
Algorithm Analysis: 2.1 Mathematical Background

Friday, April 14, 2023 Abdallah Karakra

On board

p. 30,31,32 textbook

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Asymptotic Notation

Friday, April 14, 2023 Abdallah Karakra

• Its use in analyzing runtimes

• " Big-O" notation : O(n)
• " Big-Omega of n " : Ω(n)
• " Theta of n" : Ɵ(n)

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Asymptotic Notation

Friday, April 14, 2023 Abdallah Karakra

• Its use in analyzing runtimes.

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Asymptotic Notation

Friday, April 14, 2023 Abdallah Karakra Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Definition of Order Notation

Friday, April 14, 2023 Abdallah Karakra

• Upper bound: T(n) = O(f(n)) Big-O

Exist constants c and n0 such that

T(n)  c f(n) for all n  n0

• Lower bound: T(n) = (g(n)) Omega

Exist constants c and n0 such that

T(n)  c g(n) for all n  n0

• Tight bound: T(n) = (f(n)) Theta

When both hold:

T(n) = O(f(n))

T(n) = (f(n))

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Asymptotic Notation

Friday, April 14, 2023 Abdallah Karakra Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Example: Upper Bound

Friday, April 14, 2023 Abdallah Karakra Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Example: Lower Bound

Friday, April 14, 2023 Abdallah Karakra Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Common time complexities

Friday, April 14, 2023 Abdallah Karakra

Comparing the

asymptotic running

time

Ex: O(log n) is better

than O(n)

Better

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Rules

Friday, April 14, 2023 Abdallah Karakra

1. Eliminate low order terms

– 4n + 5  4n

– 0.5 n log n - 2n + 7  0.5 n log n

– 2n + n3 + 3n  2n

2. Eliminate constant coefficients

– 4n  n

– 0.5 n log n  n log n

– n log (n2) = 2 n log n  n log n

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Rules

Friday, April 14, 2023 Abdallah Karakra

If T1 (n)= O (f(n)) and T2 (n) =O (g(n)), then

1. T1 (n) + T2 (n)= max (O (f(n)) , O (g(n)))

O(n3) +O(n4) = max (O(n3),O(n4)) = O(n4)

2. T1 (n) * T2 (n)= O (f(n) * g(n))

O(n3) * O(n4) = O(n3 * n4)= O(n7)

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Analyzing Code

Friday, April 14, 2023 Abdallah Karakra

I want to do some code examples, but first, how will we examine

code.

• primitive operations

• consecutive statements

• function calls

• conditionals

• loops

• recursive functions

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Tips on Analyzing the Time Complexity of

Algorithms that use Nested Loops

Friday, April 14, 2023 Abdallah Karakra

• if you have two loops; the outer and inner loop, and they are

dependent on the problem size n, the statements in the inner loop

will be executed O(n2) times:

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Tips on Analyzing the Time Complexity of

Algorithms that use Nested Loops

Friday, April 14, 2023 Abdallah Karakra

• if you have triply‐nested loops, all of which are dependent

on the problem size n, the statements in the innermost

loop will be executed O(n3) times:

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Tips on Analyzing the Time Complexity of

Algorithms that use Nested Loops

Friday, April 14, 2023 Abdallah Karakra

imagine a case with doubly‐nested loops where only the outer

loop is dependent on the problem size n, and the inner loop

always executes a constant number of times, say 3 times:

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Tips on Analyzing the Time Complexity of

Algorithms that use Nested Loops

Friday, April 14, 2023 Abdallah Karakra

imagine a third case: you have doubly nested loops, and the

outer loop is dependent on the problem size n, but the inner

loop is dependent on the current value of the index variable

of the outer loop:

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Analyzing Code

Friday, April 14, 2023 Abdallah Karakra

the worst-case time is the slowest of the

two possibilities: max(time(sequence 1),

time(sequence 2)). For example, if

sequence 1 is O(N) and sequence 2 is O(1)

the worst-case time for the whole if-then-

else statement would be O(N). Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Analyzing Code

Friday, April 14, 2023 Abdallah Karakra Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Analyzing Code

Friday, April 14, 2023 Abdallah Karakra Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Analyzing Code

Friday, April 14, 2023 Abdallah Karakra Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Analyzing Code

Friday, April 14, 2023 Abdallah Karakra

Find O (n) for the following:

Example 10

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Analyzing Code

Friday, April 14, 2023 Abdallah Karakra

Example 11

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

More Examples

Friday, April 14, 2023 Abdallah Karakra

On board

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Recurrence Relation

Friday, April 14, 2023 Abdallah Karakra

A recurrence relation, T(n), is a recursive function of an integer variable n.

Like all recursive functions, it has one or more recursive cases and one or more base
cases.

Example:

The portion of the definition that does not contain T is called the base case of the
recurrence relation; the portion that contains T is called the recurrent or recursive
case.

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Forming Recurrence Relations

Friday, April 14, 2023 Abdallah Karakra

Example 1: Write the recurrence relation for the following method:

public void f (int n) {

if (n==0)

System.out.println(n)

else{

System.out.println(n);

f(n-1);

}

}

1. The base case is reached when n = = 0.

2. When n > 0, the method performs two basic operations and then calls itself, using ONE

recursive call, with a parameter n – 1.

Recursive Function to

print number from

Given input down to 0.

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Forming Recurrence Relations

Friday, April 14, 2023 Abdallah Karakra

Example 1: Write the recurrence relation for the following method:

public void f (int n) {

if (n==0)

System.out.println(n)

else{

System.out.println(n);

f(n-1);

}

}

c , n =0

b+T(n-1) , n >0
T (n) =

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Forming Recurrence Relations

Friday, April 14, 2023 Abdallah Karakra

Example 2: Write the recurrence relation for the following method:

:

long fibonacci (int n) { // Recursively calculates Fibonacci number

if(n == 1 || n == 2)

return 1;

else

return fibonacci(n – 1) + fibonacci(n – 2);

}

the recurrence relation is:

c , n = 1 or n = 2

b+ T(n – 1) + T(n – 2) , n > 2T (n) =

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Forming Recurrence Relations

Friday, April 14, 2023 Abdallah Karakra

Example 3: Write the recurrence relation for the following method:

long power (long x, long n) {

if(n == 0)

return 1;

else if(n == 1)

return x;

else if ((n % 2) == 0)

return power (x, n/2) * power (x, n/2);

else

return x * power (x, n/2) * power (x, n/2);

}

The recurrence relation is:

c , n = 0 or n = 1
b+ 2T(n /2) , n > 2

T (n) =

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Solving Recurrence Relations

Friday, April 14, 2023 Abdallah Karakra

Example1: Form and solve the recurrence relation for the running time of factorial
method and hence determine its big-O complexity:

long factorial (int n) {

if (n == 0)

return 1;

else

return n * factorial (n – 1);

}

First: The recurrence relation is:

c , n = 0
b + T(n-1) , n >= 1

Second: By Substitution

T (n) =

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Solving Recurrence Relations

Friday, April 14, 2023 Abdallah Karakra

T (n) =b + T (n-1)

T(n-1) = b + T (n-1-1) = b + T (n-2)

→ T(n-1) =b + T (n-2)

T (n) = b + [b + T (n-2)] = 2b + T (n-2)

T (n) = 2b + T (n-2)

T(n-2) = b + T (n-2-1) = b + T (n-3)

→ T (n-2) =b + T (n-3)

T (n) = 2b + [b + T (n-3)]

T (n) =3b + T (n-3)

T (n) = b + T (n-1)

T (n) = 2b + T (n-2)

T (n) = 3b + T (n-3)

.

.

T (n) =kb + T (n-k)

The base case is reached when n – k = 0
→ k = n, we then have:

T (n) = nb + T (n-n) = nb + T (0)

T (n) = nb +T (0)

T (n) = nb + c , c is constant

Therefore the method factorial is
O(n)

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Friday, April 14, 2023 Abdallah Karakra

Solving Recurrence Relations

Solution: By Substitution

Example 2: Analysis The following recurrence relation : (determine its big-O

complexity)

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Friday, April 14, 2023 Abdallah Karakra

T (n) = 2T(n / 2) +n

T (n/2)= 2 T (n/4) + n/2

Solving Recurrence Relations

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Friday, April 14, 2023 Abdallah Karakra

T (n) =

Solving Recurrence Relations

Example 3: Analysis The following recurrence relation : (determine its big-O complexity)

Solution: By Substitution

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Friday, April 14, 2023 Abdallah Karakra

Solving Recurrence Relations

Therefore T(n) = O(n)

i

i=0

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

	Slide 1: Algorithm Analysis: 2.1 Mathematical Background
	Slide 2: Asymptotic Notation
	Slide 3: Asymptotic Notation
	Slide 4: Asymptotic Notation
	Slide 5: Definition of Order Notation
	Slide 6: Asymptotic Notation
	Slide 7: Example: Upper Bound
	Slide 8: Example: Lower Bound
	Slide 10: Common time complexities
	Slide 11: Rules
	Slide 12: Rules
	Slide 13: Analyzing Code
	Slide 14: Tips on Analyzing the Time Complexity of Algorithms that use Nested Loops
	Slide 16: Tips on Analyzing the Time Complexity of Algorithms that use Nested Loops
	Slide 17: Tips on Analyzing the Time Complexity of Algorithms that use Nested Loops
	Slide 18: Tips on Analyzing the Time Complexity of Algorithms that use Nested Loops
	Slide 19: Analyzing Code
	Slide 20: Analyzing Code
	Slide 21: Analyzing Code
	Slide 22: Analyzing Code
	Slide 23: Analyzing Code
	Slide 29: Analyzing Code
	Slide 30: More Examples
	Slide 31: Recurrence Relation
	Slide 33: Forming Recurrence Relations
	Slide 34: Forming Recurrence Relations
	Slide 36: Forming Recurrence Relations
	Slide 37: Forming Recurrence Relations
	Slide 38: Solving Recurrence Relations
	Slide 39: Solving Recurrence Relations
	Slide 40
	Slide 41
	Slide 42
	Slide 43

