ENCS5341
Machine Learning and Data Science

Clustering
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Introduction

e So farin this course, we only considered
supervised learning techniques.

e Supervised learning: All training data
samples are annotated with its
corresponding label:

* |f the label is continuous = regression.
* |f the label is discrete > classification.

* This lecture is about clustering, which is an
example of unsupervised learning tasks.

* Unsupervised learning: we only have the
input training data without any labels.
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What is Clustering?

* Clustering is the process of organizing a set of physical or abstract objects into classes
(called Clusters), such that there is

* high intra-class similarity.

* low inter-class similarity

* More informally: finding natural groupings among objects.
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What is a natural grouping among these objects?
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What is similarity?

* The quality or state of being similar; likeness; resemblance; as, a similarity of features.

Webster's Dictionary

* The real meaning of similarity is a philosophical question. We will take a more
pragmatic approach.

* Definition: Let O, and 0, be two objects from the universe of possible objects. The
distance (dissimilarity) between O, and 0O, is a real number denoted by D(0, ,0,)
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Properties of a distance measure

* Symmetry
D(A, B) =D(B, A)

* Constancy of Self-Similarity
D(A, A)=0

* Positivity (Separation)
D(A,B)=0
D(A,B)=0iff A=B

* Triangular Inequality
D(A, B)<D(A, C) + D(B, C)
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Applications of Clustering

Business (e.g. customer segmentation).

Pattern recognition.

Image segmentation.

Compression.

Information retrieval.
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Classical Clustering Types

* Hierarchical Clustering: Create a hierarchical decomposition of the set of objects using
some criterion.

 Partitional Clustering: Construct various partitions and then evaluate them by some
criterion.

Hierarchical Partitional
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In this course

* Partitional Clustering

* k-means

* GMM

e Hierarchical Clustering

e Agglomerative Clustering
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K-means

* Given:
* dataset X ={x,,...,.x,.}
e squared Euclidean distance as a distance measure
* number of clusters k

e Goal:

* Group data points in k clusters, i.e. find an assighnment of data points to clusters, as well as a set of
cluster centers p;, such that the sum of the squares of the distances of each data point to its closest
center is minimized.

* Formally: Let r; be an indicator vector, which is 1 if and only if x; is assigned to cluster j.
Find the values for r;; and (;, so as to minimize the objective function

m

J(r, ) = ZZ’UH' l’j”2
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Data set
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Lloyd’s Algorithm for k-means

1. Decide on a value for k.
2. Initialize the k cluster centers.

3. Decide the class memberships of the N objects by assigning them to the nearest
cluster center.

4. Re-estimate the k cluster centers as centroids of the clusters resulting from step 3.

5. If none of the N objects changed membership in the last iteration, exit. Otherwise
goto 3.
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K-means Clustering: Step 1

* Algorithm: k-means, Distance Metric: Euclidean
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K-means Clustering: Step 2

* Algorithm: k-means, Distance Metric: Euclidean
5
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K-means Clustering: Step 3

* Algorithm: k-means, Distance Metric: Euclidean
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K-means Clustering: Step 4

* Algorithm: k-means, Distance Metric: Euclidean
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K-means Clustering: Step 5

* Algorithm: k-means, Distance Metric: Euclidean
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Example: Image Segmentation and Compression

Original image
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Example

 Problem

Suppose we have 4 types of medicines and each has two attributes (pH and weight
index). Our goal is to group these objects into K=2 group of medicine.

Medicin | Weight pH-
e Index
A 1 1
B 2 1
C 4 3
D 5 4
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Uploaded By: JibreelBornat



Example

attribute 2 (Y): pH

o = o o o
O o = M W =
. 1

iteration 0

----------

---------

---------

---------

---------

.....................................

.................................................

* Step 1: Use initial seed points for partitioning

C1=A,C2=B

d(D,c;)=+/(5-1)> +(4-1)*> =5

d(D,c,)=+/(5-2) +(4—1)? =4.24

attribute 1 (X): weight index
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Assign each object to the cluster
with the nearest seed point
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Example

e Step 2: Compute new centroids of the current partition

iteration 1 Knowing the members of each
cluster, now we compute the new
i W e centroid of each group based on
- R ER R SRR S these new memberships.
5 35 prromrerte gt
e i e o .0
PP L A 1=(1, 1)
o ' : : : '
o 2T
] R 5 R R R
1 e 2+4+5 1+3+4
® 05 b o e /
N S 3 3
0 1 2 3 4 5 ] 11 8
attribute 1 (X): weight index =(—, o)
ef 2
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Example

e Step 2: Renew membership based on new centroids

iteration 1

Compute the distance of all
objects to the new centroids

s
e

o
(]
L

attribute 2 (Y): pH

Assign the membership to objects
attribute 1 (X): weight index
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Example

* Step 3: Repeat the first two steps until its convergence

iteration 2

attribute 2 (Y): pH

o
h
1

o
-

attribute 1 (X): weight index
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Knowing the members of each
cluster, now we compute the new
centroid of each group based on
these new memberships.

C1=(1+21 1+1j=<ll, 1

2 2 2

c2=(4+5, 3+4)=(4l, 31)
2 2 2 2
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Example

* Step 3: Repeat the first two steps until its convergence

iteration 2

Compute the distance of all objects to
the new centroids

o g w o
o [ on L n R (&) ]
1 1 1 1 L 1

attribute 2 (Y): pH

o
o
i

Stop due to no new assignment
Membership in each cluster no longer

change

o

attribute 1 (X): weight index
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K-means: pros and cons

* Pros

* Simple, fast to compute
e Converges to local minimum of within-cluster squared error

e Cons/issues
e Setting k?
* Sensitive to initial centers
e Sensitive to outliers
* Detects spherical clusters
* Assuming means can be computed
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Sensitive to outliers
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Sensitive to initial centers
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(B). Iteration | (C). Iteration 2 (B). Iteration | (C). teration 2
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Differing density
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Non-convex clusters
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Soft vs Hard Clustering

* K-means assigns each data point exactly to one of the clusters.

 There may be data points that lie roughly midway between cluster centers.

» Use probabilistic approach to obtain “soft” assignments of data points to clustersin a
way that reflects the level of uncertainty over the most appropriate assignment
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ldea

e Rather than identifying clusters by “nearest” centroids.

 Fit a Set of kK Gaussians to the data.

e Maximum leellhood over a mlxture model

20F
15}

10+

sk 4
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Multi-Variate Gaussian Distribution

e Recall: one-dimensional (univariate) Gaussian distribution:

ozl o) — — e
Nl(z|p, o) = 5 exp( 953 \ & au})

To2

 Multivariate case:

1 1 _
N(x|p, ) = )22 exp (2(;1? — ) S e — ,u))

1 . . _ .
Mean i € RY | covariance matrix Y ¢ R4
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Different covariance matrices

Using different forms of covariance matrix allows for clusters of different shapes
STUDENTS-HUB.com
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Gaussian Mixture Model

e Often a simple Gaussian distribution is unable to capture the structure of a data set,
whereas a linear superposition of several Gaussians gives a good characterization:

00 005 010 015 020 025

* GMM: the weighted sum of a number of Gaussians where the weights are determined
by a distribution

k
pla|m, 1, T) =Y m; N (z|u;, ;)
j=1

k
where E =1
i=0
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Mixture of Gaussians

e Our goal is to find the parameters (m, u, %)
* One way to set the values of these parameters is to use maximum likelihood

* Given the data X = {x,,...,x,,,}, log of the likelihood function is given by
m k
log p(X|#) = Z log Z i N(zi|pi, Z5)
i=1 j=1

* where 6 = set of parameters ( (m,u,%); ... (,1,%), )
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Maximizing the likelihood function

* Find partial derivatives
e Set them to zero

* We get: 1 M

/lj = — A,Pijl'i
mJ —1

m

;-Z—Z Vi — [4j — W )T
m; i

. — mi N(Tilps, Xj)
with responsibilities: Vij = >, TJ,\ rilpgr, £y

m
m; = Zi:l Vij
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Expectation Maximization Algorithm

Given:
e Gaussian Mixture Model
e Number of clusters k

e Goal: maximize the likelihood function with respect to the parameters (mean and the
covariance of the components and its mixing coefficients)
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Expectation Maximization Algorithm

1. Initialize the means, covariances and mixing coefficients; evaluate the initial value of
the log likelihood

I i N (zip;, Xj)
2. E-Step: evaluate the responsibilities Y= _,f‘J, N "ﬂ _JS "
, m
mj =) i1 Yj
3. M-Step: Re-estimate parameters
1 m l iy 171
Hi = — VijLi Yj=— Yij(Ti — pj) (2 — #J'JT T = F_ﬂj

m; m;

i—=1 i—1

4. Evaluate the log likelihood and check for convergence. If not converged, go to step 2.
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Visual example of EM
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Gaussian Mixture Example: Start
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After First Iteration
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After 2nd lteration
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After 3rd Iteration
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After 4th Iteration
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After 5th Iteration
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After 20th Iteration
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Problems

 EM algorithm takes many more iterations to reach convergence compared with k-
means and each cycle requires significantly more computation

— run k-means to find suitable initialization for EM

* Incorrect number of Mixture Components
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Hierarchial Clustering
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Hierarchical Clustering

hierarchical clustering of aset I = {z4,...,z,} of instances:
a sequence Cq,...,C, of nested partitions of I, where

e C; contains n clusters, i.e., C; = {{z1},...,{zn}}
Cs contains n — 1 clusters

C,, contains 1 cluster, i.e., C,, = {{z1,...,2,}}

e if x, 2’ belong to the same cluster in C;, then they belong to the same
clusterinC, foralll =k, k+1,...,n

dendrogram: natural (binary) tree representation of a hierarchial clustering
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Dendrograms

set of nested partitions can be visualized as a dendrogram

height: proportional to the distance/similarity at which two clusters have

been merged

C5 = {{$1,CE2,ZC3,ZC4,CE’5}}
C4 - {{3317372,1'3,:84}, {.’I,'5}}

C3 = {{3711332}3 {$35$4}3 {335}}
Co = {{m1, 2}, {z3}, {wa}, {z5}}

Ci = Haa Az {zsh Awat, {ws 1}
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Dendrograms

set of nested partitions can be visualized as a dendrogram

height: proportional to the distance/similarity at which two clusters have
been merged
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Strengths of Hierarchical Clustering

e NO assumptions on the number of clusters
(in contrast to e.g. k-Means)

— any desired number of clusters can be
obtained by “cutting” the dendogram
at the proper level

e hierarchical clusterings may correspond to
meaningful taxonomies, e.g.,

— in biological sciences

x e.g., phylogeny reconstruction
— web

* e.g., product catalogs

b
¢ Procaviides

Procavias
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Hierarchical Clustering

e two main types of hierarchical clustering

— agglomerative (bottom-up, clumping):

« start with the instances as singleton clusters

x at each step, merge the closest pair of clusters until only one
cluster left

— divisive (top-down, splitting):
+ start with one, all-inclusive cluster

x at each step, split a cluster until each cluster becomes a single-
ton

e traditional hierarchical algorithms use a similarity or distance matrix to
merge/split one cluster at a time
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Agglomerative Clustering

algorithm:
G v p i)
2 k1

3. for(k=1; |Ck| >1; k=k+1)do

4.  find “closest" pair C;, C; € C;, with @ # j
9. Gril OF 16,0

B & 6 U

/. returnCq,...,C,

key operation: computing the distance between two clusters

e different distance definitions between clusters lead to different algorithms
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Input/Initial setting

e start with clusters of individual points p1 | P2 | p3 | pa| ps
and a distance/proximity matrix D1
P2
® o p3
®
P4
® % -
® :
@ distance/proximity matrix
®
B
B @
®

p1 p2 p3 p4 p9 p10 p11 pi12
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Intermediate State

e after some merging steps, we have Ci| G| Cs| Cs| Cs
some clusters c,
Co
Cs C's
Cy
Cs
distance/proximity matrix
Cay
C1
@ * TTT T
| | |
Cs Ch m : : |
el
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Intermediate State

e merge the two closest clusters (Cy and () Ci| Cy| O3 | C4

and update the distance/proximity matrix . N g&&

C'3 03 &\ &\
Cd\\\\\\}\\\\\\%&\\
iIstance/proximity matrix
Cy
®. > o

o

p10 p11 p12

LN o®
. .
., ®
., .®
., .®
. .
........
-----
-------------

STUDENTS-HUB.com Uploaded By: Jibreef'Bornat



After Merging

“How do we update the distance matrix?” Ci| CoUCs| Cs | Cy

e depends on the distance between clusters Ci

CoUCs| ? ? ? | ?
C'3 ?
Cy ?
distance/proximity matrix
ToTer T
| |
| : : j
| | ’_I_l
|
. I l IEIE I

p10 pi1 pi2
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Distance between Two Clusters

each cluster is a set of points
Q: How do we define distance between two sets of points?

A: lots of alternatives ...

o——
C, o— | __
o——
' ' 2
o, —1— Merge which pair of clusters”
e Depends on the choice of the inter-cluster distance!
o —
Cg ..: —
o—
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1. Inter-Cluster Distances: Single-Link Distance

single-link distance between two clusters: minimum distance between the
members of two cluster, i.e.,

dsr.(C;,C;) = min  d(z,y)

x€C;,yclj
@)
O
@® C;
O
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Single-Link Clustering: Example

0.2~

0.15 :

0.1

0.05-

nested clusters dendrogram
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Strengths of Single-Link Clustering

original points two clusters

© Can handle non-elliptical (unsymmetrical) shapes, clusters can be even
concentric !
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Limitations of Single-Link Clustering

L )
L] ‘1.

original points

@ sensitive to noise and outliers
® elongated clusters (chaining effect)

STUDENTS-HUB.com

two clusters

s o ’su
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2. Inter-Cluster Distances: Complete-Link Distance

complete-link distance between two clusters: maximum distance between
the members of two cluster, i.e.,

dew(Ci, Cj) = | _max  d(z,y)
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Complete-Link Clustering: Example

0.4

0.35-
0.3r

0.25-

0.21
0.15~

0.1

0.05

nested clusters dendrogram
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Strengths of Complete-Link Clustering

L )
so's”

LS
s ® &
‘OO.Q

original points two clusters

© more balanced clusters (with equal diameter)
© less sensitive to noise
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Limitations of Complete-Link Clustering
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original points two clusters

@® tends to break large clusters

® all clusters tend to have the same diameter
— small clusters are merged with larger ones
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3. Inter-Cluster Distances: Average-Link Distance

average-link distance between two clusters: averaged distances of all pairs
of objects (one from each cluster), i.e.,

daL(Cs, Cj) = : > d(=z,y)

Cil - 1€
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Average-Link Clustering: Example
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Average-link Clustering: Discussion

. compromise between single and complete link
©  strengths

 less susceptible to noise and outliers
® limitations

* may cause elongated clusters to split and for portions of neighboring
elongated clusters to merge
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4. |Inter-Cluster Distances: Centroid Distance

centroid distance between two clusters: distance between two cluster cen-
troids, i.e.,

B
dC(Ci,Cj) = d <Z$€Ci w ZCUGCJ >

1o —(E]
® &,
&
./
O
©
® o
C;
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5. Inter-Cluster Distances: Ward’s Distance

Ward’s distance between clusters C; and C;:

increase in sum of squared errors when C; and C; are merged i.e.,
2 2 2
w (Ci, Cj) Zd —rij)— Y dx—r)— > d(z—r))
where

e 1;. centroid of C;
e 7;: centroid of C
e 7;;: centroid of C;; = C; U C;
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Ward’s distance for clusters

e similar to group average and centroid distance
e less susceptible to noise and outliers
e hierarchical analogue of k-means

— can be used to initialize k-means
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Hierarchical Clustering: Comparison

N
o
Qs g

{ . ~ | | average-link Ward’s |

N N5
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Inter-Cluster Distances

general case: various other inter-cluster distance definitions can be used

general agglomerative clustering algorithm: iteratively update a distance
matrix

e for distance function d on the instances and inter-cluster distance f, start
the agglomerative clustering with the distance matrix

D = (d(@4:25) )i<i< jen

— setofinstances: I = {xy,...,2z,}
— upper triangular, as distances are symmetric

e merging clusters C; and C;: merge the corresponding rows and columns
in the matrix and update the values according to f
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Example

e Problem: clustering analysis with agglomerative algorithm

X2 X1 X2
6 A I § )
S  J¢ B 1.5 1.5
4 D o¢ C 5 5
il s R i
>l E 4 4
Y F 3 3.5
" >,
1 A .
; - data matrix
0 - < ’ X1
0 2 4 6 Dist A B C D £ F

0.00 | 0.71 | 5.66 | 3.61 | 4.24 | 3.20
0.71 | 0.00 [ 4.95 | 2.92| 3.54 | 2.50
5.66 | 4.95 | 0.00 [ 2.24 | 1.41 | 2.50
3.61 292|224 |0.00|1.00| 0.50
4.24 | 3.54 | 1.41 |1.00| 0.00 | 1.12
3.20 | 2.50 | 2.50 geileR 1.12 | 0.00

distance matrix

dg=((1-15) +(1-1.5)’)§= JF=07071

dpr=((3-3)" +(4-35)) =05
Euclidean distance

Tm o OO o>
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Example

e Merge two closest clusters (iteration 1)

X2
6 1
5.
4 1
3 1
2 4
éB
1 A
0 +
0 2

STUDENTS-HUB.com

Dist

T Mmoo O o>

A

B8

C

D

E

-

0.00

0.71

5.66

3.61

4.24

3.20

0.71

0.00

4.95

2.92

3.54

2.50

5.66

4.95

0.00

2.24

141

2.50

3.61

2.92

2.24

0.00

1.00

0.50

4.24

3.54

141

3.20

2.50

2.50

1.00
0.50

0.00

1.12

1.12

0.00

A B
0.00 0.71
0.71 0.00
566 4.95

2 2

424 354

C
5.66
4.95
0.00

?

1.41

DF E
2 4.24)
? 354
? 14l
000 ?
? 000
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Example

e Update distance matrix (iteration 1)

Dist

“Tm o0 o>

Dist

STUDENTS-HUB.com

A B

C

D

E

-

0.00 | 0.71

5.66

3.61

4.24

3.20

0.71 | 0.00

4.95

2.92

3.54

2.50

5.66 | 4.95

0.00

2.24

141

2.50

3.61 | 2.92

2.24

0.00

1.00

0.50

4.24 | 3.54

141

1.00

3.20 | 2.50

2.50

0.50

<

A B
(000 0.71
0.71 0.00

5.66 4.95
2

& 424 354

C

5.66

4.

95

0.00

1.41

0.00

1.12

1.12

0.00

D,F
?
?
?
0.00
?

4.24)
3.54

1.41
?

et

dyp.rysa = min (dpy, dpy) = min (3.61,3.20) = 3.20

dip.rysc =min (dpe, dpe )= min(2.24, 2.50) = 2.24

dyy o5 = min(dgp, dgp) = min (1.00,1.12) = 1.00

in Distance (Single Linkage)

> =

0.0(L

Dist
A
B
C

D, F
E

A B

(000 071
0.71 o0.00
566 4.95
3.20 2.50

s 424 354

C
5.66

4.95
0.00

2.24
1.41

D, F
3.20
2.50
2.24
0.00
1.00

E
4.24)
3.54
1.41
1.00
0.00,
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Example

e Merge two closest clusters (iteration 2)

Min Distance (Single Linkage)

Dist A B C D,F E
A 000 071 566 3.20 4.24)
X2 B 000 495 250 3.54
6 - C 566 4.95 000 224 141
5 - ®cC D, F 3.20 2,50 2.24 0.00 1.00
4 @ ot g 424 354 141 1.00 0.00]
F
3 -
564 .
PR \ Dist ) AB C (D, F) E &
11 g) AB o W ? ?
o ' ' X1 C ? 0 224 141
0 2 4 6 < >
(D, F) ? 2.24 0 1.00
E ? 1.41 1.00 0 3

STUDENTS-HUB.com Uploaded By: Jibreel'Bornat



Example

e Update distance matrix (iteration 2)

Min Distance (Single Linkage)

Dist A B
A 0.00 0.71
B 0.00
C 5.66 4.95
D, F 3.20 2.50
E 424 354
Dist . A,B C
A,B 0 ?
C ? 0
(D, F) ? 2.24
E ? 141

STUDENTS-HUB.com

C
5.66
4.95
0.00

2.24
1.41

(D, F)
?
2.24
0
1.00

D.E E

3.20 4.24)
2.50 3.54
224 1.41
0.00 1.00

>

1.00 0.00

doyiaz = min(dey, deg) = min(5.66,4.95) = 4.95

dw.r)-»u.s) = min (dm: dpg.dgy drs)
=min (3.61,2.92,3.20,2.50) = 2.50

dy_ 4z =min(dg,, dgz)=min (4.24,3.54) =354

/

Min Distance (Single Linkage)

3
N Dist AB C (D) E
? e 3
AB 0 495 250 354
LA (e J495 o 224 141
90 (D,F) | 250 224 0  1.00
0
3 e (354 14 o |
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Example

e Merge two closest clusters/update distance matrix
(iteration 3)

Min Distance (Single Linkage)
Dist p A,B C (D, F) E :

X2 A,B 0O 495 250 3.54
i C 495 0 224 141
; o / X >
-] 5o (D,F) | 250 224 0  1.00
] (8 e | 354 14 [ ERON o
2] /,\B> Min Distance (Single Linkage)
] ‘ .
1 (\:{ | . Dist  (AB) C (D,FLE_
0 5 4 6 (A,B) 0.00 4.95 2.50

C 40 495 0.00 140"

0,7, | 2.50 [ o0.00
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Example

e Merge two closest clusters/update distance matrix

(iteration 4)
Min Distance (Single Linkage)

- Dist ~ (AB) C (D,F),E

6 - (A,B) 0.00 4.95 2.50
5 1 | o ) / C < 495 000 141
1 <&
. @;/ o,F),€ | 250 [l o000 |
20 T v o
. | (.,? ") \ Min Distance (Single Linkage)
i —— : X1 Dist (A,B) ((D,F), E),C
0 4 6

: (A,B) 000 250

((D, F), E),C 0.00
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Example

e Final result (meeting termination condition)

X1 X2
A I ke
8 1.5 15
C 5 5
D < 3 4 -
E 4 4
: 3 35
- - : , X1
0 2 4 6
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Example

 Dendrogram tree representation

A 1. In the beginning we have 6
clusters: A, B, C,D,Eand F
25 1 p 2. We merge clusters D and F into
cluster (D, F) at distance 0.50
. We merge cluster A and cluster B
into (A, B) at distance 0.71
4. We merge clusters E and (D, F)
into ((D, F), E) at distance 1.00
5. We merge clusters ((D, F), E) and C
4 into (((D, F), E), C) at distance 1.41
6. We merge clusters (((D, F), E), C)
and (A, B) into ((((D, F), E), C), (A, B))
at distance 2.50
-» 7. The last cluster contain all the objects,
D F E C A B thus conclude the computation
object

g
(=
t
w

()
{

awnay|

-
o

<
i
W

STUDENTS-HUB.com Uploaded By: JibreefBornat



Hierarchical Clustering: Time and Space Requirements

for a dataset I consisting of n instances (points)
e O(n?) space

— it requires storing the distance matrix

e O(n?) time in most of the cases

— complexity can be reduced to O(n? log n) time for some approaches
by using appropriate data structures
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Discussion

e weighted/unweighted:

— unweighted: each instance counted equally

— weighted: each cluster counted equally, i.e. instances weighted by
cluster size

e only needs distance matrix
— can work with specialized distances
e user can and has to pick granularity
e nice visualization (for small datasets)
e not very suitable for very large instance sets

e shapes of clusters very much depend on chosen method, no clear cluster
“model” as in K-means
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