STUDENTS-HUB.com

%"m’

BIRZEIT UNIVERSITY

Multithreading ©

Liang, Introduction to Java Programming and Data Structures,
Twelfth Edition, (c) 2020 Pearson Education, Inc. All rights reserved.
By: Mamoun Nawahdah (Ph.D.)
2022/2023

Objectives

+*To get an overview of multithreading

+* To develop task classes by implementing the Runnable
interface

+»* To create threads to run tasks using the Thread class
+»* To control threads using the methods in the Thread class

+* To control animations using threads and use
Platform.runlLater to run the code in application thread

+»* To execute tasks in a thread pool

o 2

2/3/2023

https://students-hub.com

STUDENTS-HUB.com

Thread Concepts

s A program may consist of many tasks that can
run concurrently.

¢ A thread is the flow of execution, from
beginning to end, of a task

Thread: a long, thin strand of cotton, nylon, or other fibres used in
sewing or weaving.

Threads Concept

Multiple tasks
sharing a single g (T g P T e P T g
CPU —No threading

Multiple
threads on et -~
multiple CPUs
Thread 1
Multiple threads Dhvead 1 -l B]

sharing a single Thread 2 |7 B —
CPU

Thread 3 | B B
ﬂk 4

2/3/2023

https://students-hub.com

STUDENTS-HUB.com

Multithreading

¢ In single-processor systems, the multiple
threads share CPU time, known as time sharing.

+ The operating system is responsible for
scheduling and allocating resources to them.

¢ This arrangement is practical because most of
the time the CPU is idle.

¢ Multithreading can make your program more
responsive and interactive as well as enhance
performance.

e

Creating Tasks and Threads

You can create additional threads to run concurrent tasks in the program.
In Java, each task is an instance of the Runnable interface, also called a
runnable object.

Athread is essentially an object that facilitates the execution of a task.

java. lang. Runnable [(fmenmensan TaskCl // Client class
4 - IQ' s assl public class Client {

Custom task cl

class |.:ll.l|.31‘i(void someMethod() {
public class TaskClass implements Runnable { 3

Create an instance of TaskClass

|.J|:|l.ﬂ'ic TaskClass(...) { TaskClass task = new TaskClass(...);
} Create a thread
Thread thread = new Thread(task);

Implement the run method in Runnable
public void run() { Start a thread

// Tell system how to run custom thread thread.startQ);
i }

} }
(a) (b)

M s 6

2/3/2023

https://students-hub.com

2/3/2023

Example:

¢ Create and run three threads:
* The 1t thread prints the A 15 times.
» The 2" thread prints the B 15 times.
» The 3 thread prints the C 15 times.

E.iad :

class PrintChar implements Runnable {
L private char charToPrint;
private int times; |
public PrintChar(char c, int t) {
charToPrint = c;
times = t;

¥

@Override
public void run() {
for (int i = @; 1 < times; i++)
System.out.print(charToPrint);

ﬁ'}

STUDENTS-HUB.com

https://students-hub.com

public class TestThreads {
public static void main(String[] args) {
Runnable printA = new PrintChar('A', 15);
Runnable printB = new PrintChar('B', 15);
Runnable printC = new PrintChar('C', 15);

// Create threads

Thread threadl = new Thread(printA);
Thread thread2 = new Thread(printB);
Thread thread3 = new Thread(printC);

// Start threads
threadl.start();
thread2.start();
thread3.start();

);
WCCCCCCCCCBBBBBBBBBBBBBBBCCCCCCAAAAAA|

The Thread Class

«interface»
java. lang.Runnable
o
java.lang. Thread
+ThreadO Creates an empty thread.
+Thread(task: Runnable) Creates a thread for a specified task.
+start(): void Starts the thread that causes the run() method to be invoked by the JVM.
+isATive(): boolean Tests whether the thread is currently running.
+setPriority(p: int): void Sets priority p (ranging from 1 to 10) for this thread.
+join(): void Waits for this thread to finish.
+sleep(millis: long): void Puts a thread to sleep for a specified time in milliseconds.
+yield(): void Causes a thread to pause temporarily and allow other threads to execute.
+interrupt(): void Interrupts this thread.

o w

STUDENTS-HUB.com

2/3/2023

https://students-hub.com

STUDENTS-HUB.com

Thread Priority

¢ Each thread is assigned a default priority of
Thread.NORM PRIORITY.

¢ You can reset the priority using
setPriority(int priority)

+*Some constants for priorities include
Thread.MIN PRIORITY
Thread .MAX PRIORITY
Thread.NORM PRIORITY

o n

Animation Using Threads v

5 o PIIET|

Example: Flashing Text =~ EEEE-Iai

new Thread(new Runnable() {

public void run() {
try {
while (true) {
if (1blText.getText().trim().length() == @)
text = "Welcome";
else
text = "";
Platform.runLater(new Runnable() { // Run from JavaFX GUI
public void run() {
1blText.setText(text);
}

1
Thread.sleep(200);

}
} catch (InterruptedException ex) { }

}
‘}).start(); 12

2/3/2023

https://students-hub.com

STUDENTS-HUB.com

Thread Pools

+¢ Starting a new thread for each task could limit
throughput and cause poor performance.

¢ A thread pool is ideal to manage the number of
tasks executing concurrently.

+» JDK 1.5 uses the Executor interface for executing
tasks in a thread pool and the ExecutorService
interface for managing and controlling tasks.

+¢» ExecutorService is a subinterface of Executor.

o n

Thread Pools

«interface»
java.util.concurrent. Executor

+execute(Runnable object): void Execules the runnable task.

-

«interface»
Jjava.util.concurrent. ExecutorService

+shutdown() : void Shuts down the executor, but allows the tasks in the executor
to complete. Once shut down, it cannot accept new tasks.
+shutdownNow() : List<Runnable> Shuts down the executor immediately even though there are
unfinished threads in the pool. Returns a list of unfinished tasks.
+1sShutdown(): boolean Returns true if the executor has been shut down.
+7sTerminated(): boolean Returns true if all tasks in the pool are terminated.

ofge M

2/3/2023

https://students-hub.com

STUDENTS-HUB.com

Creating Executors

To create an Executor object, use the static methods in the

Executors class.

java.util.concurrent. Executors

+newFixedThreadPool (numberOfThreads:
int): ExecutorService

+newCachedThreadPool1():
ExecutorService

Creates a thread pool with a fixed number of threads executing
concurrently. A thread may be reused to execute another task
after its current task is finished.

Creates a thread pool that creates new threads as needed. but
will reuse previously constructed threads when they are
available.

public static void main(String[] args) {
// Create a fixed thread pool with maximum three threads

ExecutorService executor

= Executors.newFixedThreadPool (3);

// Submit runnable tasks to the executor
executor.execute(new PrintChar('a’, 100));
executor.execute(new PrintChar('b’, 100));
executor.execute(new PrintNum(100));

// Shut down the executor
executor.shutdown() ;
1

2/3/2023

https://students-hub.com

