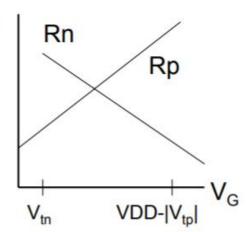


# DEPARTMENT OF COMPUTER SYSTEM ENGINEERING

Digital Integrated Circuits - ENCS333


#### Dr. Khader Mohammad

Lecture #5- Transistor\_I\_V\_Curve and Mode of operations

Integrated-Circuit Devices and Modeling

### **Transistor Sizing**

- Channel Resistance (from Chapter 3)
  "ON" resistance of transistors
  - Rn =  $1/(\mu_n Cox (W/L) (V_{GS}-Vtn))$
  - Rp =  $1/(\mu_p Cox (W/L) (V_{SG}-|Vtp|))$ 
    - $Cox = \varepsilon_{ox}/t_{ox}$  [F/cm<sup>2</sup>], process constant



### Channel Resistance Analysis

- R ≈ 1/W (increasing W decreases R & increases Current)
- R varies with Gate Voltage, see plot above
- If Wn = Wp, then Rn < Rp
  - since μ<sub>n</sub> > μ<sub>p</sub>
  - assuming Vtn ~ |Vtp|
- to match resistance, Rn = Rp
  - adjust Wn/Wp to balance for  $\mu_n > \mu_p$

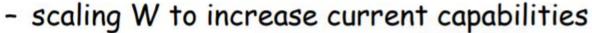
### **Transistor Sizing**

#### Channel Resistances

- Rn =  $1/(\mu_n Cox (W/L) (V_G Vtn))$
- Rp =  $1/(\mu_p Cox (W/L) (V_G |Vtp|))$
- Rn/Rp =  $\mu_p/\mu_n$ 
  - if Vtn = |Vtp|, (W/L)<sub>n</sub> = (W/L)<sub>p</sub>

### Matching Channel Resistance

- there are performance advantage to setting Rn = Rp
  - discussed in Chapter 7
- to set Rn = Rp
  - define mobility ratio,  $r = \mu_n/\mu_p$
  - $\cdot (W/L)_p = r (W/L)_n$ 
    - pMOS must be larger than nMOS for same resistance/current

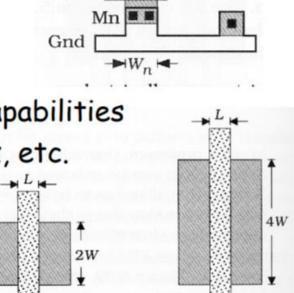

#### Negative Impact

-  $\Rightarrow$   $C_{Gp}$  = r  $C_{Gn}$  larger gate = higher capacitance

 See class notes we explained in class for sizing

## Transistor Matching and Scaling

- Channel Resistance Matching
  - increase Wp so that Rn = Rp
  - pMOS larger than nMOS
  - pMOS current drive = nMOS current drive
- Scaling ratio, S




1X

- typically in unit steps, 1x, 2x, 4x, etc.

- generally L kept at

minimum value



VDD



4X