# ENCS5341 Machine Learning and Data Science

# Clustering

STUDENTS-HUB.com

# Introduction

STUDENTS-HUB.com

- So far in this course, we only considered supervised learning techniques.
- Supervised learning: All training data samples are annotated with its corresponding label:
  - If the label is continuous  $\rightarrow$  regression.
  - If the label is discrete  $\rightarrow$  classification.
- This lecture is about clustering, which is an example of unsupervised learning tasks.
- Unsupervised learning: we only have the input training data without any labels.



Uploaded By: Jibreel <sup>1</sup>Bornat

# What is Clustering?

- Clustering is the process of organizing a set of physical or abstract objects into classes (called Clusters), such that there is
  - high intra-class similarity.
  - low inter-class similarity

• More informally: finding natural groupings among objects.

STUDENTS-HUB.com

Uploaded By: Jibreel<sup>2</sup>Bornat

# What is a natural grouping among these objects?



#### Clustering is subjective



STUDENTS-HUB.com

School Employees





Females

# What is similarity?

- The quality or state of being similar; likeness; resemblance; as, a similarity of features. *Webster's Dictionary*
- The real meaning of similarity is a philosophical question. We will take a more pragmatic approach.
- **Definition**: Let  $O_1$  and  $O_2$  be two objects from the universe of possible objects. The distance (dissimilarity) between  $O_1$  and  $O_2$  is a real number denoted by  $D(O_1, O_2)$

STUDENTS-HUB.com

# Properties of a distance measure

• Symmetry

D(A,B)=D(B,A)

- Constancy of Self-Similarity
   D(A, A) = 0
- Positivity (Separation)  $D(A, B) \ge 0$ D(A, B) = 0 iff A = B
- Triangular Inequality

 $D(A, B) \leq D(A, C) + D(B, C)$ 

STUDENTS-HUB.com

# Applications of Clustering

- Business (e.g. customer segmentation).
- Pattern recognition.
- Image segmentation.
- Compression.
- Information retrieval.
- ...

# Classical Clustering Types

- Hierarchical Clustering: Create a hierarchical decomposition of the set of objects using some criterion.
- Partitional Clustering: Construct various partitions and then evaluate them by some criterion.









Uploaded By: Jibreel <sup>7</sup>Bornat

# In this course

- Partitional Clustering
  - k-means
  - GMM
- Hierarchical Clustering
  - Agglomerative Clustering

STUDENTS-HUB.com

### K-means

- Given:
  - data set  $X = \{x_1, ..., x_m\}$
  - squared Euclidean distance as a distance measure
  - number of clusters k
- Goal:
  - Group data points in k clusters, i.e. find an assignment of data points to clusters, as well as a set of cluster centers μ<sub>j</sub>, such that the sum of the squares of the distances of each data point to its closest center is minimized.
- Formally: Let  $r_{ij}$  be an indicator vector, which is 1 if and only if  $x_i$  is assigned to cluster j. Find the values for  $r_{ij}$  and  $\mu_i$ , so as to minimize the objective function

$$J(r,\mu) := \sum_{i=1}^{m} \sum_{j=1}^{k} r_{ij} \|x_i - \mu_j\|^2$$

STUDENTS-HUB.com

#### Data set

![](_page_10_Figure_1.jpeg)

STUDENTS-HUB.com

# Lloyd's Algorithm for k-means

- 1. Decide on a value for k.
- 2. Initialize the k cluster centers.
- 3. Decide the class memberships of the N objects by assigning them to the nearest cluster center.
- 4. Re-estimate the k cluster centers as centroids of the clusters resulting from step 3.
- 5. If none of the N objects changed membership in the last iteration, exit. Otherwise goto 3.

• Algorithm: k-means, Distance Metric: Euclidean

![](_page_12_Figure_2.jpeg)

STUDENTS-HUB.com

Uploaded By: Jibree<sup>12</sup>Bornat

• Algorithm: k-means, Distance Metric: Euclidean

![](_page_13_Figure_2.jpeg)

STUDENTS-HUB.com

Uploaded By: Jibree<sup>13</sup>Bornat

• Algorithm: k-means, Distance Metric: Euclidean

![](_page_14_Figure_2.jpeg)

STUDENTS-HUB.com

Uploaded By: Jibreel<sup>4</sup>Bornat

• Algorithm: k-means, Distance Metric: Euclidean

![](_page_15_Figure_2.jpeg)

STUDENTS-HUB.com

• Algorithm: k-means, Distance Metric: Euclidean

![](_page_16_Figure_2.jpeg)

STUDENTS-HUB.com

Uploaded By: Jibreel<sup>®</sup>Bornat

### Example: Image Segmentation and Compression

![](_page_17_Picture_1.jpeg)

STUDENTS-HUB.com

Uploaded By: Jibree<sup>17</sup>Bornat

Problem

Suppose we have 4 types of medicines and each has two attributes (pH and weight index). Our goal is to group these objects into K=2 group of medicine.

![](_page_18_Figure_3.jpeg)

STUDENTS-HUB.com

Uploaded By: Jibreel<sup>®</sup>Bornat

• Step 1: Use initial seed points for partitioning

![](_page_19_Figure_2.jpeg)

$$c_{1} = A, c_{2} = B$$

$$D^{0} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 1 & 0 & 2.83 & 4.24 \end{bmatrix} \begin{array}{c} c_{1} = (1,1) & group - 1 \\ c_{2} = (2,1) & group - 2 \\ A & B & C & D \end{array} \quad \text{Euclidean distance}$$

$$\begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \begin{array}{c} X \\ Y \end{array}$$

$$d(D, c_{1}) = \sqrt{(5-1)^{2} + (4-1)^{2}} = 5$$

$$d(D, c_{2}) = \sqrt{(5-2)^{2} + (4-1)^{2}} = 4.24$$

Assign each object to the cluster with the nearest seed point

STUDENTS-HUB.com

Uploaded By: Jibreel<sup>9</sup>Bornat

• Step 2: Compute new centroids of the current partition

![](_page_20_Figure_2.jpeg)

Knowing the members of each cluster, now we compute the new centroid of each group based on these new memberships.

$$c_1 = (1, 1)$$

$$c_2 = \left(\frac{2+4+5}{3}, \frac{1+3+4}{3}\right)$$
$$= \left(\frac{11}{3}, \frac{8}{3}\right)$$

Uploaded By: Jibreef<sup>®</sup>Bornat

STUDENTS-HUB.com

• Step 2: Renew membership based on new centroids

![](_page_21_Figure_2.jpeg)

Compute the distance of all objects to the new centroids

$$\mathbf{D}^{1} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 3.14 & 2.36 & 0.47 & 1.89 \end{bmatrix} \begin{array}{c} \mathbf{c}_{1} = (1,1) & group - 1 \\ \mathbf{c}_{2} = (\frac{11}{3}, \frac{8}{3}) & group - 2 \\ A & B & C & D \\ \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \begin{array}{c} X \\ Y \end{array}$$

Assign the membership to objects

STUDENTS-HUB.com

Uploaded By: Jibreef<sup>1</sup>Bornat

• Step 3: Repeat the first two steps until its convergence

![](_page_22_Figure_2.jpeg)

Knowing the members of each cluster, now we compute the new centroid of each group based on these new memberships.

$$c_{1} = \left(\frac{1+2}{2}, \frac{1+1}{2}\right) = (1\frac{1}{2}, 1)$$
$$c_{2} = \left(\frac{4+5}{2}, \frac{3+4}{2}\right) = (4\frac{1}{2}, 3\frac{1}{2})$$

Uploaded By: Jibreef<sup>2</sup>Bornat

STUDENTS-HUB.com

• Step 3: Repeat the first two steps until its convergence

![](_page_23_Figure_2.jpeg)

Compute the distance of all objects to the new centroids

$$\mathbf{D}^{2} = \begin{bmatrix} 0.5 & 0.5 & 3.20 & 4.61 \\ 4.30 & 3.54 & 0.71 & 0.71 \end{bmatrix} \begin{array}{c} \mathbf{c}_{1} = (1\frac{1}{2}, 1) \quad group - 1 \\ \mathbf{c}_{2} = (4\frac{1}{2}, 3\frac{1}{2}) \quad group - 2 \\ A \quad B \quad C \quad D \\ \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \begin{array}{c} X \\ Y \end{array}$$

Stop due to no new assignment Membership in each cluster no longer change

Uploaded By: Jibreef<sup>3</sup>Bornat

STUDENTS-HUB.com

### K-means: pros and cons

#### • Pros

- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

#### • Cons/issues

- Setting k?
- Sensitive to initial centers
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed

#### STUDENTS-HUB.com

#### Uploaded By: Jibreef<sup>4</sup>Bornat

#### Sensitive to outliers

![](_page_25_Figure_1.jpeg)

STUDENTS-HUB.com

### Sensitive to initial centers

![](_page_26_Figure_1.jpeg)

(A). Random selection of seeds (centroids)

![](_page_26_Figure_3.jpeg)

(B). Iteration 1

![](_page_26_Picture_5.jpeg)

(C). Iteration 2

![](_page_26_Figure_7.jpeg)

(A). Random selection of k seeds (centroids)

![](_page_26_Picture_9.jpeg)

(B). Iteration 1

٥ 0

(C). Iteration 2

Uploaded By: Jibreef Bornat

#### STUDENTS-HUB.com

# Differing density

![](_page_27_Figure_1.jpeg)

**Original Points** 

K-means (3 Clusters)

STUDENTS-HUB.com

Uploaded By: Jibreef<sup>7</sup>Bornat

### Non-convex clusters

![](_page_28_Figure_1.jpeg)

**Original Points** 

K-means (2 Clusters)

STUDENTS-HUB.com

# Soft vs Hard Clustering

- K-means assigns each data point exactly to one of the clusters.
- There may be data points that lie roughly midway between cluster centers.
- Use probabilistic approach to obtain "soft" assignments of data points to clusters in a way that reflects the level of uncertainty over the most appropriate assignment

Uploaded By: Jibreef<sup>9</sup>Bornat

- Rather than identifying clusters by "nearest" centroids.
- Fit a Set of k Gaussians to the data.
- Maximum Likelihood over a mixture model

![](_page_30_Figure_4.jpeg)

![](_page_30_Figure_5.jpeg)

Uploaded By: Jibreel<sup>®</sup>Bornat

# Multi-Variate Gaussian Distribution

• Recall: one-dimensional (univariate) Gaussian distribution:

$$\mathcal{N}(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

![](_page_31_Figure_3.jpeg)

• Multivariate case:

$$\mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1} (x-\mu)^{\top} \Sigma^{-1} (x$$

Mean  $\mu \in \mathbb{R}^d$  , covariance matrix  $\Sigma \in \mathbb{R}^{d imes d}$ 

STUDENTS-HUB.com

![](_page_31_Figure_8.jpeg)

# Different covariance matrices

![](_page_32_Figure_1.jpeg)

Using different forms of covariance matrix allows for clusters of different shapes STUDENTS-HUB.com Uploaded By: Jibreef<sup>2</sup>Bornat

# Gaussian Mixture Model

• Often a simple Gaussian distribution is unable to capture the structure of a data set, whereas a linear superposition of several Gaussians gives a good characterization:

![](_page_33_Figure_2.jpeg)

- GMM: the weighted sum of a number of Gaussians where the weights are determined by a distribution  $\pi$ 

$$p(x|\pi, \mu, \Sigma) := \sum_{j=1}^{k} \pi_j \mathcal{N}(x|\mu_j, \Sigma_j)$$
  
where  $\sum_{i=0}^{k} \pi_i = 1$ 

Uploaded By: Jibreef<sup>3</sup>Bornat

STUDENTS-HUB.com

# Mixture of Gaussians

- Our goal is to find the parameters  $(\pi, \mu, \Sigma)$
- One way to set the values of these parameters is to use maximum likelihood
- Given the data  $X = \{x_1, ..., x_m\}$ , log of the likelihood function is given by

$$\log p(X|\theta) = \sum_{i=1}^{m} \log \sum_{j=1}^{k} \pi_j \mathcal{N}(x_i|\mu_j, \Sigma_j)$$

• where  $\theta$  = set of parameters (  $(\pi, \mu, \Sigma)_1 \dots (\pi, \mu, \Sigma)_k$  )

STUDENTS-HUB.com

Uploaded By: Jibreel<sup>4</sup>Bornat

# Maximizing the likelihood function

- Find partial derivatives
- Set them to zero

•

We get:  

$$\mu_j = \frac{1}{m_j} \sum_{i=1}^m \gamma_{ij} x_i$$

$$\Sigma_j = \frac{1}{m_j} \sum_{i=1}^m \gamma_{ij} (x_i - \mu_j) (x_i - \mu_j)^\top$$

$$\pi_j = \frac{m_j}{m}$$

with responsibilities:

$$\gamma_{ij} = \frac{\pi_j \,\mathcal{N}(x_i|\mu_j, \Sigma_j)}{\sum_{j'} \pi_{j'} \,\mathcal{N}(x_i|\mu_{j'}, \Sigma_{j'})}$$
$$m_j = \sum_{i=1}^m \gamma_{ij}$$

STUDENTS-HUB.com

Uploaded By: Jibree<sup>35</sup>Bornat
## Expectation Maximization Algorithm

Given:

- Gaussian Mixture Model
- Number of clusters k
- Goal: maximize the likelihood function with respect to the parameters (mean and the covariance of the components and its mixing coefficients)

## Expectation Maximization Algorithm

- 1. Initialize the means, covariances and mixing coefficients; evaluate the initial value of the log likelihood
- 2. E-Step: evaluate the responsibilities

$$\gamma_{ij} = \frac{\pi_j \,\mathcal{N}(x_i|\mu_j, \Sigma_j)}{\sum_{j'} \pi_{j'} \,\mathcal{N}(x_i|\mu_{j'}, \Sigma_{j'})}$$
$$m_j = \sum_{i=1}^m \gamma_{ij}$$

3. M-Step: Re-estimate parameters

$$\mu_{j} = \frac{1}{m_{j}} \sum_{i=1}^{m} \gamma_{ij} x_{i} \qquad \qquad \Sigma_{j} = \frac{1}{m_{j}} \sum_{i=1}^{m} \gamma_{ij} (x_{i} - \mu_{j}) (x_{i} - \mu_{j})^{\top} \qquad \qquad \pi_{j} = \frac{m_{j}}{m}$$

4. Evaluate the log likelihood and check for convergence. If not converged, go to step 2.

STUDENTS-HUB.com

Uploaded By: Jibreef<sup>37</sup>Bornat

## Visual example of EM



STUDENTS-HUB.com

Uploaded By: Jibreef Bornat

### Gaussian Mixture Example: Start



STUDENTS-HUB.com

Uploaded By: Jibreel<sup>®</sup>Bornat

#### After First Iteration



STUDENTS-HUB.com

Uploaded By: Jibreef<sup>®</sup>Bornat

### After 2nd Iteration



STUDENTS-HUB.com

Uploaded By: Jibreef<sup>1</sup>Bornat

## After 3rd Iteration



STUDENTS-HUB.com

Uploaded By: Jibreef<sup>2</sup>Bornat

## After 4th Iteration



STUDENTS-HUB.com

Uploaded By: Jibreef<sup>3</sup>Bornat

## After 5th Iteration



STUDENTS-HUB.com

Uploaded By: Jibreef<sup>4</sup>Bornat

### After 20th Iteration



STUDENTS-HUB.com

Uploaded By: Jibreef<sup>5</sup>Bornat

## Problems

- EM algorithm takes many more iterations to reach convergence compared with kmeans and each cycle requires significantly more computation
  - $\rightarrow$  run k-means to find suitable initialization for EM
- Incorrect number of Mixture Components

#### **Hierarchial Clustering**

STUDENTS-HUB.com

Uploaded By: Jibreef<sup>7</sup>Bornat

**hierarchical clustering** of a set  $I = \{x_1, \ldots, x_n\}$  of instances: a sequence  $C_1, \ldots, C_n$  of nested partitions of *I*, where

•  $C_1$  contains *n* clusters, i.e.,  $C_1 = \{\{x_1\}, \ldots, \{x_n\}\}$ 

```
C_2 contains n-1 clusters
```

- .  $C_n$  contains 1 cluster, i.e.,  $C_n = \{\{x_1, \ldots, x_n\}\}$
- if x, x' belong to the same cluster in  $C_k$  then they belong to the same cluster in  $C_l$  for all l = k, k + 1, ..., n

dendrogram: natural (binary) tree representation of a hierarchial clustering

#### STUDENTS-HUB.com

Uploaded By: Jibreef<sup>®</sup>Bornat

#### Dendrograms

set of nested partitions can be visualized as a dendrogram

height: proportional to the distance/similarity at which two clusters have been merged



STUDENTS-HUB.com

Uploaded By: Jibreef<sup>9</sup>Bornat

## Dendrograms

set of nested partitions can be visualized as a dendrogram

height: proportional to the distance/similarity at which two clusters have been merged



STUDENTS-HUB.com

Uploaded By: Jibree<sup>f</sup><sup>0</sup>Bornat

## Strengths of Hierarchical Clustering

- no assumptions on the number of clusters (in contrast to e.g. k-Means)
  - any desired number of clusters can be obtained by "cutting" the dendogram at the proper level
- hierarchical clusterings may correspond to meaningful taxonomies, e.g.,
  - in biological sciences
    - \* e.g., phylogeny reconstruction
  - web
    - \* e.g., product catalogs
  - . . .

STUDENTS-HUB.com



## Hierarchical Clustering

- two main types of hierarchical clustering
  - agglomerative (bottom-up, clumping):
    - \* start with the instances as singleton clusters
    - \* at each step, merge the closest pair of clusters until only one cluster left
  - divisive (top-down, splitting):
    - \* start with one, all-inclusive cluster
    - \* at each step, split a cluster until each cluster becomes a singleton
- traditional hierarchical algorithms use a similarity or distance matrix to merge/split one cluster at a time

## Agglomerative Clustering

#### algorithm:

- **1.**  $C_1 = \{\{x_1\}, \ldots, \{x_n\}\}$
- **2.** k := 1
- 3. for  $(k = 1; |\mathcal{C}_k| > 1; k = k + 1)$  do
- 4. find "closest" pair  $C_i, C_j \in C_k$  with  $i \neq j$
- 5.  $C_{k+1} := C_k \setminus \{C_i, C_j\}$
- $\mathbf{6.} \qquad \mathcal{C}_{k+1} := \mathcal{C}_{k+1} \cup \{C_i \cup C_j\}$
- 7. return  $C_1, \ldots, C_n$

key operation: computing the distance between two clusters

• different distance definitions between clusters lead to different algorithms

#### STUDENTS-HUB.com

Uploaded By: Jibree<sup>§3</sup>Bornat

# Input/Initial setting

 start with clusters of individual points and a distance/proximity matrix



|                  | $p_1$ | $p_2$  | $p_3$  | $p_4$  | $p_5$  | _ · · · |
|------------------|-------|--------|--------|--------|--------|---------|
| $p_1$            |       |        |        |        |        |         |
| $p_2$            |       |        |        |        |        |         |
| $p_3$            |       |        |        |        |        |         |
| $p_4$            |       |        |        |        |        |         |
| $\overline{p_5}$ |       |        |        |        |        |         |
| :                | dista | ince/j | oroxir | nity r | natrix |         |
|                  |       |        |        |        |        |         |



STUDENTS-HUB.com

Uploaded By: Jibree<sup>§4</sup>Bornat

## Intermediate State

 after some merging steps, we have some clusters



|       | $C_1$ | $C_2$ | $C_3$ | $C_4$ | $C_5$ |
|-------|-------|-------|-------|-------|-------|
| $C_1$ |       |       |       |       |       |
| $C_2$ |       |       |       |       |       |
| $C_3$ |       |       |       |       |       |
| $C_4$ |       |       |       |       |       |
| $C_5$ |       |       |       |       |       |

distance/proximity matrix

p10

p11

p12

STUDENTS-HUB.com

Uploaded By: Jibree<sup>§</sup>Bornat

## Intermediate State

• merge the two closest clusters ( $C_2$  and  $C_5$ ) and update the distance/proximity matrix



Uploaded By: Jibree Bornat

 $C_3$ 

 $C_4$ 

 $C_5$ 

p12

 $C_1$ 

 $C_2$ 

# After Merging

"How do we update the distance matrix?"

• depends on the distance between clusters



|                           | $C_1$ | $C_2 \cup C_5$      | $C_3$ | $C_4$ |
|---------------------------|-------|---------------------|-------|-------|
| $C_1$                     |       | ?                   |       |       |
| $\overline{C_2 \cup C_5}$ | ?     | ?                   | ?     | ?     |
| $C_3$                     |       | ?                   |       |       |
| $C_4$                     |       | ?                   |       |       |
|                           |       | 2.<br>25. 1.085 (Å) |       |       |

distance/proximity matrix



## Distance between Two Clusters

each cluster is a set of points

- Q: How do we define distance between two sets of points?
- A: lots of alternatives ...



Merge which pair of clusters?

• Depends on the choice of the inter-cluster distance!



STUDENTS-HUB.com

 $C_2$ 

Uploaded By: Jibree<sup>§</sup><sup>8</sup>Bornat

## 1. Inter-Cluster Distances: Single-Link Distance

**single-link** distance between two clusters: **minimum** distance between the members of two cluster, i.e.,

$$d_{\mathrm{SL}}(C_i, C_j) = \min_{x \in C_i, y \in C_j} d(x, y)$$



STUDENTS-HUB.com

Uploaded By: Jibree<sup>§</sup>Bornat

## Single-Link Clustering: Example



Uploaded By: Jibreef<sup>®</sup>Bornat

STUDENTS-HUB.com

## Strengths of Single-Link Clustering



original points



Can handle non-elliptical (unsymmetrical) shapes, clusters can be even concentric !

STUDENTS-HUB.com

Uploaded By: Jibree<sup>f<sup>1</sup></sup>Bornat

## Limitations of Single-Link Clustering





#### original points

#### two clusters

- Sensitive to noise and outliers
- ⊗ elongated clusters (chaining effect)

STUDENTS-HUB.com

Uploaded By: Jibreef<sup>2</sup>Bornat

## 2. Inter-Cluster Distances: Complete-Link Distance

**complete-link** distance between two clusters: **maximum** distance between the members of two cluster, i.e.,



STUDENTS-HUB.com

Uploaded By: Jibreef<sup>3</sup>Bornat

## Complete-Link Clustering: Example



STUDENTS-HUB.com

Uploaded By: Jibreef<sup>4</sup>Bornat

## Strengths of Complete-Link Clustering





#### original points

two clusters

- Image: more balanced clusters (with equal diameter)
- Iess sensitive to noise

STUDENTS-HUB.com

Uploaded By: Jibree<sup>f5</sup>Bornat

## Limitations of Complete-Link Clustering





#### original points

#### two clusters

- e tends to break large clusters
- e all clusters tend to have the same diameter
  - small clusters are merged with larger ones

STUDENTS-HUB.com

Uploaded By: Jibreef<sup>6</sup>Bornat

### 3. Inter-Cluster Distances: Average-Link Distance

average-link distance between two clusters: averaged distances of all pairs of objects (one from each cluster), i.e.,

$$d_{\rm AL}(C_i, C_j) = \frac{1}{|C_i| \cdot |C_j|} \sum_{x \in C_i, y \in C_j} d(x, y)$$



STUDENTS-HUB.com

Uploaded By: Jibree<sup>f<sup>7</sup></sup>Bornat

## Average-Link Clustering: Example



STUDENTS-HUB.com

Uploaded By: Jibreef<sup>®</sup>Bornat

## Average-link Clustering: Discussion

- compromise between single and complete link
- © strengths
  - less susceptible to noise and outliers
- Iimitations
  - may cause elongated clusters to split and for portions of neighboring elongated clusters to merge

### 4. Inter-Cluster Distances: Centroid Distance

centroid distance between two clusters: distance between two cluster centroids, i.e.,

$$d_{\mathcal{C}}(C_i, C_j) = d\left(\frac{\sum_{x \in C_i} x}{|C_i|}, \frac{\sum_{x \in C_j} x}{|C_j|}\right)$$



STUDENTS-HUB.com

Uploaded By: Jibreel<sup>®</sup>Bornat

#### 5. Inter-Cluster Distances: Ward's Distance

**Ward's distance** between clusters  $C_i$  and  $C_j$ :

increase in sum of squared errors when  $C_i$  and  $C_j$  are merged i.e.,

$$d_W(C_i, C_j) = \sum_{x \in C_{ij}} d^2(x - r_{ij}) - \sum_{x \in C_i} d^2(x - r_i) - \sum_{x \in C_j} d^2(x - r_j)$$

where

- $r_i$ : centroid of  $C_i$
- $r_j$ : centroid of  $C_j$
- $r_{ij}$ : centroid of  $C_{ij} = C_i \cup C_j$

STUDENTS-HUB.com

Uploaded By: Jibreel<sup>1</sup>Bornat
# Ward's distance for clusters

- similar to group average and centroid distance
- less susceptible to noise and outliers
- hierarchical analogue of k-means
  - can be used to initialize k-means

# Hierarchical Clustering: Comparison



STUDENTS-HUB.com

# Inter-Cluster Distances

general case: various other inter-cluster distance definitions can be used

general agglomerative clustering algorithm: iteratively update a distance matrix

• for distance function d on the instances and inter-cluster distance f, start the agglomerative clustering with the distance matrix

$$D = (d(x_i, x_j))_{1 \le i \le j \le n}$$

- set of instances:  $I = \{x_1, \ldots, x_n\}$
- upper triangular, as distances are symmetric
- merging clusters  $C_i$  and  $C_j$ : merge the corresponding rows and columns in the matrix and update the values according to f

STUDENTS-HUB.com

• Problem: clustering analysis with agglomerative algorithm





Uploaded By: Jibreel Bornat

STUDENTS-HUB.com

• Merge two closest clusters (iteration 1)



STUDENTS-HUB.com

| • | Update | distance | matrix | (iteration | 1) |
|---|--------|----------|--------|------------|----|
|---|--------|----------|--------|------------|----|

| Dist           |   | А                                | В                          | С                    | D                          | Е                      | F                              |                           |             |                        |                                   |                                   |                                     |                                  |
|----------------|---|----------------------------------|----------------------------|----------------------|----------------------------|------------------------|--------------------------------|---------------------------|-------------|------------------------|-----------------------------------|-----------------------------------|-------------------------------------|----------------------------------|
| А              | 1 | 0.00                             | 0.71                       | 5.66                 | 3.61                       | 4.24                   | 3.20                           | $d_{(D,F) \rightarrow J}$ | $_{A} = mi$ | $n(d_D)$               | $(d_{FA}) =$                      | = min <b>(</b> 3.6                | 51, 3.20 <b>)</b> =                 | = 3.20                           |
| В              |   | 0.71                             | 0.00                       | 4.95                 | 2.92                       | 3.54                   | 2.50                           | 2                         |             | . (2                   | 2)                                |                                   | 0.0.50).                            | 2.50                             |
| c )            |   | 5.66                             | 4.95                       | 0.00                 | 2.24                       | 1.41                   | 2.50                           | $a_{(D,F) \rightarrow I}$ | $_{B} = mi$ | $n(a_D)$               | $(a_{FB})$                        | $= \min\{2.5\}$                   | 12, 2.30):                          | = 2.50                           |
| D              |   | 3.61                             | 2.92                       | 2.24                 | 0.00                       | 1.00                   | 0.50                           |                           | c = mit     | $n(d_D)$               | $(c, d_{FC})$ :                   | = min (2.2                        | 24, 2.50):                          | = 2.24                           |
| Е              |   | 4.24                             | 3.54                       | 1.41                 | 1.00                       | 0.00                   | 1.12                           | d                         | - mi        | n (d                   | 2)                                | - min (1 (                        | 0 1 12)                             | - 1.00                           |
| F              | U | 3.20                             | 2.50                       | 2.50                 | 0.50                       | 1.12                   | 0.00                           | $a_{E \to (D,F)}$         | ) = m       | n (a <sub>E</sub>      | D, a BF )                         | = mm (1.0                         | 50, 1.12)                           | = 1.00                           |
|                |   |                                  |                            |                      |                            |                        |                                |                           |             |                        |                                   |                                   |                                     |                                  |
| 12 Y 10        |   |                                  |                            |                      |                            |                        |                                | Min Distan                | ce (Si      | -                      | 1 hales a                         |                                   |                                     |                                  |
| Dist           |   | A                                |                            |                      | 120                        | - 32 -                 |                                |                           | ce (5)      | ngie                   | LINKag                            | e)                                |                                     |                                  |
| A              |   | -                                | В                          |                      | с                          | D, F                   | E                              | Dist                      | ce (51      | A                      | В                                 | e)<br>C                           | D, F                                | E                                |
| A              | ſ | 0.00                             | 0.7                        | 1 5.                 | C<br>.66                   | D, F<br>?              | E<br>4.24                      | Dist<br>A                 | ( 0.        | A<br>.00               | B<br>0.71                         | c 5.66                            | D, F<br>3.20                        | E<br>4.24                        |
| B              | f | 0.00                             | 0.7:<br>L 0.00             | 1 5.<br>0 4.         | C<br>.66<br>95             | D, F<br>?<br>?         | E<br>4.24<br>3.54              | Dist<br>A<br>B            |             | A<br>.00               | B<br>0.71<br>0.00                 | C<br>5.66<br>4.95                 | D, F<br>3.20<br>2.50                | E<br>4.24<br>3.54                |
| B<br>C         |   | 0.00<br>0.7<br>5.66              | 0.7<br>L 0.00<br>4.9       | 1 5.<br>0 4.<br>5 0. | c<br>.66<br>95<br>.00      | D, F<br>?<br>?<br>?    | E<br>4.24<br>3.54<br>1.41      | Dist<br>A<br>B<br>C       |             | A<br>.00<br>.71<br>.66 | B<br>0.71<br>0.00<br>4.95         | C<br>5.66<br>4.95<br>0.00         | <b>D, F</b><br>3.20<br>2.50<br>2.24 | <b>E</b><br>4.24<br>3.54<br>1.41 |
| B<br>C<br>D, F |   | 0.00<br>0.73<br>5.66<br><b>?</b> | 0.7:<br>L 0.00<br>4.9<br>? | 1 5.<br>0 4.<br>5 0. | C<br>.66<br>95<br>.00<br>? | D, F<br>?<br>?<br>0.00 | E<br>4.24<br>3.54<br>1.41<br>? | Dist<br>A<br>B<br>C       |             | A<br>.00<br>.71<br>.66 | В<br>0.71<br>0.00<br>4.95<br>2.50 | C<br>5.66<br>4.95<br>0.00<br>2.24 | D, F<br>3.20<br>2.50<br>2.24        | E<br>4.24<br>3.54<br>1.41        |

STUDENTS-HUB.com

Uploaded By: Jibreel<sup>7</sup>Bornat

4.24 3.54 1.41 **1.00** 0.00

• Merge two closest clusters (iteration 2)



STUDENTS-HUB.com

• Update distance matrix (iteration 2)

#### Min Distance (Single Linkage)



STUDENTS-HUB.com

 Merge two closest clusters/update distance matrix (iteration 3)



 Merge two closest clusters/update distance matrix (iteration 4)



STUDENTS-HUB.com

• Final result (meeting termination condition)



STUDENTS-HUB.com

Uploaded By: Jibree<sup>82</sup>Bornat

### Dendrogram tree representation



- 1. In the beginning we have 6 clusters: A, B, C, D, E and F
- 2. We merge clusters D and F into cluster (D, F) at distance 0.50
- 3. We merge cluster A and cluster B into (A, B) at distance 0.71
- 4. We merge clusters E and (D, F) into ((D, F), E) at distance 1.00
- 5. We merge clusters ((D, F), E) and C into (((D, F), E), C) at distance 1.41
- We merge clusters (((D, F), E), C) and (A, B) into ((((D, F), E), C), (A, B)) at distance 2.50
- 7. The last cluster contain all the objects, thus conclude the computation

Uploaded By: Jibree<sup>β3</sup>Bornat

STUDENTS-HUB.com

# Hierarchical Clustering: Time and Space Requirements

for a dataset I consisting of n instances (points)

- $O(n^2)$  space
  - it requires storing the distance matrix
- $O(n^3)$  time in most of the cases
  - complexity can be reduced to  $O(n^2 \log n)$  time for some approaches by using appropriate data structures

# Discussion

- weighted/unweighted:
  - unweighted: each instance counted equally
  - weighted: each cluster counted equally, i.e. instances weighted by cluster size
- only needs distance matrix
  - can work with specialized distances
- user can and has to pick granularity
- nice visualization (for small datasets)
- not very suitable for very large instance sets
- shapes of clusters very much depend on chosen method, no clear cluster "model" as in *K*-means

STUDENTS-HUB.com