Principles of reliable data transfer

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Principles of reliable data transfer

=

/ / ::

sending receiving B
" process process

data N

— SRR —

reliable service abstraction

application
transport

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Principles of reliable data transfer

STUDENTS-HUB.com

/ sendi ng
process

application
transport l

sender-side of
reliable data
transfer protocol

receiving
process

data T

receiver-side
of reliable data
transfer protocol

transport
network

reliable service implementation

Uploaded By: Mohanmed: Saada

Principles of reliable data transfer

A — 5
==, sending receiving Bl
process process
application l

data
transport T

receiver-side
of reliable data
transfer protocol

sender-side of
reliable data
transfer protocol

Complexity of reliable data
transfer protocol will depend

(strongly) on characteristics of

/
transport
. work
unreliable channel (lose, netwer 4_]

corrupt, reorder data?)

reliable service implementation

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Principles of reliable data transfer

Sender, receiver do not know

the “state” of each other, e.g.,

was a message received?

= unless communicated via a
message

STUDENTS-HUB.com

2= sending
process
application
transport l

sender-side of
reliable data
transfer protocol

transport
network

reliable service implementation

Uploaded By: Mohanmed: Saada

Reliable data transfer protocol (rdt): interfaces

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

deliver_data(): called by rdt
to deliver data to upper layer

receiving Bl
process

T deliver data()

data

sender-side
implementation of
rdt reliable data
transfer protocol

receiver-side
implementation of
rdt reliable data
transfer protoco

udt_send (] rdt_rev ()

udt_send(): called by rdt \/ rdt_rcv(): called when packet

to transfer packet over - i L . : .
. ph | _ Bi-directional communication over arrives on receiver side of
unreliable channel to receiver unreliable channel channel

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

packet

Reliable data transfer: getting started

The book:

" incrementally develops sender, receiver sides of reliable data transfer
protocol (rdt)

= consider only unidirectional data transfer
* but control info will flow in both directions!

= use finite state machines (FSM) to specify sender, receiver

event causing state transition
actions taken on state transition

Uploaded By: Mohammed: Saada

state: when in this “state”
next state uniquely
determined by next

event

STUDENTS-HUB.com

rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose
packets (data, ACKs)

e checksum, sequence #s, ACKs, retransmissions will be of help ...
but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK

= retransmits if no ACK received in this time
= if pkt (or ACK) just delayed (not lost):

* retransmission will be duplicate, but seq #s already handles this!

e receiver must specify seq # of packet being ACKed

= use countdown timer to interrupt after “reasonable” amount
of time

N [/meout

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Stop-and-Wait (Summary)

rdt_send(data)/
pkt=pkt(SQN,data, checksum);
udt_send(pkt);

start_timer

Sender
udt_rcv(ACK)
[biterror(ACK) v
SQN(ACK)=SQN]/

/SQN=1 Receiver
wait for
data
timeout/ udt_rcv(pkt)
udt_send(pkt); [—biterror(pkt) A SQN(pkt)=SQN]/
start_timer data=extractdata(pkt);

udt rcv(ACK)
udt_rev(ACK)/ [biterror(ACK) A rdt_rcv(data);
SQN(ACK)=SQN)/ ACK=ACK(SQN, checksum);

stop_timer; SQN++ udt_send(ACK);
SQN++

udt_rcv(pkt)
[biterror(pkt) v SQN(pkt)=SQN]/
STUDENTS-HUB.com Uploaded Lydxohammed Saada

rdt3.0 sender (stop-and-wait)

rdt_send(data)
\ sndpkt = make_pkt(0, data, checksum)

\ udt_sendisiadpid
start_timer
Wait
for
ACKO
rdt_rcv(rcvpkt)
&& _notcorrupt(rcvpkt) rdt_rcv(rcvpkt)
&& ISACK(rcvpkt,1) && notcorrupt(rcvpkt)
stop_timer && iIsACK(rcvpkt,0)
op_timer

Wait for

call 1 from
above

df send(data

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

rdt3.0 sender (stop-and-wait)

\
\

rdt_rcv(rcvpkt)
A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt,1)

stop_timer

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

STUDENTS-HUB.com

rdt_send(data)

rdt_rcv(rcvpkt) &&

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

Wait for
call 0 from
above

(corrupt(rcvpkt) ||
ISACK(rcvpkt,1))

start_timer A
—
timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Uploaded By: Mohammed: Saada

rdt 3.0 receiver stop-and-wait

rdt_rcv(rcvpkt) && notcorrupt (rcvpkt)
&k has_seqgl (rcvpkt)

extract (rcvpkt,data)

deliver_data(data) rdt_rcv(rcvpkt) &&
sndpkt=make_pkt (ACK, 0, checksum) (corrupt (rcvpkt) | |
udt_send (sndpkt) has_seg0 (rcvpkt))

s
s
\-\\ /—\ sndpkt=make pkt (ACK, 0, checksum)

A udt_send (sndpkt)
Wait for Wait for
rdt_rcv (rcvpkt) && 0 from 1 from
(corrupt (revpkt) | | below below

has_seql (rcvpkt))

sndpkt=make_pkt (ACK, 1, checksum)
udt_ send (sndpkt)

rdt_recv(rcvpkt) && notcorrupt (rocvpkt)
&& has_sedql (rcvpkt)

extract (rcvpkt,data)

deliver data(data)
sndpkt=make_pkt (ACK, 1, checksum)
udt_send (sndpkt)

STUDENTS-HUB.com Uploaded By: Mohammed Saada

rdt3.0 in action

sender receiver
send pktO ktO
\\ rcv pkto
ac send ackO
rcv ackO /Q/
send pktl \K
rcv pktl
A}k/ send ackl
rcv ackl
send pkt0 \NO\‘
rcv pkt0
ack send ackO

(a) no loss

STUDENTS-HUB.com

sender receiver
send pkt0 ktO
\ rcv pkto
ack send ack0
rcv ackO

send pkt1 \Q{x

‘ t/meout_
resend pktl \K
rcv pktl
A}Ck'/ send ackl
rcv ackl
send pkt0 \!to\‘
rcv pkt0

ack send ackO

(b) packet loss
Uploaded By: Mohammed: Saada

rdt3.0 in action (stop-and-wait)

sender receiver
send pktO ktO
\ Frcv pkto
ack send ackO
rcv ackO
send pktl_\Dktl\‘
rcv pktl
yokl—" send ack1
- loss
timeout.

resend pktl \pktl\‘ ey pitl
(detect duplicate)
rev ackl A}k/ send ackl
send pkt0 \MO\,
rcv pktO

ack send ack0

(c) ACK loss
STUDENTS-HUB.com

sender recejver

send pkt0 —_ okt0
~, rcv pkt0
0= send ackO
rC\éI af(k(l) — X
sen t1_——~
P Pitl ~ rcv pktl
_~ send ackl

ackl

t/éneck)ﬁt_
resen
P pktl —__ rcv pktl

rcv ackl (detect duplicate)
send pkt0 PKI0 send ackl

ackl rcv pkt0

rcv ackl «
(oo 2cko =~ send ack0

\

pktl —

(d) premature timeout/ delayed ACK
Uploaded By: Mohammed: Saada

Performance of rdt3.0 (stop-and-wait)

" U ...~ Utilization — fraction of time sender busy sending

= example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

* time to transmit packet into channel:

D = L = 800,0 bits = 8 microsecs
trans — R 10° bits/sec

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —e---------- oo

A

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next,
packet, t =RTT+L/R

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

rdt3.0: stop-and-wait operation

sender receiver
_ L/R 11 L/é
Usender_ RTT+ L/ R
_.008 RTT
~30.008
= 0.00027 -

= rdt 3.0 protocol performance stinks!
= Protocol limits performance of underlying infrastructure (channel)

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

rdt3.0: pipelined protocols operation

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets
* range of sequence numbers must be increased
* buffering at sender and/or receiver

data pcackeT—»
|||

S 2

(a) a stop-and-wait protocol in operation

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —---------------oooo oo
last bit transmitted, t =L/ R

first packet bit arrives
last packet bit arrives, send ACK

>—last bit of 2"d packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next]
packet, t=RTT+L/R_

..................... 3-packet pipelining increases
""""""""""" utilization by a factor of 3!

.............................. w
o .0024 l

U — = —
sender™ =T = 30008 0.00081

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Go-Back-N: sender

" sender: “window” of up to N, consecutive transmitted but unACKed pkts
* k-bit seq #in pkt header

send_base nhextsegnum

| d ble, not
i | areody | yastiene
LI EERRR 000000 | sepostu] ot usame
+ __ window size —4
N

» cumulative ACK: ACK(n): ACKs all packets up to, including seq # n
e on receiving ACK(n): move window forward to begin at n+1
= timer for oldest in-flight packet

" timeout(n): retransmit packet n and all higher seq # packets in window
STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Go-Back-N: receiver

= ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #
* may generate duplicate ACKs
* need only remember rcv base

" on receipt of out-of-order packet:
e can discard (don’t buffer) or buffer: an implementation decision
* re-ACK pkt with highest in-order seq #

Receiver view of sequence number space:
received and ACKed

I I I I I Q I I I H H H HH I Out-of-order: received but not ACKed

rcv base)
— Not received

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

sender window (N=4)

Go-Back-N in action

sender

(R4 5678
(Rl 5678
Y1 5678
(el 5678

678
78

0]12343
N2 345§

VN2 34 5 SHES
N2 34 5 SHAS
VL2 3 4 5 SAe
VL2 3 4 5 SES

STUDENTS-HUB.com

send pkt0
send pktl
send pkt2-
send pkt3

(wait)

rcv ack0, send pkt4
rcv ackl, send pkt5

ignore duplicate ACK

‘ pkt 2 timeout _
send pkt2

send pkt3
send pkt4
send pkt5

/

\X Joss

recelver

012345678

_ 012345678
receive pkt0, send ackO

receive pktl, send ackl

receive pkt3, discard, 012345678
(re)send ackl

receive pkt4, discard, 012345678

(re)send ack1l
receive pkt5, discard, 012345678
(re)send ack1l

012345678
rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack812345678
rcv pkt4, deliver, send ackd1 2345678
rcv pkt5, deliver, send ackp; 5345673

\ /\

Uploaded By: Mohammed: Saada

Selective repeat

= receiver individually acknowledges all correctly received packets

 buffers packets, as needed, for eventual in-order delivery to upper
layer

»sender times-out/retransmits individually for unACKed packets
* sender maintains timer for each unACKed pkt

=sender window
* N consecutive seq #s
* limits seq #s of sent, unACKed packets

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Selective repeat: sender, receiver windows

send_base hexfsegnum

| s | e
AT T T e

y S wEndow size —24
PN

(a) sender view of seguence numbers

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Selective repeat: sender and receiver

— sender —receiver
data from above: packet n in [rcvbase, rcvbase+N-1]
= if next available seq #in = send ACK(n)
window, send packet = out-of-order: buffer
timeout(n): = in-order: deliver (also deliver

buffered, in-order packets),

" resend packet n, restart timer advance window to next not-yet-

ACK(n) in [sendbase,sendbase+N]: received packet
= mark packet n as received packet n in [rcvbase-N,rcvbase-1]
= if n smallest unACKed packet, " ACK(n)
advance window base to next otherwise:
UnACKed se(H | ignore

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Selective Repeat in action

sender window (N=4) sender

(R4 5678
(Rl 5678
Y1 5678
(el 5678

0]1 2 3 4 WA
U2 345 S@e

VN2 34 5 SHES
N2 34 5 SHAS

VL2 3 4 5 SAe
VL2 3 4 5 SES

STUDENTS-HUB.com

send pkt0
send pktl
send pkt2-
send pkt3

(wait)

rcv ack0, send pkt4
rcv ackl, send pkt5

record ack3 arrived

N

Pkt 2 timeout |

send pkt2
(but not 3,4,5)

\

\X Joss

=
\

e

Q. what happens when ack2 arrives?

recelver

receive pkt0, send ackO
receive pktl, send ackl

receive pkt3, buffer,
send ack3

receive pkt4, buffer,

send ack4
receive pkt5, buffer,

send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Uploaded By: Mohammed: Saada

Selective repeat:
a dilemmal

example:
= seq #s:0, 1, 2, 3 (base 4 counting)
= window size=3

STUDENTS-HUB.com

sender window receiver window

(after receipt) (after receipt)
F¥Jz012

0 1 2 KXW ofiEZEJo 12

[F¥)z012 01 2 3 0 [

0 1 2K 2

0] 1 2 3[EW
O 1paegell 2 T
pkt0 will accept packet

with seq number 0
(@) no problem

FHs 0 1 2 —Pkt0

BFEs 012 —pktl 81 2 3 [
A3 012 kt2 0 1pXeNol1 2

0 1 2EXH 2
timeout

retransmit pktO

R 012 —RKO ,
will accept packet

with seq number 0
(b) oops! ’
Uploaded By: Mohammed: Saada

Selective repeat:
a dilemmal

example:
= seq #s:0, 1, 2, 3 (base 4 counting)
= window size=3

Q: what relationship is needed
between sequence # size and
window size to avoid problem

in scenario (b)? SQN = 2w

Example: w= 16
SQN =32 (O0,..., 31)

sender window receiver window
(after receipt) (after receipt)

7 ofiEE]o 1 2

0 1PEN]1 2
> 01 2kJER2

= receiver can’t _
. | —— will accept packet
see sender side | with seq number 0

= receiver
behavior
identical in both
cases!

= something’s
(very) wrong!

— ofiEZE]o 12

| N — o1
— 01 2F[H?2

|

will accept packet
with seq number 0

Uploaded By: Mohanmed: Saada

Chapter 3: roadmap

" Connection-oriented transport: TCP
¢ segment structure
* reliable data transfer
* flow control
* connection management

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

" point-to-point: = cumulative ACKs
* one sender, one receiver = pipelining:
" reliable, in-order byte « TCP congestion and flow control
steam: set window size
* no “message boundaries” = connection-oriented:
" full duplex data: * handshaking (exchange of control
e bi-directional data flow in messages) initializes sender,
same connection receiver state before data exchange

* MSS: maximum segment size = flow controlled:
e sender will not overwhelm receiver

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

TCP segment structure

p 32 hits

v

source port #

dest port #

ACK: seq # of next expected

sequence number

byte; A bit: this is an ACK ~~———_

——acknowledgement number

length (of TCP header)

head| not T

o lusedl CIE|UA P[RIS|F| receive window

//—

Internet checksum

checksdm

C, E: congestion notification

P tions (variable length)

ey

TCP options
RST, SYN, FIN: connection /

management

/

application
data

segment seq #: counting

bytes of data into bytestream
(not segments!)

flow control: # bytes
receiver willing to accept

data sent by

(variable length)

STUDENTS-HUB.com

application into
TCP socket

Uploaded By: Mohammed: Saada

TCP sequence numbers, ACKs

Sequence numbers:

* byte stream “number” of
first byte in segment’s data

Acknowledgements:

* seq # of next byte expected
from other side

e cumulative ACK

Q: how receiver handles out-of-
order segments

 A: TCP spec doesn’t say, - up
to implementor

STUDENTS-HUB.com

outgoing segment from sender

source port # dest port #
seguence number
acknowledgement number
| | rwnd
checksum urg pointer
window size
N

sender sequence number space

sent sent not- usable not
ACKed yet ACKed butnot usable
(Min-flight”) Yet sent

putgoing segment from receiver

source port #

dest port #

sequenc

e number

acknowledgement number

A

rwnd

checksum

urg pointer

Uploac

ed By: Mohanmmed: Saada

TCP sequence numbers, ACKs

Host Aq p

ecCa2, NCK=79, data = ‘C
dk host ACKs receipt

of ‘C’, echoes back ‘C’
Seo ACK Jata= ‘C’
host ACKs receipt @
of echoed ‘C’
\Seq -43, AC

simple telnet scenario

Host B

User types ‘C’

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

TCP round trip time, timeout

Q: how to set TCP timeout

value?

" longer than RTT, but RTT varies!

" too short: premature timeout,
unnecessary retransmissions

" too long: slow reaction to
segment loss

STUDENTS-HUB.com

Q: how to estimate RTT?

" SampleRTT : measured time
from segment transmission until
ACK receipt

* ignore retransmissions

" SampleRTT will vary, want
estimated RTT “smoother”

 average several recent

measurements, not just current
SampleRTT

Uploaded By: Mohammed: Saada

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

= exponential weighted moving average (EWMA)

* influence of past sample decreases exponentially fast
= typical value: a =0.125
Assume Old EstimatedRTT=25ms RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,
SampleRTT=100ms L1

What is the new EstimatedRTT? : - N \ ; m
0.875*%25+0.125*100
=34.37ms

Now Old EstimatedRTT=25ms o sampleRTT
SampleRTT=26ms EstimatedRTT
What is the new EstimatedRTT?
725 13 L s 1 2 m % w0 % e n 7w s 2 s s

time (secondsc?
STUDENTS-HUB.com Uploaded By: Mohammed: Saada

200 -

RTT (milliseconds)

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

eStimaIted RTT “SafetyIm argin”

" DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

DevRTT = (1-f) *DevRTT + [*|SampleRTT-EstimatedRTT |

(typically, B =0.25)

* online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
STUDENTE R 25m P Uploaded By: Mohammed: Saada

TCP Sender (simplified)

event: data received from
application

= create segment with seq #

= seq # is byte-stream number
of first data byte in segment

= start timer if not already
running

* think of timer as for oldest
unACKed segment

e expiration interval:
TimeOutlInterval

STUDENTS-HUB.com

event: timeout

= retransmit segment that
caused timeout

= restart timer

event: ACK received

= if ACK acknowledges
previously unACKed segments

e update what is known to be
ACKed

e start timer if there are still
unACKed segments

Uploaded By: Mohammed: Saada

TCP Receiver: ACK generation irecses)

Event at receiver ‘ TCP receiver action

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

TCP: retransmission scenarios

Host A

g

N

—— timeout ——

\
Seq=92, 8 bytes of data

Host B

==

-
ACK=100

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

STUDENTS-HUB.com

Host A Host B
g C

SendBase=92

——timeout —

SendBase=100
SendBase=120

SendBase=120

\

Seq=92, 8 bytes of data
\
Seq=100, 20 bytes of dat

/

ACKzlo/

send cumulative
ACK for 120

premature timeout

Uploaded By: Mohammed: Saada

TCP: retransmission scenarios

Host A Host B

/

Seq=92, 8 bytes of data

Seq=100, 20 bytesgdz

ACK=100
X
ACK=120

/

A

Seq=120, 15 bytes of data

cumulative ACK covers
for earlier lost ACK

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

TCP fast retransmit

) Host A Host B
— TCP fast retransmit V{ w
if sender receives 3 additional g =g

ACKs for same data (“triple T §2q=92'8b)/tes Of daty
duplicate ACKs”), resend unACKed %

. data
segment with smallest seq # X
~<

" |ikely that unACKed segment lost, 3
so don’t wait for timeout pCKE? < =
200

nCEZ

L/ 100
Receipt of three duplicate ACKs pOKE

indicates 3 segments received Seq=100, 20 bytes of data
after a missing segment — lost
segment is likely. So retransmit!

timeout

\

~

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Examples

Ack = 102 Ack =102
R Ack = 102
Ack =102
Ack = 102
Ack =160
Ack = 102 PoP—
ck=
Ack =190
Ack =YY
Ack =190
v v ’ll' A J
time time

XX =190 and YY = 202
STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Chapter 3: roadmap

" Connection-oriented transport: TCP

* flow control
e connection management

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

TCP flow control

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

STUDENTS-HUB.com

Application removing
data from TCP socket
buffers

Network layer
delivering IP datagram

payload into TCP |

socket buffers

application
proces

TCP socket
receiver buffers

from sender |

receiver protocol stack

Uploaded By: Mohammed: Saada

TCP flow control

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

STUDENTS-HUB.com

Application removing
data from TCP socket
buffers

Network layer
delivering IP datagram

payload into TCP |

socket buffers

application

TCP socket
receiver buffers

from sender |

receiver protocol stack

Uploaded By: Mohanmed: Saada

TCP flow control

I
|
QWhatOhappens if network Application removing proces
layer delivers data faster than data from TCP socket
. . buffers
application layer removes TCP soeket
data from socket buffers? receiver buffers

receive window flow control: # bytes

receiver willing to accept

|
1
1
from sender |

receiver protocol stack

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

TCP flow control

I
|
&What.happens if network Application removing proces
layer delivers data faster than data from TCP socket
. . buffers
application layer removes TCP soeket
data from socket buffers? receiver buffers
—flow control

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

|
1
1
from sender |

receiver protocol stack

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

TCP flow control

= TCP receiver “advertises” free buffer
space in rwnd field in TCP header

* RevBuffer size set via socket
options (typical default is 4096 bytes)
* many operating systems autoadjust
RcvBuffer
= sender limits amount of unACKed
(“in-flight”) data to received rwnd

" guarantees receive buffer will not
overflow

STUDENTS-HUB.com

to application process

RcvBuffer buffered data

T

rwnd

_L free buffer space

1

TCP segment payloads

|

TCP receiver-side buffering

Uploaded By: Mohammed: Saada

TCP flow control

= TCP receiver “advertises” free buffer
space in rwnd field in TCP header

* RevBuffer size set via socket
options (typical default is 4096 bytes)
* many operating systems autoadjust
RcvBuffer
= sender limits amount of unACKed
(“in-flight”) data to received rwnd

" guarantees receive buffer will not
overflow

STUDENTS-HUB.com

flow control: # bytes receiver willing to accept

N\

N\ . .
receive window

TCP segment format

Uploaded By: Mohammed: Saada

F¥hsport Layer

At Recelver:

= L astByteRead (by the application)

= |l astByteRcvd (arrived from the network)

= | astByteRcvd-LastByteRead<= (RcvBuffer)

*" rwnd= RcvBuffer- (LastByteRcvd-LastByteRead)

At Sender:

= [astByteSent
= L astByteAcked

STUDEN!I':!I%EXSrensent_LaStByteACkEd<=rwnd Uploaded By: Mohammed Saada

TCP connection management

before exchanging data, sender/receiver “handshake”:
= agree to establish connection (each knowing the other willing to establish connection)
" agree on connection parameters (e.g., starting seq #s)

—‘
application application
11]
s | Lol]
connection state: ESTAB connection state: ESTAB
connection variables: connection Variables:
seq # client-to-server seq # client-to-server
server-to-client server-to-client
rcvBuffer Size rcvBuffer Size
at server,client at server,client
V{ network network . Eﬂ
2 i | i
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname", "port number") ; welcomeSocket.accept() ;

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

TCP 3-way handshake

Server state

serverSocket = socket (AF INET, SOCK STREAM)

Cl |ent State serverSocket.bind((', serverPort))
serverSocket.listen (1)
clientSocket = socket (AF_INET, SOCK_STREAM) connectionSocket, addr = serverSocket.accept ()
LISTEN -
clientSocket.connect ((serverName, serverPort)) P E LISTEN

choose init seq num, x

e
! send TCP SYN msg [~
SYNSENT SYNbit=1, Seq=x
choose init seq num, y
send TCP SYNACK

/ msg, acking SYN SYN RCVD
SYNbit=1, Seq=y
ACKbit=1; ACKnum=x-+1

v received SYNACK(x)
ESTAB indicates server is live; /
send ACK for SYNACK; |~
this segment may contain ACKbit=1, ACKnum=y+1
client-to-server data
T~ [received ACK(y)
indicates client is live v

ESTAB

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

A human 3-way handshake protocol

3. Climbing. ©

. A
» - =
| .
o \ ” AR IR Y YA L
K - 2 g o 4 3) ;
% AL
A\ & . " - LS
y n o 2SR =2
N / IR e W A s A
P - o TG L -
) - .t T S
N TR G T o
: 35 et
= . o
\ . v B
\ vy AR T Lo
~ - > .
-

-~

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Closing a TCP connection

= client, server each close their side of connection
e send TCP segment with FIN bit=1

= respond to received FIN with ACK
e on receiving FIN, ACK can be combined with own FIN

= simultaneous FIN exchanges can be handled

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Chapter 3: roadmap

" Principles of congestion control

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Chapter 3: roadmap

= TCP congestion control

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

TCP congestion control: AIMD

" gpproach: senders can increase sending rate until packet loss
(congestion) occurs, then decrease sending rate on loss event

- Additive Increase — Multiplicative Decrease
increase sending rate by 1 cut sending rate in half at
maximum segment size every each loss event
RTT until loss detected

g /7%/ AIMD sawtooth
; // “l Y behavior: probing
g for bandwidth

STUDENTS-HUB.com time " Uploaded By: Mohammed: Saada

TCP AIMD: more

Multiplicative decrease detail: sending rate is

= Cutin half on loss detected by triple duplicate ACK (TCP Reno)

= Cutto 1l MSS (maximum segment size) when loss detected by
timeout (TCP Tahoe)

Why AIMD?

= AIMD - a distributed, asynchronous algorithm — has been
shown to:

* optimize congested flow rates network wide!
* have desirable stability properties

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

TCP congestion control: details

sender sequence number space

TCP sending behavior:

cwnd
" roughly: send cwnd bytes,
wait RTT for ACKS, then

_| send more bytes
last byte cwnd
ACKed sent, but not- ava"ab'e but TCP rate = bytes/sec

yet ACKed not used RTT

(“in-flight”) — last byte sent

= TCP sender limits transmission: LastByteSent- LastByteAcked < cwnd

= cwnd is dynamically adjusted in response to observed
network congestion (implementing TCP congestion control)

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

TCP slow start

" when connection begins,
increase rate exponentially
until first loss event:

* initially cwnd = 1 MSS
* double cwnd every RTT

e done by incrementing cwnd
for every ACK received

" summary: initial rate is
slow, but ramps up
exponentially fast

STUDENTS-HUB.com

Host A Host B
N =\
|T_ W
|_
x
|

%

Ur Segments

time

Uploaded By: Mohammed: Saada

TCP: from slow start to congestion avoidance

Q: when should the exponential

increase switch to linear? 12‘
A: when cwnd gets to 1/2 of its 3 12— =
. T & eno
value before timeout. £ £ 10-
c £ ssthresh
So 8=yt
. P A A——
Implementation: £ ssthresh
. TCP Tahoe
" variable ssthresh 2]
. 0
= on loss event, ssthresh is set to 0123456 7 8 910112131415
1/2 of cwnd just before loss event Transmission round

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

STUDENTS-HUB.com Uploaded By: Mohammed: Saada

Example

16

14

12

10

Congestion Window Size (segment)

01 2 3 4 5 6 7 8 9 1M 11 12 13 14 15 16 17

Transmission round

18 18 20 21

22 23 24 25 26 27 28 29 30

STUDENTS-HUB.com

Round | Segments | Total Segments
1 1 1
2 2 3
3 4 7
4 8 15
5 9 24
6 10 34
7 11 45

Identify the intervals of time when TCP slow start is operating?

* [1,4] and [24,27]
Identify the intervals of time when TCP congestion avoidance is
operating?

* [4,8],[9,17], [18,23], and [27,29]
After the 17th transmission round, is segment loss detected by a
triple duplicate ACK or by timeout?

* Triple duplicate ACK

After the 23rd transmission round, is segment loss detected by a
triple duplicate ACK or by timeout?

e Timeout

What is the initial value of Threshold at the first transmission
round?

e 8

What is the value of Threshold at the 18th transmission round?
s 14/2=7

What is the value of Threshold at the 26th transmission round?
e 12/2=6
Assuming a packet loss is detected after the 29th round by a

timeout, what will be the values of the congestion-window size
and of Threshold?

* CWsize=1 Threshold=8/2=4

During what transmission round is the 40th segment sent?

Uploaded By: Mohammed: Saada

TCP CUBIC

= |s there a better way than AIMD to “probe” for usable bandwidth?

= |nsight/intuition:
* W, .,: sending rate at which congestion loss was detected
e congestion state of bottleneck link probably (?) hasn’t changed much

* after cutting rate/window in half on loss, initially ramp to to W, _, faster, but then
approach W __ more slowly

Winax classic TCP
= = = = TCP CUBIC - higher
W, ../2 throughput in this
example

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

TCP CUBIC

= K: point in time when TCP window size will reach W__,
* Kitself is tuneable

= increase W as a function of the cube of the distance between current
time and K

* larger increases when further away from K
* smaller increases (cautious) when nearer K

= TCP CUBIC default w | .
in Linux, most Ny Sy iy ';C—P Reno
popular TCP for TCP CUBIC
popular Web ending
servers rae
time‘

»

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

TCP and the congested “bottleneck link”

" TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

source destination

TCP &

3

packet queue almost
never empty, sometimes
overflows packet (loss)

bottleneck link (almost always busy)

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

TCP and the congested “bottleneck link”

" TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

= understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will
source not increase end-end throughout

: destination
with congested bottleneck

TCP TCP

B

>

insight: increasing TCP
sending rate will
increase measured RTT

Goal: “keep the end-end pipe just full, but not fuller”

A

RTT >
STUDENTS-HUB.com Uploaded By: Mohammed-&aada

Delay-based TCP congestion control

Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep
bottleneck link busy transmitting, but avoid high delays/buffering

& _‘ & # bytes sent in
= LQ‘” measured last RTT interval

¥ «—RTT,

easured throughput RTT
measured

Delay-based approach:
= RTT,,, - minimum observed RTT (uncongested path)

= uncongested throughput with congestion window cwnd is cwnd/RTT_._

if measured throughput “very close” to uncongested throughput

increase cwnd linearly /* since path not congested */
else if measured throughput “far below” uncongested throughout
decrease cwnd linearly /* since path is congested */

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

Delay-based TCP congestion control

= congestion control without inducing/forcing loss

" maximizing throughout (“keeping the just pipe full... ”) while keeping
delay low (“...but not fuller”)
= 3 number of deployed TCPs take a delay-based approach

= BBR deployed on Google’s (internal) backbone network

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
" two bits in IP header (ToS field) marked by network router to indicate congestion
 policy to determine marking chosen by network operator
= congestion indication carried to destination
= destination sets ECE bit on ACK segment to notify sender of congestion
= involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

source TCP ACK segment destination
TCP
Yv Lo \‘v
Operation of ECN with I1:3

00 — Non ECN-Capable
10 — ECN Capable Transport, ECT(0)
01 — ECN Capable Transport, ECT(1)

%‘I’L‘fﬁ@ﬁﬁ@%@@%&?ﬁed’ CE. IP datagram Uploaded By: Mohammed-&aada

TCP fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

g

S <

d

)

>

| «_
N/
bottleneck
TCP connection 2 rout.er
capacity R

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

Q: is TCP Fair?

Example: two competing TCP sessions:

= additive increase gives slope of 1, as throughout increases

" multiplicative decrease decreases throughput proportionally

Connection 2 throughput 0

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

STUDENTS-HUB.com

— |s TCP fair?

A: Yes, under idealized

assumptions:
= same RTT
= fixed number of sessions
only in congestion
avoidance

Uploaded By: Mohammed - &Saada

Fairness: must all network apps be “fair”?

Fairness and UDP Fairness, parallel TCP
* multimedia apps often do not connections
use TCP

= application can open multiple

do not want rate throttled by parallel connections between two

congestion control

= instead use UDP: hosts
* send audio/video at constant rate, = web browsers do this, e.g., link of
tolerate packet loss rate R with 9 existing connections:
= there is no “Internet police” * new app asks for 1 TCP, gets rate R/10
policing use of congestion * new app asks for 11 TCPs, gets R/2

control

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

Transport layer: roadmap

" Evolution of transport-layer
functionality

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

Evolving transport-layer functionality

= TCP, UDP: principal transport protocols for 40 years
= different “flavors” of TCP developed, for specific scenarios:

Long, fat pipes (large data Many packets “in flight”; loss shuts down

transfers) pipeline

Wireless networks Loss due to noisy wireless links, mobility;
TCP treat this as congestion loss

Long-delay links Extremely long RTTs

Data center networks Latency sensitive

Background traffic flows Low priority, “background” TCP flows

" moving transport—layer functions to application layer, on top of UDP
 HTTP/3: QUIC

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

QUIC: Quick UDP Internet Connections

= application-layer protocol, on top of UDP

* increase performance of HTTP
* deployed on many Google servers, apps (Chrome, mobile YouTube app)

Application

Network

STUDENTS-HUB.com

HTTP/2 over TCP

Uploaded By: Mohammed - &Saada

QUIC: Connection establishment

/'/ ‘

4

TCP handshake '-"“‘-~.~._, ~"“--._.~.-;

(transport layer) < QUIC handshake /
—~——

TLS handshake data ___

(security) ‘_,,———”""——

\

data —
TCP (reliability, congestion control QUIC: reliability, congestion control,
state) + TLS (authentication, crypto authentication, crypto state
state)
= 1 handshake

=) serial handshakes

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

application

transport

QUIC: streams: parallelism, no HOL blocking

-
HTTP
GET
HTTP
GET R
HTTP
GET
TLY ehcryption TLS [encr ption
TAPIRDT errorf OT
TCP tohgl Contr. T({P|ddng. Fontr.

(a) HTTP 1.1

STUDENTS-HUB.com

Uploaded By: Mohammed - &Saada

Chapter 3: summary

" principles behind transport Up next:
layer services: = leaving the network
* multiplexing, demultiplexing “edge” (application,
* reliable data transfer transport layers)
* tlow control = into the network “core”

e congestion control
= two network-layer

" instantiation, implementation chapters:
in the Internet . data plane
* UDP e control plane
* TCP

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

Additional Chapter 3 slides

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

Go-Back-N: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextsegnumy)
if (base == nextseqnum)
start_timer
nextsegnum-++
~~~~~~ }
A T else
— refuse_data(data)

< timeout
start_timer
0 udt_send(sndpkt[base])
G udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt)

&& corrupt(rcvpkt)
udt_send(sndpkt[nextsegnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else
start_timer

STUDENTS-HUB.com Uploaded By: Mohammed-&aada



Go-Back-N: receiver extended FSM

any other event
udt_send(sndpkt) rdt_rcv(rcvpkt)
~~~~~ C ) && notcorrupt(rcvpkt)

A TS~o_ && hassegnum(rcvpkt,expectedsegnum)
= -

expectedsegnum=1 AQextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received packet with highest
in-order seq #
* may generate duplicate ACKs
* need only remember expectedsegnum

" out-of-order packet:
 discard (don’t buffer): no receiver buffering!
* re-ACK pkt with highest in-order seq #
STUDENTS-HUB.com Uploaded By: Mohammed-&aada

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)

NextSegNum = NextSegNum + length(data)
A if (timer currently not running)

“A

start timer
NextSegNum = InitialSegNum

SendBase = InitialSegNum

event timeout
retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase-1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}
STUDENTS-HUB.com

Uploaded By: Mohammed - &Saada

TCP 3-way handshake FSM

Socket connectionSocket
welcomeSocket.accept() ;

A

SYN(x)
SYNACK(segq=y,ACKnum=x+1) v

create new socket for communication
back to client)
listen

!

| »
»

ACK(ACKnum=y+1)
A

STUDENTS-HUB.com

Socket clientSocket
newSocket ("hostname", "port number") ;

SYN(seq=x)

v

| SYNACK(seq=y,ACKnum=x-+1)

<

<

ACK(ACKnum=y+1)

Uploaded By: Mohammed - &Saada

Closing a TCP connection

client state V{ E server state
ESTAB - ESTAB
clientSocket.close () \FINb.t 1
FIN_WAIT_1 can no longer It=1, seq=X
send but can q\ v
receive data —— CLOSE_WAIT
ACKbit=1; ACKnum=x+1 can still
FIN_WAIT 2 wait for server | —"" send data
close
_— LAST ACK
il FINbit=1, seq=
TIMED WAIT - A)N =y can no longer
- \ ~— send data
ACKbit=1; ACKnum=y+1
timed wait \ v
for 2*max CLOSED
segment lifetime
CLOSED l

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

TCP throughput

= avg. TCP thruput as function of window size, RTT?
* ignore slow start, assume there is always data to send

= \W: window Size (measured in bytes) Where 10Ss occurs
e avg. window size (# in-flight bytes) is %4 W
 avg. thruput is 3/4W per RTT

avg TCP thruput = % %T bytes/sec

N14%4%4%%

STUDENTS-HUB.com Uploaded By: Mohammed Saada

TCP over “long, fat pipes”

= example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput
= requires W = 83,333 in-flight segments
= throughput in terms of segment loss probability, L [Mathis 1997):

1.22 - MSS
h — N
[CP throughput RTT /L

-» to achieve 10 Gbps throughput, need a loss rate of L=2'101° —a
very small loss rate!

= versions of TCP for long, high-speed scenarios

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

Summary: TCP congestion control

e R - cwnd = cwnd + MSS , (MSS/cwnd)
dupACKcount++ NEWACK dupACKcount = 0

cwnd = cwnd+MSS transmit new segment(s), as allowed
dupACKcount=0

/>transmit new segment(s), as allowed
cwnd > ssthresh

A

cwnd =1 MSS
ssthresh = 64 KB

dupACKcount=0 A
N ’pﬁ) timeout
'\ <)) ssthresh = cwnd/2 _
= cwnd = 1 MSS duplicate ACK
(€ 7) timeout dupACKcount =0 dupACKcount++
'ssthresh = cwnd/2 4 retransmit missing segment 4
cwnd =1 MSS
dupACKcount=0 =2 :
retransmit missing segment (e
|| el
ssthresh = cwnd/2
gwnd =1 New ACK
upACKcount = 0 T
o cwnd = ssthresh -
dupACKcount == retransmit missing segment dupACKcount = 0 dupACKcount
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

STUDENTS-HUB.com Uploaded By: Mohammed - &Saada

QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this chapter for
connection establishment, error control, congestion control

* error and congestion control: “Readers familiar with TCP’s loss
detection and congestion control will find algorithms here that parallel
well-known TCP ones.” [from QUIC specification]

* connection establishment: reliability, congestion control,
authentication, encryption, state established in one RTT

" multiple application-level “streams” multiplexed over single QUIC
connection

* separate reliable data transfer, security
e common congestion control

STUDENTS-HUB.com Uploaded By: Mohammed-&aada

	Slide 1
	Slide 2: Internet protocol stack
	Slide 3: Transport layer: overview
	Slide 4: Transport layer: roadmap
	Slide 5: Transport services and protocols
	Slide 6: Transport vs. network layer services and protocols
	Slide 7: Transport vs. network layer services and protocols
	Slide 8: Transport Layer Actions
	Slide 9: Transport Layer Actions
	Slide 10: Two principal Internet transport protocols
	Slide 11: Chapter 3: roadmap
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Multiplexing/demultiplexing
	Slide 18: How demultiplexing works
	Slide 19: Connectionless demultiplexing
	Slide 20: Connectionless demultiplexing: an example
	Slide 21: Connection-oriented demultiplexing
	Slide 22: Connection-oriented demultiplexing: example
	Slide 23: Summary
	Slide 24: Chapter 3: roadmap
	Slide 25: UDP: User Datagram Protocol
	Slide 26: UDP: User Datagram Protocol
	Slide 27: UDP: User Datagram Protocol [RFC 768]
	Slide 28: UDP: Transport Layer Actions
	Slide 29: UDP: Transport Layer Actions
	Slide 30: UDP: Transport Layer Actions
	Slide 31: UDP segment header
	Slide 32: UDP checksum
	Slide 33: Internet checksum
	Slide 34: Internet checksum: an example
	Slide 35: Internet checksum: weak protection!
	Slide 36: Summary: UDP
	Slide 37: Chapter 3: roadmap
	Slide 38: Principles of reliable data transfer
	Slide 39: Principles of reliable data transfer
	Slide 40: Principles of reliable data transfer
	Slide 41: Principles of reliable data transfer
	Slide 42: Reliable data transfer protocol (rdt): interfaces
	Slide 43: Reliable data transfer: getting started
	Slide 44: rdt3.0: channels with errors and loss
	Slide 45: rdt3.0: channels with errors and loss
	Slide 46
	Slide 47: rdt3.0 sender (stop-and-wait)
	Slide 48: rdt3.0 sender (stop-and-wait)
	Slide 49
	Slide 50: rdt3.0 in action
	Slide 51: rdt3.0 in action (stop-and-wait)
	Slide 52: Performance of rdt3.0 (stop-and-wait)
	Slide 53: rdt3.0: stop-and-wait operation
	Slide 54: rdt3.0: stop-and-wait operation
	Slide 55: rdt3.0: pipelined protocols operation
	Slide 56: Pipelining: increased utilization
	Slide 57: Go-Back-N: sender
	Slide 58: Go-Back-N: receiver
	Slide 59: Go-Back-N in action
	Slide 60: Selective repeat
	Slide 61: Selective repeat: sender, receiver windows
	Slide 62: Selective repeat: sender and receiver
	Slide 63: Selective Repeat in action
	Slide 64: Selective repeat: a dilemma!
	Slide 65: Selective repeat: a dilemma!
	Slide 66: Chapter 3: roadmap
	Slide 67: TCP: overview RFCs: 793,1122, 2018, 5681, 7323
	Slide 68: TCP segment structure
	Slide 69: TCP sequence numbers, ACKs
	Slide 70: TCP sequence numbers, ACKs
	Slide 71: TCP round trip time, timeout
	Slide 72: TCP round trip time, timeout
	Slide 73: TCP round trip time, timeout
	Slide 74: TCP Sender (simplified)
	Slide 75: TCP Receiver: ACK generation [RFC 5681]
	Slide 76: TCP: retransmission scenarios
	Slide 77: TCP: retransmission scenarios
	Slide 78: TCP fast retransmit
	Slide 79: Examples
	Slide 80: Chapter 3: roadmap
	Slide 81: TCP flow control
	Slide 82: TCP flow control
	Slide 83: TCP flow control
	Slide 84: TCP flow control
	Slide 85: TCP flow control
	Slide 86: TCP flow control
	Slide 87: At Receiver:
	Slide 88: TCP connection management
	Slide 89: TCP 3-way handshake
	Slide 90: A human 3-way handshake protocol
	Slide 91: Closing a TCP connection
	Slide 92: Chapter 3: roadmap
	Slide 93: Chapter 3: roadmap
	Slide 94: TCP congestion control: AIMD
	Slide 95: TCP AIMD: more
	Slide 96: TCP congestion control: details
	Slide 97: TCP slow start
	Slide 98: TCP: from slow start to congestion avoidance
	Slide 99: Example
	Slide 100: TCP CUBIC
	Slide 101: TCP CUBIC
	Slide 102: TCP and the congested “bottleneck link”
	Slide 103: TCP and the congested “bottleneck link”
	Slide 104: Delay-based TCP congestion control
	Slide 105: Delay-based TCP congestion control
	Slide 106: Explicit congestion notification (ECN)
	Slide 107: TCP fairness
	Slide 108: Q: is TCP Fair?
	Slide 109: Fairness: must all network apps be “fair”?
	Slide 110: Transport layer: roadmap
	Slide 111: Evolving transport-layer functionality
	Slide 112: QUIC: Quick UDP Internet Connections
	Slide 113: QUIC: Connection establishment
	Slide 114: QUIC: streams: parallelism, no HOL blocking
	Slide 115: Chapter 3: summary
	Slide 116: Additional Chapter 3 slides
	Slide 117: Go-Back-N: sender extended FSM
	Slide 118: Go-Back-N: receiver extended FSM
	Slide 119: TCP sender (simplified)
	Slide 120: TCP 3-way handshake FSM
	Slide 121: Closing a TCP connection
	Slide 122: TCP throughput
	Slide 123: TCP over “long, fat pipes”
	Slide 124: Summary: TCP congestion control
	Slide 125: QUIC: Quick UDP Internet Connections

