Algorithm Analysis: 2.1 Mathematical Background

On board
p. 30,31,32 textbook

AAAAAAAAAAAAAA

Abdallah Karakra

Asymptotic Notation

Asymptotic Notation is a formal notation for discussing and
analyzing “classes of functions”.

* |ts usein analyzing runtimes

" Big-O" notation : O(n)
" Big-Omega ofn" : Q(n)
"Theta of n" : O(n)

Friday April 14, 2022 Abdallah Karakra

T(n)

D

Asymptotic Notation

* Its use in analyzing runtimes.

How to evaluate algorithms?

T & T

Output

Algorithm B

Friday April 14, 2022 Abdallah Karakra

Asymptotic Notatlon

We will refer to the running time as T(N)

Definition 2.1.

I(N) = O(f(N)) if there are positive constants ¢ and ng such that T(N) < ¢f(N) when
N = np.

Definition 2.2.

T(N) = Q(g(N)) if there are positive constants ¢ and ng such that T(N) > cg(N) when
N = np.

Definition 2.3.
I(N) = ©(h(N)) if and only if T(N) = O(h(N)) and T(N) = Q(h(N)).

Friday April 14, 2022 Abdallah Karakra

Definition of Order Notation

« Upper bound: T(n) = O(f(n)) Big-O
Exist constants ¢ and no such that
T(n)<cf(n) foralln=>no

« Lower bound: T(n) = Q(g(n)) Omega
Exist constants ¢ and no such that
T(n)>cg(n) foralln=>no

« Tight bound: T(n) = 6(f(n)) Theta
When both hold:
T(n) = O(f(n))
T(n) = Q(i(n))

Friday April 14, 2022 Abdallah Karakra

Asymptotic Notation

></ _ /

no . .
f(n)=0(g(n))
(b)

n

Asymptotic
Upper Bound

e f(n) = Q(gn))
(c)

Asymptotic
Lower Bound

f(n)

//(:!S(n)

_//’

Big- O Notation

Big-Q Notation

n
f(n) =©(gn))

(a)

Tight Asymptotic
Bound

Big-® Notation

Friday, Ajril 14, 2022

Abdallah Karakra

Example: Upper Bound

Claim: n” +100n=0xn")
Prootf: Must find ¢, . such that for all » > n.,

n> +100n < en’

Let's try setting ¢ =2. Then
n”+100n < 2n°

1001 < n?
100<n

So we can set 7, =100 and reverse the steps above.

Abdallah Karakra

Example: Lower Bound

Claim: #n°+100n =Q(#n°)

Proof: Must find ¢, nosuch that for all 7 > o,
n” +100n = cn’

Let's try setting ¢ =1. Then
n* +100n = n’

n=0

So we can set no=0 and reverse the steps above. e
‘,

[Thus we can also conclude n” +1007 = Q(nz)

Abdallah Karakra

ommon time complexities

Better
BETTER O(1) constant fime .
A Comparing the
» O(logn) log time asymptotic running
= O(n) linear time time
x O(nlogn) log linear time Ex: O(log n) is better
o than O(n)
x O(n?) quadratic time !
o log n << n <<t << << 2t
x O(n) cubic time 0g 1L
Y x 024 exponential time
WORSE

Friday April 14, 2022 Abdallah Karakra

Rules

1. Eliminate low order terms

— 4n+5=4n
— 05nlogn-2n+7=0.5nlogn
— 2"+n3+3n= 2"

2. Eliminate constant coefficients

— 4dn=n

—/‘/\\

— 05nlogn=nlogn N
— nlog(n?=2nlogn=nlogn /\\
g (n%) g g “‘\‘\\

\\“ /

Friday April 14, 2022 Abdallah Karakra

Rules

If T1(n)= O (f(n)) and Tz (n) =0 (g(n)), then
1. Ta(n)+T2(nN)= max (O (f(n)), O (g(n)))
O(n3) +O(n%) = max (0O(n3),0(n*)) = O(n%)

2. Ti(n)*T2(n)= O (f(n)*g(n))
——

O(n%) *O(n%) =0(n**n*)=0) A"

\

Abdallah Karakra

Analyzing Code

| want to do some code examples, but first, how will we examine
code.

* primitive operations

e consecutive statements

 function calls

e conditionals

* loops

* recursive functions

Friday April 14, 2022 Abdallah Karakra

Tips on Analyzing the Time Complexity of
Algorithms that use Nested Loops

« if you have two loops; the outer and inner loop, and they are
dependent on the problem size n, the statements in the inner loop
will be executed O(n?) times:

for (int 1 = 0; 1 < n; i++) {
for (int 7 = 0; 3 < n; J++) {
// these statements are executed 0O(n~) times

for (int i = 0; i < n / 2; i++) {
for (int 3 = 0; 4 < n / 3; jJ++) {
// these statements are also executed 0O(n®) times
// since both loops loop O(n) times, and
// O(n) * O(n) = O(n?)

Friday April 14, 2022 Abdallah Karakra

Tips on Analyzing the Time Complexity of
Algorithms that use Nested Loops

* If you have triply-nested loops, all of which are dependent
on the problem size n, the statements in the innermost

loop will be executed O(n?3) times:

for (int i = 0; 1 < n; i++) {
for (int § = 0; J < n; J++) {
for (int k = 0; k < n; k++) |

// these statements are executed 0O(n®) times

Abdallah Karakra

Friday, Ajril 14, 2022

Tips on Analyzing the Time Complexity of
Algorithms that use Nested Loops

Imagine a case with doubly-nested loops where only the outer
loop is dependent on the problem size n, and the inner loop
always executes a constant number of times, say 3 times:

for (int 1 = 0; 1 < n; i++) {
for (int 7 = 0; j < 3; j++) {
// these statements are executed 0O(n) times

In this particular case, the inner loop will execute exactly 3 times for each of the n
iterations of the outer loop, and so the total number of times the statements in the
innermost loop will be executed is 3n or O(n) times, not O(n?) times.

Friday April 14, 2022 Abdallah Karakra

Tips on Analyzing the Time Complexity of
Algorithms that use Nested Loops

Imagine a third case: you have doubly nested loops, and the
outer loop is dependent on the problem size n, but the inner
loop Is dependent on the current value of the index variable

of the outer loop:

for (int i = 0; 1 < n; i++) {
for (int § = 0; J < 1i; J++) {
// these statements are executed 0O (n®) times

.]

Friday April 14, 2022 Abdallah Karakra

\

Analyzing Code

Simple statement

for/while loops

The simple statement takes O(1) time. _
The loops take N time to complete and take O(n).

int x= n + 12; for(int i=0;i<n;i++)
{
If condition 3
}
if (condition) { Nested loops
sequence of statements 1
} If the nested loops contain M and N size, the cost is O(MN)
else { for(int i=0;i<n;i++)
sequence of statements 2 { A SR
J the worst-case time is the slowest of the N
two possibilities: max(time(sequence 1), }
time(sequence 2)). For example, if }

sequence 1 is O(N) and sequence 2 is O(1)
the worst-case time for the whole if-then-

Abdallah Karakra

for(int 1 = 0; 1 < n; i++)
Sum++;

Example 2

O(N)

for(int 1 = 0; 1 < n; i+=2)
SUm++;

Example 3

ON"2)

for(int 1 = 0; 1
for(int j =

Friday April 14, 2022 Abdallah Karakra

Friday, Ajril 14, 2022

Analyzing Code

cexampile 4
O(N)
for(int 1 = 9; i < n; 1i+=2)
sum++;
for(int j = 0; j < n; j++)
Sum++;

Example 5
0/(18%),
for(int 1 = 0; i < n; i++)
for(int j =0; j < n * n; j++)
sum++;
Example 6
OIN"2)
for(int i = 0; 1 < n; i++)
for(int j = 0; j < i; j++)
Sum++;

Abdallah Karakra

Analvzina Code-

Example 7
Ofn"5)
for(int 1 = ©; i < n; i++)
for(int j = ©; J < n * n; Jj++)
for(int k = 8; k < j; k++)
Sum++;
Example 8
Oflog(n/)
for(int i = 1; i < n; i =1 * 2)
Sum++;
Example @
login)
while(n>1){
n=n,/2;
3

Friday April 14, 2022 Abdallah Karakra

Analyzing Code

Example 10

Find O (n) for the following:

n-3

8n’log n + Sn® + n

Simple Rule: Drop lower order terms and constant
factors.

- Tn -3 1s O(n)
- 8n210g n+5n°+nis O(nzlﬂg n)

Abdallah Karakra

Analyzing Code

Example 11
for (int 1=0;I< n*n ;I1++)
for (int |=1;)< 1”I;]++)
for (Int k=0;k<n;k++){
Statement(s);

/ these statement are executed O (n”) times

Friday April 14, 2022 Abdallah Karakra

More Examples

On board

N

A\

\

Friday April 14, 2022 Abdallah Karakra

Recurrence Relation

A recurrence relation, T(n), Is a recursive function of an integer variable n.

Like all recursive functions, it has one or more recursive cases and one or more base
cases.

Example: C o =1

T(n) = <

_ 2T(n/2)+bn+c itfn=1

The portion of the definition that does not contain T is called the base case of the

recurrence relation; the portion that contains T is called the recurrent or recursive
case.

Friday April 14, 2022 Abdallah Karakra

Example 1: Write the recurrence relation for the following method:
public void £ (int n) ({
if (n==0)
System.out.println (n)
else({
System.out.println(n) ;
f(n-1);

1. The base case is reached when n == 0.

Forming Recurrence Relations

Recursive Function to
print number from
Given input down to O.

2. When n > 0, the method performs two basic operations and then calls itself, using ONE

recursive call, with a parameter n — 1.

Friday April 14, 2022 Abdallah Karakra

Forming Recurrence Relations

Example 1: Write the recurrence relation for the following method:

public void £ (int n) {

if (n==0)
System.out.println (n)
else{
System.out.println(n) ;
f(n-1);
}
}
C , =0
T = —
b+T(n-1) , >0

Friday April 14, 2022 Abdallah Karakra

Forming Recurrence Relations

Example 2: Write the recurrence relation for the following method:

long fibonacci (int n) { // Recursively calculates Fibonacci number
if(n == || n == 2)
return 1;
else

return fibonacci(n - 1) + fibonacci(n - 2);

the recurrence relation is:

—

C .n=1lorn=2
T(N)= — b+T(n-1)+T(h-2) . n>2

Friday April 14, 2022 Abdallah Karakra

Forming Recurrence Relations

Example 3: Write the recurrence relation for the following method:

long power (long x, long n) {
if(n == 0)
return 1;
else if(n == 1)
return x;
else if ((n % 2) == 0)
return power (x, n/2) * power (x, n/2);

else
return x * power (x, n/2) * power (x, n/2);

The recurrence relation is:

——

T(n)= — C ,n=0orn=1
b+ 2T(n /2) , n>2

Friday April 14, 2022 Abdallah Karakra

Solving Recurrence Relations

Examplel: Form and solve the recurrence relation for the running time of factorial
method and hence determine its big-O complexity:

long factorial (int n) {
if (n == 0)
return 1;
else
return n * factorial (n - 1) ;

}

First: The recurrence relation is:
C .n=0
T = — b + T(n-1) . n>=1

Second: By Substitution

Friday April 14, 2022 Abdallah Karakra

T((M)=b +T(n-1)
T(n-1)= b+ T(n-1-1) = b+ T (n-2)

> T(n-1) =b + T (n-2)

T(M=b+[b+T(N-2)] =2b+T(n-2)
T(N)=2b+T(n-2)
TN-2)=b+T(n-2-1)=b + T (n-3)

2> T (n-2) =b + T (n-3)
T(N)=2b+[b+T(n-3)]

T(n)=3b +T (n-3)

Solving Recurrence Relations

T(n)= b+T(n-1)
T(nN)=2b+T(n-2)

T(n)=3b +T (n-3)

- (n) =kb + T (n-k)

The base case is reached whenn-k =0
- k =n, we then have:

TM)=nb+T(M-n)=nb+T(0)
T (n) =nb +T (0)

T(n)=nb+c ,cisconstant

Therefore the method factorial is
O(n)

Abdallah Karakra

Friday, Ajril 14, 2022

Solving Recurrence Relations

Example 2: Analysis The following recurrence relation : (determine its big-O
complexity)

2T(n/2)+n , N >1

Solution: By Substitution

Friday April 14, 2022 Abdallah Karakra

Solving Recurrence Relations

T()=2T(n/2)+n
T(n/2)= 2T (n/4) + n/2
T(nN)=2[2T (n/4) +n/2]+ n =4 T (n/4) +2n

T(n)=4T (n/4) +2n
T (n/4)=2T (n/8) + n/4
T(n)=4[2T(n/8)+ n/4] +2n =8 T (n/8) + 3n

T(n)=8 T (n/8) +3n

T(n)=2*T (n/2¥)+ kn

T(n) =2 T (n/2¥) + k n

The base case is reached when
n/2¥=1 > n = 2%, we then have:

T(nN)=nT(1)+nlogyn
T (n) =nc + nlog; n, cis constant

Therefore T(n) = O(nlog, n)

Definition: log, B = A means X4 =B

Abdallah Karakra

Friday, Ajril 14, 2022

Solving Recurrence Relations

Example 3: Analysis The following recurrence relation : (determine its big-O complexity)

d , h=1
T (n) = e— .
2T () +b n>1

Solution: By Substitution

Friday April 14, 2022 Abdallah Karakra

T(n)=2T()+ b
TE)=2T(;)+b
T(n)=2[2T(;)+ b]+b
T(n)=22T(3)+ (2b)+b
T(5)=2T(3) +

T(n)=22[2T (;) +b]+ (2*b)+b

Solving Recurrence Relations

T (n)=2k T (%) + (2571 *b) + (252 *b)++2%%%
T (n)=2T () + by 12!

T (n)=2*T (%) + b [27]]

Base case : T(d)=1>> 2% =1 n=2¢3 K=log, n
T(n)=24T () +b |5

T(n)=nT(1)+b|"|
= T(n)=nc+bn-b , c,bconstants

Therefore T(n) = O(n)

T (n)=23 T (%) + (22 *b) + (2*b)+b >xt=———(x=1)

Friday, Ajril 14, 2022

QRREEULCIE] Definition: ogoBoedBymepsMibbai

	Slide 1: Algorithm Analysis: 2.1 Mathematical Background
	Slide 2: Asymptotic Notation
	Slide 3: Asymptotic Notation
	Slide 4: Asymptotic Notation
	Slide 5: Definition of Order Notation
	Slide 6: Asymptotic Notation
	Slide 7: Example: Upper Bound
	Slide 8: Example: Lower Bound
	Slide 10: Common time complexities
	Slide 11: Rules
	Slide 12: Rules
	Slide 13: Analyzing Code
	Slide 14: Tips on Analyzing the Time Complexity of Algorithms that use Nested Loops
	Slide 16: Tips on Analyzing the Time Complexity of Algorithms that use Nested Loops
	Slide 17: Tips on Analyzing the Time Complexity of Algorithms that use Nested Loops
	Slide 18: Tips on Analyzing the Time Complexity of Algorithms that use Nested Loops
	Slide 19: Analyzing Code
	Slide 20: Analyzing Code
	Slide 21: Analyzing Code
	Slide 22: Analyzing Code
	Slide 23: Analyzing Code
	Slide 29: Analyzing Code
	Slide 30: More Examples
	Slide 31: Recurrence Relation
	Slide 33: Forming Recurrence Relations
	Slide 34: Forming Recurrence Relations
	Slide 36: Forming Recurrence Relations
	Slide 37: Forming Recurrence Relations
	Slide 38: Solving Recurrence Relations
	Slide 39: Solving Recurrence Relations
	Slide 40
	Slide 41
	Slide 42
	Slide 43

