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Lecture abstract

* Topics covered in this presentation
* Poles & zeros

* First-order systems

e Second-order systems

e Effect of additional poles

e Effect of zeros
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4.2 Poles, zeros, and system response jo

. «, . L s-plane
Definitions ot )
5+5 5 3 o
Poles of a TF @ o)
*Values of the Laplace transform  ___meese - swemwo Symem poe

variable, s, that cause the TF to
become infinite

* Any roots of the denominator of ©____ >
the TF that are common to the
roots of the numerator

transform : iy

Outpur |

time

Figure: a. system showing input & output, b. pole-zero plot of
the system; T evolution of a system response
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4.2 Poles, zeros, and system response jo

. «, . L s-plane
Definitions ot )
5+5 5 3 o
Zeros of a TF @ ®)
* Values of the Laplace transform eSS Symem poe

variable, s, that cause the TF to
become zero

* Any roots of the numerator of the >
TF that are common to the roots of
the denominator

transform : iy

Outpur |

time

Figure: a. system showing input & output, b. pole-zero plot of
the system; T evolution of a system response
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4.2 Poles, zeros, and system response

System response characteristics

POIeS Ofa TF: Pole at —a genera}es
response Ke™ ¢ s-plane
* Generate the form of the P
natural response \
X = O
ad / 4
Poles of an input function:
 Generate the form of the
forced response Figure: Effect of a real-axis

pole upon transient response
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4.2 Poles, zeros, and system response

System response characteristics

Pole on the real axis: Pol at —a gencrates J N
* Generates an exponential response of  response Ke=o! s-plane
the form e, where -a is the pole \
location on the real axis. The farther to \ e
the left a pole is on the negative real —0
axis, the faster the exponential

transient response will decay to zero.

Zeros and poles:
Figure: Effect of a real-axis

* Generate the amplitudes for both the .
pole upon transient response

forced and natural responses
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4.2 Poles, zeros, and system response

Example 4.1

Evaluating Response Using Poles

_1
PROBLEM: Given the system of Figure 4.3, write the output, ¢(#), in E“}A.. (s+3) L

general terms. Specify the forced and natural parts of the solution. (s+2)s +4)s +3)

SOLUTION: By inspection, each system pole generates an exponential FIGURE 4.3 System for Example 4.1

as part of the natural response. The input’s pole generates the forced
response. Thus,

K, K> K- K4
Cs)= — +——+ + 4.3
(5) CS I.';+2 s+ 4 .!.:+5J (43)
Forced Natural
response Esponse
Taking the inverse Laplace transform, we get
e K, +Ke ¥ +Kze "+ Ky (4.4)
| | | |
Forced Natural
responsc responsc
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4.3 First-order systems

Intro
* 1%-order system without zeros TF REs) Gf] )
v _C(s)  a L i
“)=Fe T 51a jo
A
e Unit step input TF R(s) =s~" s-plane
e System response in frequency domain . - G
(1 —d
C'(s) = R(s)G(s) =
(5) = R:)G ) = Sy

* System response in time domain Figure: 1s-order

c(t) =cp(t) +ep(t)y=1—e* system; pole-plot
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4.3 First-order systems

Characteristics

» Time constant, 1/a :

»The time for e™? to decay to 37%
of its initial value. Alternatively,
the time it takes for the step
response to rise to 63% of its
final value.
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(1)

A Initial slope = ‘

time constant -4
1.0 / e
0.9 P4

0.8 ¥

0.7 -

0.6 F 63% of final value
at 1 = one time constant
0.5

04
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02

0.1
' : 4
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..; A

Figure: 1st-order system response to a unit step
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4.3 First-order systems

Characteristics

* Exponential frequency, a:

»The reciprocal of the time
constant. The initial rate of
change of the exponential at t=0,
since the derivative of e is —-a
when t = 0.

»Since the pole of the TF is at -3,
the farther the pole is from the
imaginary axis, the faster the
transient response.
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c(t)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

I
, =a
time constant

Initial slope =

¥

// —

63% of final value
at f = one time constant
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Figure: 1st-order system response to a unit step
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4.3 First-order systems

Characteristics “
A Initial slope = P, m]}nstan[ =d
1.0
* Rise time, T.: 0.9 // -
0.8 - d
0.7 - .
>The time for the waveform to go ¢/ = e et
from 0.1 to 0.9 of its final value. |
The difference in time between o3t
c(t) =0.9 and c(t) = 0.1. Ef‘
0 ‘ 2] 3 4 5!
2.31 0.11 2.2 |
Tr — : - = ~ - T >‘
a c H |

Figure: 1st-order system response to a unit step
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4.3 First-order systems

Characteristics “
A Initial slope = P, L‘:(]}Il‘;["ln[ =d
. . 1.0 / -
* 2% Settling time, T 0.9 / —
0.8 - /d
0.7 -
. 0.6 F 63% of final value
»The time for the response to “ at ¢ = one time constant

reach, and stay within, 2% E:

(arbitrary) of its final value. The o3}

time when c(t) = 0.98. gf §

l |

0 ‘ 4 2 3 4

o i il il

4 T, »‘
— B /i

a
Figure: 1st-order system response to a unit step
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4.3 First-order systems

First-Order Transfer Functions via Testing

* Consider a simple first-order system, G(s)=K/(s + a), whose step
response is
K/a Kla

Cls) = s(s +a) s (s +a)

e we can identify K and a from laboratory testing, so we can obtain the
transfer function of the system.
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4.3 First-order systems

First-Order Transfer Functions via Testing

0.8 -

* We determine that it hasthe
first-order characteristics we

0.6
have seen thus far, such as:
3 05
* no overshoot. g
* nonzero initial slope. g 04

* The transfer function for the 03
system is 0.2

G(s) = 5.54/(s+7.7) 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

FIGURE: Laboratory results of a system step response test
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4.4 Second-order systems: introduction

General form

» 2 finite poles:

Complex pole pair determined by the
parameters a and b

> No zeros

STUDENTS-HUB.com

R(S)= <

G(s)

b

C(s)

ss+as+b

Figure: General 2"d-order system
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System Pole-zero plot Response

4.4 Second-order systems: introduction
off) c(h=1+0.171¢785% —

j@ 1ob 117171146
Gi(5) s-plane 1
1
(b) Ris) =3 ; 9. C(s) .~ % v g 05
$"+9 +9 ~7.854 —1.146
Overdamped
| | | | | -
0 1 2 3 4 5
e(n) oty = 1-e~(cosy8t +"% sinv&r)
jw 1ab =1-1.06¢~" cosf/B1-19.47°)
G(s) s-plane — L2
| X |8 (l}-g—
Ris) =5 Cls) B
(c) a2 €@, -0 06
G{j‘} S"'+25+9 —] 04_
-l Underdamped X | -ji8 021
| | | | | -
— — 1 0 1 2 3 4 5
R(5) =7 b C(5)
h} + A T b , ,)il c(fy=1-cos 3¢
Ja L
G(s) s-plane .
=, 3
General foy 2 L o J
(d} B 5 9 EEE— - (T ] —
5=+9
- —j3
Undamped
| | [—

G(s)
1
R(s)=7 C(s)
(e) 8 . 9 —(...
F~+65+9

Critically damped
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4.4 Second-order systems: introduction

Overdamped response

G(s)

Ris) = % g C(5)
s2+95 +90
»1 pole at origin from the unit step input e
»System poles: 2 real at 0, 0, N
»Natural response: Summation of 2 exponentials e
. 15 ,—oqt - —oat 754 —1ise|
c(t) = K¢ + Koe
»Exponential frequency: ¢,, 0,
clf) c(t)=1+0.171 7834 —
Lob 1.171¢"-1401
051
T B et
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4.4 Second-order systems: introduction

Underdamped response

G(s)
. e . . Ris =% Cis
» 1 pole at origin from the unit step input T
. Underdamped
»System poles: 2 complex at 0, * jw,
»Natural response: Damped sinusoid with an sone 4
exponential envelope s
-1
- . K| =8
c(t) = Kqe Jdtf*r}f;(u’d?‘ — @)
c(f) e(f) = 1-e7(cosy8t +"§T§— siny81)
»Exponential decay frequency: g, st cosi1947)
1.0
»Frequency (rad/s): w, 031
0.4
021
0 1 2 3 4 5 !
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4.4 Second-order systems: introduction

Underdamped response characteristics

c(t)
. . . A .
* Transient response: Exponentially decaying Exponential decay generated by
. real part of complex pole pair
amplitude generated by the real part of the
system pole times a sinusoidal waveform /

generated by the imaginary part of the

system pole. S
* Damped frequency of oscillation, w,: The
imaginary part of the system poles. Sinusoidal oscillation generated by
imaginary part of complex pole pair
» Steady state response: Generated by the -

input pole located at the origin.

* Underdamped response: Approaches a Figure: 2-order step response components
steady state value via a transient response  generated by complex poles
that is a damped oscillation.
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4.4 Second-order systems: introduction

Undamped response

Ri.‘;}:% g ﬂ-—
» 1 pole at origin from the unit step input e
»System poles: 2 imaginary at fjw, |
»Natural response: Undamped sinusoid P %ﬂ

e (T
* _-JII 3

(1 c(fy=1—-cos 3t

»Frequency: w, i

c(t) = Acos (wit — @)

| | ——
o 1 2 3 4 5
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4.4 Second-order systems: introduction

Critically damped response

G(s)
I
« s . . Ris)=7 9 C(s)
> 1 pole at origin from the unit step input i
. Critically damped
> System poles: 2 multiple real e
»Natural response: Summation of an exponential and B
H . s-plane  §
a product of time and an exponential o
. . R B
c(t) = Kie 1" + Kote 7! -3
»Exponential frequency: o, »
» Note: Fastest response without overshoot o] Ot HTo
06
0.4
0.2
0o 1T 2 3 4 5!
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4.4 Second-order systems: introduction

Step response damping cases

dOverdamped
dUnderdamped
dUndamped
dCritically damped

STUDENTS-HUB.com

L

2.0
1.8
1.6
1.4

(1)
A

Undamped

B Under-
damped

Critically
damped

Overdamped

Figure: Step responses for 2nd-order system damping cases
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4.5 The general second-order system
Specification

* Natural frequency, w,
* The frequency of oscillation of the system without damping

* Damping ratio,

- Exponential decay frequency 1 Natural period (s)
~ Natural frequency (rad/s) 27 Exponential time constant

e General TF ;
J
G(s) =

524 as+b 52+ 2wps + w?

where

| . | a
a=2(w,, b= w2, ( = S Wy, = Vb
n Uploaded By: Mohammad Awawdeh
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4.5 The general second-order system

Response as a

‘unction of

Poles

§12 = —(Wwn T Wp
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Poles

Step response

J

. s=planeg
%jmﬁ P
= (T

-

Ja s-plane
|
X jewn 1= &2
- O
50,
X oo, V1= &2
Ja
[ |
s-plane
X -
_gmn
Jo
~{o o, [2=1 4
s-plane
X X = O
=W, =y, /6= 1
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4.6 Underdamped second-order systems

Step response

Transfer function

.2

C(s) = "
(s) (2 + 2(wns + w?)

...partial fraction expansion...

1 (s + Cwy) + —{*—ﬁwﬂw 1 — (2

— — 4+ _ . -
s (s + Cwn)?2 +wi(1—¢2)
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4.6 Underdamped second-order systems

Step response

Time domain via inverse Laplace transform

c(t) =1 — esent (CDE (wnv/1—=C2)t+ \/1‘:_7 sin (wp/1 — {;2)1.)

...trigonometry & exponential relations...

1 .
=1 — — e~ Cwnl cos(wny/' 1 — (2 — 0)

b = t.an_l{ - )

Vv 1-—(?

where
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4.6 Underdamped second-order systems

Responses for { values

* Response versus { plotted
along a time axis normalized
to w,

* Lower ( produce a more
oscillatory response

* w, does not affect the nature
of the response other than
scaling it in time

STUDENTS-HUB.com

(]
T
5O LA

1 1 1 1 1 |
0 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17

= i,

Figure: 2nd-order underdamped responses for damping ratio values
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4.6 Underdamped second-order systems

Response specifications

* Rise time, T.: Time required for . _

the waveform to go from 0.1 of , / \

the final value to 0.9 of the final cw — % : - o

value o35cims /4 o

0.9¢k7a1

* Peak time, T;: Time required to

reach the first, or maximum,

peak 016 —»

w7, e T, T, o
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4.6 Underdamped second-order systems

Response specifications

 Overshoot, %0S: The amount

t
t
t

nat the waveform overshoots
he steady state, or final, value at

he peak time, expressed as a

percentage of the steady state
value

* Settling time, T.: Time required
for the transient’s damped
oscillations to reach and stay
within £2% of the steady state
value

STUDENTS-HUB.com

O-l'fiinul — -

—I-| T,

Ll |

- Tp T,
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4.6 Underdamped second-order systems

Evaluation of TIO

* Tp is found by differentiating c(t) and finding the zero crossing after
t=0, which is simplified by applying a derivative in the frequency
domain and assuming zero initial conditions.

2

'.rL'.n

52 + 2Qwns + JJ;%

Lle(t)] = sC(s) =

...completing the squares in the denominator
...setting the derivative to zero
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4.6 Underdamped second-order systems

Evaluation of %0S

%0 is found by evaluating

040G — max — “final 4

Cfinal
where
Cmax — ‘-’(Tp) Cfinal = 1
...substitution
— L

%08 = ev1-¢2 x 100
¢ given %0OS
%08
¢ = — 111( 100 )
\/fr2 + 1112("758["9)

STUDENTS-HUB.com

Percent overshoot, %08

03 04 05 06 07 08 09
Damping ratio, £
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4.6 Underdamped second-order systems

Evaluation of T

Find the time for which c(t) reaches and stays within 2% of the steady
state value, ¢, i.e., the time it takes for the amplitude of the decaying
sinusoid to reach 0.02

This equation is a conservative estimate, since we are assuming that

cos(wpV1—C3t—¢) =1
Settling time
I

~ —In(0.02y/1T=2)

(Wn

Approximated by
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4.6 Underdamped second-order systems

Evaluation of T,

A precise analytical relationship between T. | Pt | e tme.
and ¢ cannot be found. However, using a | e
computer, T. can be found oy 01 | ries
. . . £ 24p 0.5 ].63$
1. Designate w,t as the normalized time cz..| 07 | 21
variable il 05 | 2883
2. Select a value for e
3. Solve for the values of w,t that yield c(t) "“-—?'
— 09 and C(t) — 01 0.1 0.2 0.3 0.4 Damc])j.i]grmo.e 0.7 0.8 0.9
4. The normalized rise time w,T, is the
difference between those two values of Figure: Normalized T, vs. { for a
w,t for that value of € 2nd-order underdamped response
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4.6 Underdamped second-order systems

Location of poles

* Natural frequency, w, : Radial distance
from the origin to the pole

* Damping ratio, ( : Ratio of the
magnitude of the real part of the
system poles over the natural frequency

—(Wn

)

STUDENTS-HUB.com

————————— -+ joV1 - £2 = joy

I

|

| Wy s-plane

I

| &)

! Ll i3

—{wp=—0y

|

|

|

' 9 "

* ————————— — —_;m”'..fl — {." =—Jwy

Figure: Pole plot for an underdamped
2"d-order system
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4.6 Underdamped second-order systems

Location of poles

* Damped frequency of oscillation, w,:

Imaginary part of the system poles

Wg = WnV 1 — ;:'Q

* Exponential damping frequency, o:
Magnitude of the real part of the
system poles

O'dzzwn
* Poles

V4

STUDENTS-HUB.com

————————— -+ joV1- 2 = oy

I

|

| Wy s-plane

I

| &)

| 4
—{wp=—0y

|

|

|

* ————————— — —jw”'..fl — {.'2 = —j'ﬂa’d

Figure: Pole plot for an underdamped
2"d-order system
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4.6 Underdamped second-order systems

%0S,
. Jjw
Location of poles T :
%08,
»T_ o horizontal lines T
P \ s-plane
wpv1—(2 w4
> T, « vertical lines
L 4 T, T,
Ty=—=—
Qe Td
»>%0S « radial lines
_¢m Figure: Lines of constant T, T, and %0S.
%08 = eVi-& x 100 Note:  T,<T,,
To2<To1»
( = cos(f) %0S, < %0S,.
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colf)

4.6 Underdamped second-order systems

_Envelope the same

3
. Al
P |
|
s-plane

Underdamped systems | s

[y aditalul

»T, o« horizontal lines
Frequency the same .
- 7 1 i
b ».J.Jn\/]_—i{,z - \-"-‘:Id Ill,-"lllll \\h_--‘/g o Ex}!c o
. . / | : l minon
> T, o vertical lines
-'i]: 4 Same overshoot w3 e
TS — —_ — 3 ,.-'f{; g /-""'-?-L B t&ll | s-plane
(Wn 0d T o
/ .
. Yy 21| e,
»%0S « radial lines A
%0S — Nx?ff % 100 Figure: Step responses of 2nd-order systems as

poles move: a. with constant real part,
¢ = cos(b) b. with constant imaginary part,
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4.7 System response with additional poles

Effect on the 2"9-order system

* Dominant poles: The two complex poles that are used to

approximate a system with more than two poles as a second-order
system

e Conditions: Three pole system with complex poles and a third pole on
the real axis

512 = (W T JWn \/l - QE 53 = — iy
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4.7 System response with additional poles

Effect on the 2"9-order system

 Step response of the system in the frequency domain

A B(s+ (wp) + Cwy N D
S (5 + Cwn)? + mﬁ s + o

 Step response of the system in the time domain

c(t) = Aul(t) + f3~—£wﬂt(BcDS(wdﬂ + C'sin(wyt)) + De™ort
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4.7 System response with additional poles

Effect on the 2"9-order system

3 cases for the real pole, a,

1. a,is not much greater
than (w,
2. o, > (W,

* Assuming exponential

decay is negligible after 5
time constants

* The real pole is 5X farther
to the left than the
dominant poles

3. a,=00

STUDENTS-HUB.com
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s-plane P X s-plane X s-plane
= (T K = (¥ = 7
—ay, Ly Loy
X X
(1) P2
Case II Case II1
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1M1 Ault) + e S@H(B cos wyt + C sin wyt)




4.7 System response with additional poles

Effect on the 2"9-order system

* What about the magnitude of the exponential decay?

* Can it be so large that its contribution at the peak time is not
negligible?

. bc A Bs + C D
( (‘E) — 7 — + 2 +
s(s?4+as+b)(s+c) s st4as+b s+c

* The residue of the third pole, in a three-pole system with dominant
second-order poles and no zeros, will actually decrease in magnitude
as the third pole is moved farther into the left half-plane.

2
ca — Cc”

A=1: B =
c24+b—ca

2 2
ca- —c-a — bc ) —b
c2+b—ca ’ c2+b—ca
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4.7 System response with additional poles

Effect on the 2"9-order system

. bc A Bs + C D
s(s?+as+b)(s+c) s sP+as+b s+c
)
ca— ¢
A=1; B =
' 24+ b—-ca
C_ ca® — c*a — :’)L‘_ B —b
- 2+b—ca’ 24+ b—ca

As the nondominant pole approaches infinity;, or ¢ oo,
A=1;B=-1;C=-3;D=0
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4.7 System response with additional poles

Effect on the 2"9-order system

G cxample 2.2 JEEEEED

Comparing Responses of Three-Pole Systems

PROBLEM: Find the step response of each of the transfer functions shown in
Eqs. (4.62) through (4.64) and compare them.

24.542

T:(s) = 4.62

) = T 12458 (4.62)
24542

Ts(s) = 4.63

28) = G102 + 45 1 2458 (4.63)
73.626

T3(s) = (4.64)

(s +3)(s? + 45 4+ 24.542)
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4.7 System response with additional poles

G £xample 4.3 JEEEED

Comparing Responses of Three-Pole Systems

PROBLEM: Find the step response of each of the transfer functions shown in
Egs. (4.62) through (4.64) and compare them.

24.542

T:(s) = 4.6

) = T a1 (4.62)
24542

To(s) = 4.63

28) = G102 + 45 1 2458 (4.63)
73.626

T3(s) = (4.64)

(s +3)(s2 + 45 +24.542)

¢ (1) = 1 —1.09¢ *cos(4.532r — 23.8°)
c2(t) =1 —029¢ ' — 1.189¢ “cos(4.532¢ — 53.34%)
c3(t) =1 — 1.14e73 4 0.707e #cos (4.5321 + 78.63°)
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4.7 System response with additional poles

Effect on the 2"9-order system

¢ (1) = 1 —1.09¢ *cos(4.532r — 23.8°)
c2(t) =1 —029¢ " — 1.189¢ “cos(4.532¢ — 53.34%)
c3(t) = 1 — 1.14e7 3 +0.707e % cos (4.532¢ + 78.63°)

Normalized response

| | | g

0 0.5 1.0 1.5 2.0 2.5 3.0
Time (seconds)
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4.7 System response with additional poles

Effect on the 2"9-order system

PROBLEM: Dectermine the validity of a second-order approximation for each of
these two transfer functions:

i 700
a. UlS) =
. (s + 15)(s2 + 4s + 100)
360
b: 1G(e) =
(5) (s +4)(s% + 25 + 90)
ANSWERS:

a. The second-order approximation is valid.

b. The second-order approximation is not valid.
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Chapter outline

4 Time response

4.1 Introduction

4.2 Poles, zeros, and system response

4.3 First-order systems

4.4 Second-order systems: introduction

4.5 The general second-order system

4.6 Underdamped second-order systems

4.7 System response with additional poles

4.8 System response with zeros

4.9 Effects of nonlinearities upon time responses
4.10 Laplace transform solution of state equations
4.11 Time domain solution of state equations
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4.8 System response with zeros

Effect on the 2"9-order system

1.6 -
* Effects on the system response
* Residue, or amplitude

* Not the nature, e.g., exponential,
damped sinusoid, etc.

* Greater as the zero approaches
the dominant poles

zZero at —3
zZero at —5
zero at —10

Normalized c(r)

e Conditions: Real axis zero added
to a two-pole system

no Zero

| | | -

0 2.0 4.0 6.0

Time (seconds)
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4.8 System response with zeros

Effect on the 2"9-order system

Assume a group of poles and a zero far from the poles.

...partial-fraction expansion...

5+ a
T(s) =
() (s+b)(s +0)
A B
= +
s+b s+4ec
_ (=b+a)/(—b—+¢) N (—c+a)/(—c+b)
s+b s+ c

If the zero is far from the poles, thena > b and a > ¢, and

T(s) ~ {1;{ —I_b;—c n 1;{:;&}
o 1
- (s+b)(s+c)

Zero looks like a simple gain factor and does not change the relative amplitudes of the components of the
response.
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4.8 System response with zeros

Effect on the 2"9-order system

Another view...

* Response of the system, C(s)

e System TF, T(s)

* Add a zero to the system TF, yielding, (s + a)T(s)

* Laplace transform of the response of the system
(s + a)C(s) = sC(s) + aC(s)

* Response of the system consists of 2 parts
* The derivative of the original response
* A scaled version of the original response
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4.8 System response with zeros

Effect on the 2"9-order system

3 cases for a
* aisvery large
* Response — aC(s), a scaled version of the original response

* ais not very large
* Response has additional derivative component producing more overshoot

* a is negative — right-half plane zero

* Response has additional derivative component with an opposite sign from the
scaled response term
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4.8 System response with zeros

Non-minimum-phase system,

* Non-minimum-phase system:

System that is causal and stable whose
inverses are causal and unstable.

* Characteristics: If the derivative term,
sC(s), is larger than the scaled
response, aC(s), the response will
initially follow the derivative in the
opposite direction from the scaled
response.
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1.5
1.0
=05

0

0.5
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T(s) = KM
7 (s4p3) (24 as+b)

@ £xample .10 TG

Evaluating Pole-Zero Cancellation Using Residues

PROBLEM: For each of the response functions in Egs. (4.86) and (4.87)., determine
whether there is cancellation between the zero and the pole closest to the zero. For
any function for which pole-zero cancellation is valid, find the approximate response.

o 2625(s+4)
Cils) = s(s +3.5)(s +5)(s +6) (4.80)
Cys) — 26256+ o

s(s +4.01)(s+ 5)(s + 6)
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SOLUTION: The partial-fraction expansion of Eq. (4.86) is

C1(s) 1 3.5 N 3.5 1
1(§) =—— —
! s s45 s+6 s435

(4.88)

The residue of the pole at —3.5, which isclosest to the zero at —4,isequalto 1 andisnot
negligible compared to the other residues. Thus, a second-order step response
approximation cannot be made for Cy(s). The partial-fraction expansion for C,(s) is

.87 5.3 N 4.4 N ().033
s s+5 s4+6 s4+4.01

Ca(s) = (4.89)
The residue of the pole at —4.01, which is closest to the zero at —4, is equal to 0.033,
about two orders of magnitude below any of the other residues. Hence, we make a
second-order approximation by neglecting the response generated by the pole at —4.01:

87 5.3 4.4

()
CH(s) ~
2(5) ) s+5+5+6

(4.90)

and the response ¢2(f) 1s approximately

2 (1) =~ 0.87 — 53¢ + 4.4 (4.91)
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Try at home

30. For the following response functions, determine if
pole-zero cancellation can be approximated. If it
can, find percent overshoot, settling time, rise time,
and peak time. |Section: 4.8].

STUDENTS-HUB.com

1 s+ 3)
a. C(s) = s(s + 2)((,;2 + 35 + 10)
b. C(s) = She

s(s +2)(s* +4s +20)
c. C(s)= SR

s(s +2)(s2 +5+5)
d. C(s) = — =

s(s + 2)(s* + 55 + 20)
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