
ENCS5341 
Machine Learning and Data Science

Clustering

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Introduction

• So far in this course, we only considered 
supervised learning techniques. 

• Supervised learning: All training data 
samples are annotated with its 
corresponding label:

• If the label is continuous → regression.

• If the label is discrete → classification.

• This lecture is about clustering, which is an 
example of unsupervised learning tasks.

• Unsupervised learning: we only have the 
input training data without any labels.
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What is Clustering?

• Clustering is the process of organizing a set of physical or abstract objects into classes 
(called Clusters), such that there is

• high intra-class similarity.

• low inter-class similarity

• More informally: finding natural groupings among objects.
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What is a natural grouping among these objects?
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What is similarity?

• The quality or state of being similar; likeness; resemblance; as, a similarity of features.

                Webster's Dictionary

• The real meaning of similarity is a philosophical question. We will take a more 
pragmatic approach.

• Definition: Let 𝑂1 and 𝑂2 be two objects from the universe of possible objects. The 
distance (dissimilarity) between 𝑂1 and 𝑂2 is a real number denoted by 𝐷(𝑂1 ,𝑂2)
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Properties of a distance measure

• Symmetry 

 𝐷(𝐴, 𝐵) = 𝐷(𝐵, 𝐴) 

• Constancy of Self-Similarity  

 𝐷(𝐴, 𝐴) = 0 

• Positivity (Separation) 

 𝐷(𝐴, 𝐵) ≥ 0

 𝐷(𝐴, 𝐵) = 0 iff 𝐴 = 𝐵 

• Triangular Inequality 

 𝐷(𝐴, 𝐵) ≤ 𝐷(𝐴, 𝐶) + 𝐷(𝐵, 𝐶)
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Applications of Clustering

• Business (e.g. customer segmentation).

• Pattern recognition.

• Image segmentation.

• Compression.

• Information retrieval.

• …
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Classical Clustering Types

• Hierarchical Clustering: Create a hierarchical decomposition of the set of objects using 
some criterion.

• Partitional Clustering: Construct various partitions and then evaluate them by some 
criterion.
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In this course

• Partitional Clustering

• k-means

• GMM

• Hierarchical Clustering

• Agglomerative Clustering
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K-means

• Given:
• data set 𝑋 = {𝑥1,...,𝑥𝑚}

• squared Euclidean distance as a distance measure

• number of clusters 𝑘

• Goal:
• Group data points in 𝑘 clusters, i.e. find an assignment of data points to clusters, as well as a set of 

cluster centers 𝜇𝑗 , such that the sum of the squares of the distances of each data point to its closest 
center is minimized.

• Formally: Let 𝑟ij be an indicator vector, which is 1 if and only if 𝑥i is assigned to cluster 𝑗. 
Find the values for 𝑟ij and 𝜇j , so as to minimize the objective function
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Data set
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Lloyd’s Algorithm for k-means

1. Decide on a value for k.

2. Initialize the k cluster centers.

3. Decide the class memberships of the N objects by assigning them to the nearest 
cluster center.

4. Re-estimate the k cluster centers as centroids of the clusters resulting from step 3.

5. If none of the N objects changed membership in the last iteration, exit. Otherwise 
goto 3.
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K-means Clustering: Step 1

• Algorithm: k-means, Distance Metric: Euclidean
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K-means Clustering: Step 2

• Algorithm: k-means, Distance Metric: Euclidean
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K-means Clustering: Step 3

• Algorithm: k-means, Distance Metric: Euclidean
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K-means Clustering: Step 4

• Algorithm: k-means, Distance Metric: Euclidean
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K-means Clustering: Step 5

• Algorithm: k-means, Distance Metric: Euclidean
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Example: Image Segmentation and Compression
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Example

• Problem

Suppose we have 4 types of medicines and each has two attributes (pH and weight 
index). Our goal is to group these objects into K=2 group of medicine.
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Example

• Step 1: Use initial seed points for partitioning
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Example

• Step 2: Compute new centroids of the current partition
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Example

• Step 2: Renew membership based on new centroids
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Example

• Step 3: Repeat the first two steps until its convergence
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Example

• Step 3: Repeat the first two steps until its convergence
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K-means: pros and cons

• Pros
• Simple, fast to compute

• Converges to local minimum of within-cluster squared error

• Cons/issues
• Setting k?

• Sensitive to initial centers

• Sensitive to outliers

• Detects spherical clusters

• Assuming means can be computed
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Sensitive to outliers
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Sensitive to initial centers
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Differing density
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Non-convex clusters
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Soft vs Hard Clustering

• K-means assigns each data point exactly to one of the clusters.

• There may be data points that lie roughly midway between cluster centers.

• Use probabilistic approach to obtain “soft” assignments of data points to clusters in a 
way that reflects the level of uncertainty over the most appropriate assignment
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Idea

• Rather than identifying clusters by “nearest” centroids.

• Fit a Set of 𝑘 Gaussians to the data.

• Maximum Likelihood over a mixture model
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Multi-Variate Gaussian Distribution

• Recall: one-dimensional (univariate) Gaussian distribution:

• Multivariate case:

Mean                    , covariance matrix 
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Different covariance matrices
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Gaussian Mixture Model

• Often a simple Gaussian distribution is unable to capture the structure of a data set, 
whereas a linear superposition of several Gaussians gives a good characterization:

• GMM: the weighted sum of a number of Gaussians where the weights are determined 
by a distribution 𝜋
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Mixture of Gaussians

• Our goal is to find the parameters (𝜋, 𝜇, Σ)

• One way to set the values of these parameters is to use maximum likelihood

• Given the data 𝑋 = {𝑥1,...,𝑥𝑚} , log of the likelihood function is given by

• where 𝜃 = set of parameters ( (𝜋,𝜇,Σ)1 ... (𝜋,𝜇,Σ)k )
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Maximizing the likelihood function

• Find partial derivatives

• Set them to zero

• We get:

with responsibilities:
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Expectation Maximization Algorithm

Given:

• Gaussian Mixture Model

• Number of clusters k

• Goal: maximize the likelihood function with respect to the parameters (mean and the 
covariance of the components and its mixing coefficients)
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Expectation Maximization Algorithm

1. Initialize the means, covariances and mixing coefficients; evaluate the initial value of 
the log likelihood

2. E-Step: evaluate the responsibilities

3. M-Step: Re-estimate parameters

4. Evaluate the log likelihood and check for convergence. If not converged, go to step 2.
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Visual example of EM
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Gaussian Mixture Example: Start
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After First Iteration
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After 2nd Iteration
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After 3rd Iteration
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After 4th Iteration
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After 5th Iteration
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After 20th Iteration
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Problems

• EM algorithm takes many more iterations to reach convergence compared with k-
means and each cycle requires significantly more computation

    → run k-means to find suitable initialization for EM

• Incorrect number of Mixture Components
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Hierarchial Clustering
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Hierarchical Clustering
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Dendrograms
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Dendrograms
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Strengths of Hierarchical Clustering
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Hierarchical Clustering
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Agglomerative Clustering
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Input/Initial setting
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Intermediate State
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Intermediate State
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After Merging
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Distance between Two Clusters
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1. Inter-Cluster Distances: Single-Link Distance
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Single-Link Clustering: Example
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Strengths of Single-Link Clustering
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Limitations of Single-Link Clustering
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2. Inter-Cluster Distances: Complete-Link Distance
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Complete-Link Clustering: Example
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Strengths of Complete-Link Clustering
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Limitations of Complete-Link Clustering
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3. Inter-Cluster Distances: Average-Link Distance
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Average-Link Clustering: Example
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Average-link Clustering: Discussion
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4. Inter-Cluster Distances: Centroid Distance
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5. Inter-Cluster Distances: Ward’s Distance
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Ward’s distance for clusters
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Hierarchical Clustering: Comparison
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Inter-Cluster Distances
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Hierarchical Clustering: Time and Space Requirements
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Discussion
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