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Asymptotic Notation
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• Its use in analyzing runtimes

• " Big-O" notation    :  O(n) 
• " Big-Omega of n " :  Ω(n) 
• " Theta of n"           :  Ɵ(n)
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Asymptotic Notation

Friday, April 14, 2023 Abdallah Karakra

• Its use in analyzing runtimes.
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Asymptotic Notation
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Definition of Order Notation
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• Upper bound: T(n)  = O(f(n)) Big-O

Exist constants c and n0 such that 

T(n)  c f(n) for all n  n0

• Lower bound: T(n)  = (g(n)) Omega

Exist constants c and n0 such that

T(n)  c g(n) for all n  n0

• Tight bound: T(n)  = (f(n)) Theta

When both hold:

T(n)  =  O(f(n))

T(n)  =  (f(n))
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Asymptotic Notation
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Example: Upper Bound
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Example: Lower Bound
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Common time complexities
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Comparing the 

asymptotic running 

time 

Ex: O(log n) is better 

than O(n) 

Better
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Rules
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1. Eliminate low order terms

– 4n + 5  4n

– 0.5 n log n - 2n + 7  0.5 n log n

– 2n + n3 + 3n  2n

2. Eliminate constant coefficients 

– 4n  n

– 0.5 n log n  n log n

– n log (n2) = 2 n log n  n log n
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Rules
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If  T1 (n)=  O (f(n))    and T2 (n) =O (g(n)), then

1. T1 (n) + T2 (n)= max ( O (f(n)) , O (g(n)) )

O( n3) +O( n4)  = max (O(n3),O(n4 ))  =  O(n4)

2.  T1 (n) * T2 (n)= O ( f(n) * g(n) )

O( n3) * O( n4)  = O(n3 * n4 )= O(n7)
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Analyzing Code
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I want to do some code examples, but first, how will we examine   

code.

• primitive operations 

• consecutive statements

• function calls

• conditionals

• loops

• recursive functions
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Tips on Analyzing the Time Complexity of 

Algorithms that use Nested Loops
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• if you have two loops; the outer and inner loop, and they are 

dependent on the problem size n, the statements in the inner loop 

will be executed O(n2) times: 
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Tips on Analyzing the Time Complexity of 

Algorithms that use Nested Loops
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• if you have triply‐nested loops, all of which are dependent 

on the problem size n, the statements in the innermost 

loop will be executed O(n3) times: 
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Tips on Analyzing the Time Complexity of 

Algorithms that use Nested Loops
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imagine a case with doubly‐nested loops where only the outer 

loop is dependent on the problem size n, and the inner loop 

always executes a constant number of times, say 3 times: 
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Tips on Analyzing the Time Complexity of 

Algorithms that use Nested Loops
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imagine a third case: you have doubly nested loops, and the 

outer loop is dependent on the problem size n, but the inner 

loop is dependent on the current value of the index variable 

of the outer loop: 
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Analyzing Code
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the worst-case time is the slowest of the 

two possibilities: max(time(sequence 1), 

time(sequence 2)). For example, if 

sequence 1 is O(N) and sequence 2 is O(1) 

the worst-case time for the whole if-then-

else statement would be O(N). Uploaded By: Ayham NobaniSTUDENTS-HUB.com



Analyzing Code
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Analyzing Code
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Analyzing Code
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Analyzing Code
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Find O (n) for the following:

Example 10
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Analyzing Code
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Example 11
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More Examples
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On board
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Recurrence Relation
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A recurrence relation, T(n),  is a recursive function of an integer variable n.

Like all recursive functions, it has one or more recursive cases  and one or more base 
cases.

Example:

The portion of the definition that does not contain T is called the base case of the 
recurrence relation; the portion that contains T is called the recurrent or recursive 
case.
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Forming Recurrence Relations
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Example 1: Write the recurrence relation for the following method:

public void f (int n) {

if (n==0)

System.out.println(n)

else{

System.out.println(n);

f(n-1);

}

}

1. The base case is reached when n = = 0. 

2. When n > 0, the method performs two basic operations and then calls itself, using ONE 

recursive call, with a parameter n – 1. 

Recursive Function to 

print number from 

Given input down to 0.

Uploaded By: Ayham NobaniSTUDENTS-HUB.com



Forming Recurrence Relations
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Example 1: Write the recurrence relation for the following method:

public void f (int n) {

if (n==0)

System.out.println(n)

else{

System.out.println(n);

f(n-1);

}

}

c                            , n =0

b+T(n-1)               ,  n >0
T (n) = 
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Forming Recurrence Relations
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Example 2: Write the recurrence relation for the following method:

:

long fibonacci (int n) { // Recursively calculates Fibonacci number

if( n == 1 || n == 2)

return 1;

else

return fibonacci(n – 1) + fibonacci(n – 2);

}

the recurrence relation is:

c                                            , n = 1 or n = 2

b+ T(n – 1) + T(n – 2)           ,  n > 2T (n) = 
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Forming Recurrence Relations
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Example 3: Write the recurrence relation for the following method:

long power (long x, long n) { 

if(n == 0)

return 1;

else if(n == 1)

return x;             

else if ((n % 2) == 0) 

return power (x, n/2) * power (x, n/2); 

else

return x * power (x, n/2) * power (x, n/2); 

}

The recurrence relation is:

c                                           , n = 0 or n = 1
b+ 2T(n /2)                           ,  n > 2

T (n) = 
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Solving Recurrence Relations
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Example1: Form and solve the recurrence relation for the running time of factorial 
method and hence determine its big-O complexity:

long factorial (int n) {

if (n == 0) 

return 1;     

else

return n * factorial (n – 1); 

}

First: The recurrence relation is:

c                                           , n = 0
b  +  T(n-1)                           ,  n >= 1

Second: By Substitution

T (n) = 
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Solving Recurrence Relations
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T (n) =b + T (n-1)

T(n-1) =  b +  T ( n-1-1)  =   b + T (n-2)

→ T(n-1) =b + T (n-2)

T (n) = b +  [ b + T (n-2) ]  = 2b + T (n-2 )

T (n) = 2b + T (n-2 )

T(n-2) = b + T (n-2-1 ) = b + T (n-3)

→ T (n-2) =b + T (n-3)

T (n) = 2b + [ b + T (n-3) ]

T (n) =3b + T (n-3)

T (n) =   b + T (n-1)

T (n) = 2b + T (n-2 ) 

T (n) = 3b + T (n-3)

.

.

T (n) =kb + T (n-k)

The base case is reached when n – k = 0
→ k = n,  we then have:

T (n) = nb + T (n-n) = nb + T (0)

T (n) = nb +T (0) 

T (n) = nb + c   , c is constant

Therefore the method factorial is 
O(n)
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Solving Recurrence Relations

Solution: By Substitution

Example 2: Analysis The following recurrence relation : (determine its big-O 

complexity)
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T (n) = 2T(n / 2) +n 

T (n/2)=  2 T (n/4) + n/2 

Solving Recurrence Relations
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T (n)   =   

Solving Recurrence Relations

Example 3: Analysis The following recurrence relation : (determine its big-O complexity)

Solution: By Substitution
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Solving Recurrence Relations

Therefore  T(n) = O(n)

i

i=0
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