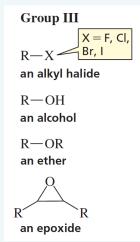
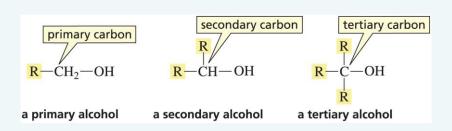
Chapter 9



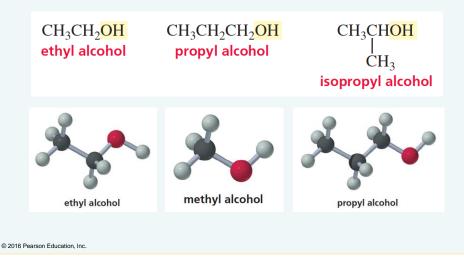
Reactions of Alcohols, Ethers, Epoxides, Amines, and Thiols

> Paula Yurkanis Bruice University of California, Santa Barbara


© 2016 Pearson Education, Inc.

More About the Families in Group III

The families in Group III all have an electronegative atom or group that is attached to an sp^3 carbon.


Classification of Alcohols

Primary alcohol = OH is on a primary carbon. Secondary alcohol = OH is on a secondary carbon. Tertiary alcohol = OH in on a tertiary carbon.

© 2016 Pearson Education, Inc.

Common Names of Alcohols

Systematic Names of Alcohols

CH₃OH CH₃CH₂OH ethanol

CH₃CH₂CHCH₂CH₃ | OH 3-pentanol

- The OH is the "functional group."
- Systematic nomenclature uses a suffix to denote a functional group.
- Alcohols are named by replacing the "e" at the end of the parent hydrocarbon with the suffix "ol."

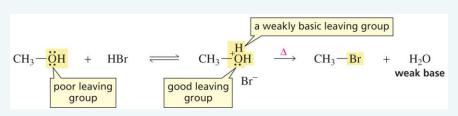
© 2016 Pearson Education, Inc.

Systematic Names of Alcohols

The parent hydrocarbon is the longest chain containing the functional group.

Systematic Names of Alcohols

When there is both a functional group and a substituent, the functional group gets the lowest number.

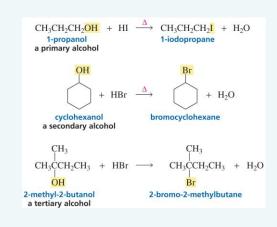

© 2016 Pearson Education, Inc.

Systematic Names of Alcohols

Systematic Names of Alcohols

Strongly Basic Leaving Groups cannot be displaced

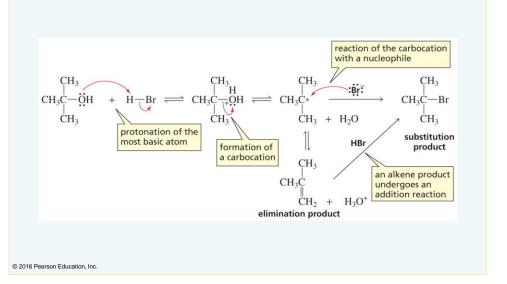
Acid converts the Poor Leaving Group into a Good Leaving Group

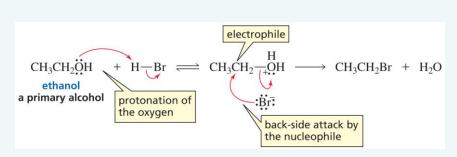


Alcohols have to be "activated" before they can react.

Only weakly basic nucleophiles can be used. Strongly basic nucleophiles would react with the proton.

© 2016 Pearson Education, Inc


Converting Alcohols to Alkyl Halides


Primary and secondary alcohols require heat for this reaction.

Tertiary alcohols do not.

The Reactions of Secondary and Tertiary Alcohols with Hydrogen Halides are S_N1 Reactions

The Reactions of Primary Alcohols with Hydrogen Halides are S_N2 Reactions

Alcohols undergo $S_N 1$ reactions unless they would have to form a primary carbocation.

Activating an OH Group for Nucleophilic Substitution in a Cell

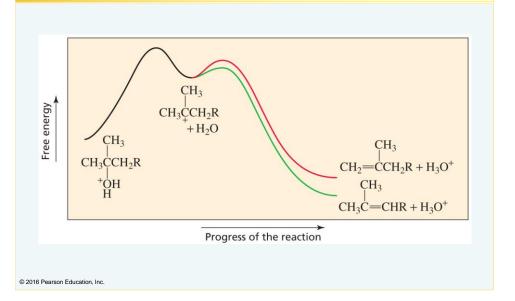
Activating an OH Group for Nucleophilic Substitution in a Cell

Pyrophosphate is a good leaving group (weak base).

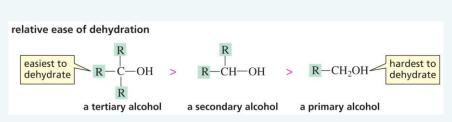
Dehydration of an Alcohol

Dehydration of an alcohol is an elimination reaction.

© 2016 Pearson Education, Inc.


Dehydration of Secondary and Tertiary Alcohols are E1 Reactions

Dehydration is a Regioselective Reaction


The major product is the more stable alkene.

© 2016 Pearson Education, Inc.

The more stable Alkene has the more stable Transition State leading to its formation

Tertiary Alcohols are the Easiest to Dehydrate

The rate of dehydration reflects the ease of carbocation formation.

© 2016 Pearson Education, Inc.

Dehydration of a Primary Alcohol is an E2 Reaction

Both E2 and S_{N2} products are obtained.

Alcohols undergo E1 reactions unless they would have to form a primary carbocation.

The major product is the Stereoisomer with the largest groups on opposite sides of the Double Bond

The major product has the CH₃ groups on opposites sides of the double bond.

© 2016 Pearson Education, Inc.

Oxidation of Secondary Alcohols

Oxidation of Primary Alcohols

Tertiary Alcohols cannot be Oxidized to a Carbonyl Compound

Oxidation by Hypochlorous Acid (HOCI)

The Mechanism

Nomenclature of Ethers

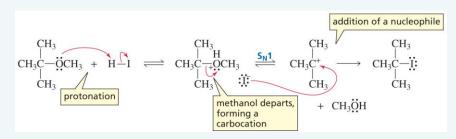
The substituents are listed in alphabetical order.

© 2016 Pearson Education, Inc.

Systematic Names of Ethers

Alcohols and Ethers have similar Leaving Groups

Alcohols and ethers have to be "activated" before the compounds can react.


© 2016 Pearson Education, Inc.

The Leaving Group of an Ether can be activated by Protonation

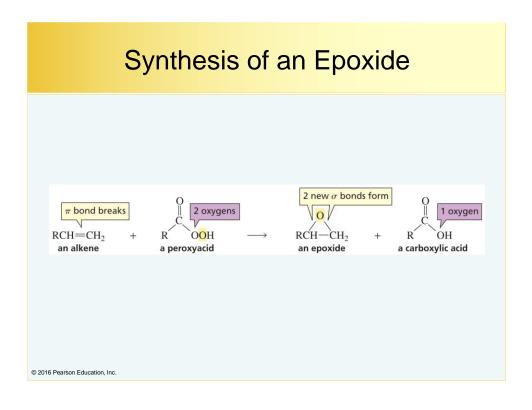
$$R - \overset{\bullet}{\square} - R' + HI \iff R - \overset{H}{\square} - R' \xrightarrow{\Delta} R - I + R' - \overset{\bullet}{\square} H$$

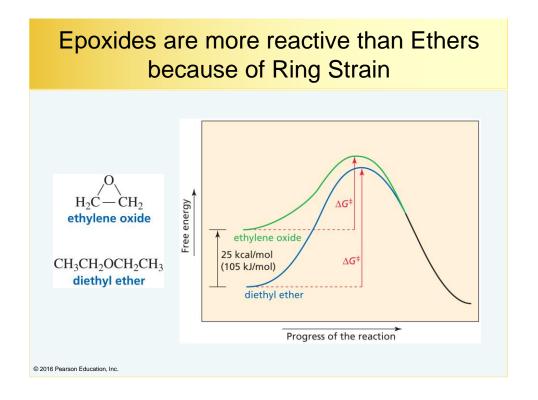
$$\begin{array}{c} \Gamma \\ \text{poor leaving group} \end{array}$$

The Mechanism

If a relatively stable carbocation will be formed when ROH leaves, it will be an S_N1 reaction.

© 2016 Pearson Education, Inc.

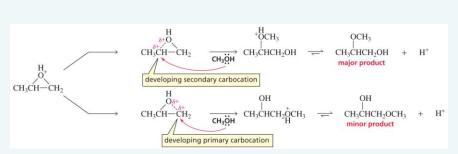

The Mechanism


If a relatively stable carbocation would not be formed when ROH leaves, it will be an S_{N2} reaction.

Ethers undergo $S_N 1$ reactions unless they would have to form a primary carbocation.

Ethers are common Solvents because they react only with Hydrogen Halides Table 9.1 Some Ethers Are Used as Solvents diethyl ether "ether" tetrahydrofuran tetrahydropyran THP 1,4-dioxane 1,2-dimethoxyethane DME tetra-butyl methyl ether MTBE

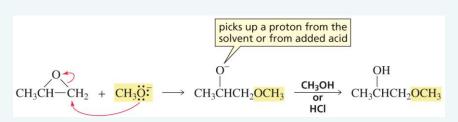
Nomenclature of Epoxides H₂C=CH₂ ethylene ethylene oxide H₂C=CHCH₃ propylene H₂C=CHCH₃ propylene oxide H₂C-CHCH₃ propylene oxide L₂C-CHCH₂CH₃ 1,2-epoxybutane 1,2-epoxy-2-methylpropane


Nucleophilic Substitution of Epoxides: The Acid-Catalyzed Mechanism

H₂C-CH₂ + H-Br:
$$\rightleftharpoons$$
 H₂C-CH₂ + :Br: \rightarrow HÖCH₂CH₂Br: \rightleftharpoons protonation of the epoxide oxygen atom back-side attack by the nucleophile

CH₃CH-CHCH₃ \rightleftharpoons CH₃CH-CHCH₃ \rightleftharpoons CH₃CH-CHCH₃ \rightleftharpoons CH₃CHCHCH₃ \rightleftharpoons CH₃CHCHCHCH₃ \rightleftharpoons CH₃CHCHCHCHCH₃ \rightleftharpoons CH₃CHCHCHCH₃ \rightleftharpoons CH₃CHCHCHCH₃ \rightleftharpoons CH₃CHCHCHCH

Under acidic conditions, the Nucleophile attacks the more substituted Ring Carbon


Why the more Substituted Ring Carbon is attacked under acidic conditions

The nucleophile attacks the more substituted ring carbon.

© 2016 Pearson Education, Inc.

Under neutral or basic conditions, the Nucleophile attacks the less substituted Carbon

The nucleophile attacks the less substituted ring carbon.

The conditions determine the Site of Nucleophilic Attack

Using Epoxides in Synthesis

$$\begin{array}{c} O \\ H_2C \\ \hline \\ CH_3 \end{array} + \begin{array}{c} CH_3C \\ \hline \\ CH_3 \end{array} \\ \hline \\ CH_3 \end{array} \longrightarrow \begin{array}{c} CH_3OH \\ \hline \\ CH_3 \end{array} \longrightarrow \begin{array}{c} CH_3C \\ \hline \\ CH_3 \end{array} \\ \hline \\ CH_3 \end{array} \longrightarrow \begin{array}{c} CH_3C \\ \hline \\ CH_3 \end{array} \longrightarrow \begin{array}{c} CH_3CHCH_2CCH_3 \\ \hline \\ CH_3CHCH_2CH_3 \\ \hline \\ CH_3CHCH_2CH_3 \end{array} \longrightarrow \begin{array}{c} CH_3CHCH_2CCH_3 \\ \hline \\ CH_3CHCH_2CH_3 \\ \hline \\ CH_3CH_3CH_3 \\ \hline \\ CH_3CHCH_2CH_3 \\ \hline \\ CH_3CH_3 \\$$

Carbocation Stability determines the Carcinogenicity of an Arene Oxide

The more stable the Carbocation, the more likely the Phenolic Product will be formed

Addition Products can be Carcinogenic

If formation of the addition products is faster than formation of the phenol, the arene oxide can be carcinogenic.

© 2016 Pearson Education, Inc.

Relative Reactivity of Amines

Protonating an Amine does not form a Compound with a Good Leaving Group

$$CH_{3}CH_{2}\overset{+}{O}H_{2}$$
 > $CH_{3}CH_{2}\overset{+}{N}H_{3}$
 $pK_{a} = -2.4$ $pK_{a} = 11.2$

Amines cannot undergo substitution and elimination reactions.

© 2016 Pearson Education, Inc

Amines are common Organic Bases

Amines are common Nucleophiles

$$CH_3CH_2Br \ + \ CH_3NH_2 \ \longrightarrow \ CH_3CH_2NH_2CH_3 \ + \ Br^-$$

$$O^- \qquad OH$$

$$CH_3CH^-CH_2 \ + \ CH_3NH_2 \ \longrightarrow \ CH_3CHCH_2N^+H_2CH_3 \ \longrightarrow \ CH_3CHCH_2NHCH_3$$

$$@ 2016 \ Pearson Education, Inc.$$

Thiols

Thiols used to be called mercaptans because they capture mercury.

Nomenclature of Thiols

© 2016 Pearson Education, Inc.

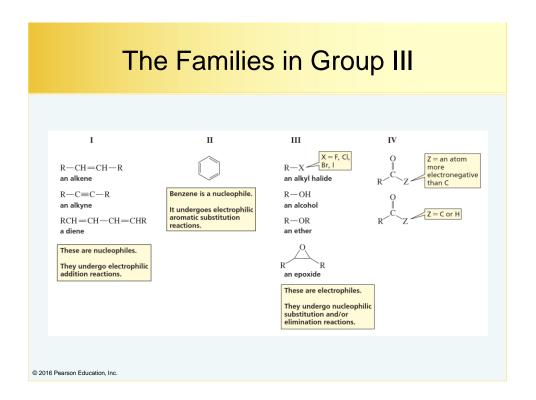
Thiols are good Nucleophiles in a Protic Solvent

Thiolate ions are better nucleophiles because they are less solvated than are alkoxide ions.

The product is a sulfur analogue of an ether (thioether or a disulfide).

Thioethers are also Nucleophiles

$$\begin{array}{c} \text{CH}_3\\ \text{CH}_3-\overset{\cdot}{\text{S}}-\text{CH}_3\\ \text{CH}_3-\overset{\cdot}{\text{S}}-\text{CH}_3\\ \text{CH}_3-\overset{\cdot}{\text{S}}-\text{CH}_3\\ \text{I}^-\\ \text{trimethylsulfonium iodide}\\ \text{a thioether} \\ \end{array}$$


A Sulfonium Ion is an Alkylating Agent

Methylation by a Chemist

$$\ddot{N}u + CH_3 - I \longrightarrow CH_3 - Nu + I$$

© 2016 Pearson Education, Inc.

Methylation by a Cell

