chapter 1

& Lecture 1

- hosts: clients & servers
- transmission rate: bit per second
- Frequency Division multiplexing (FDM): different channels transmitted in different frequency bands.

- hybrid liber coak - (HFC) 40 Mbps - 1.2 Gbps downstream transmission rate, 30-100 Mbps Upstream trans, rate cable. based access

Lecture 2

Media,

- packets have length (L) of bits & transmission Rate (R),

link capacity /bandwidth

- packet transmission Delay (Drans) (bits/sec)
- bit propagates between transmitter/redever pairs
- Physical link: What her between transmitter & reciever
- guided media: signals propagate in solid media (copper, fiber)
- unguided media: signal Propagate freely (radio)
- Twisted pair (TP): Two insulated copper wires
- Coaxial cable: 1) two concentric copper conductors.
 - (2) bidirectionals
 - 3 broadband : multiple frequency channels

on cable. 100's Mhps channel

- fiber optic cable: Oglass fiber ames light pulses
 - @ high speed operation point to point transmission (10's - 100's Mbps)
 - (3) low error rate
- @ wireless radio: Obignal carried in electromagnetic spectrum
 - (2) no physical connections, wires
 - 3 Propagation environment effects : reflection obstruction by objects /interference & noise

STUDENTS-HUB.com

Scanned with Uploaded By: accessments

@ - Radio link types: - wireless LAN (wifi): 105-100's Mbps 110's of meters - wide are (46 collular): 10's Hbps MOKm - bluetooth: cable replacement, short distances & limited rate - terrestrial microwave: - point to point, 45 Mbps channels - sattelite: 45 Mbps Per channel, 270 msec ond-end delay geosynchronous versus low earth orbit. or packet switching: hosts break application layer messages to packets and they get forwarded from one router to the next on path from source to destination & they get transmitted at full link capacity · Network core functions 1 Lorwarding (local) imover arriving packets from current router to router appropriate output link. (the destination address arriver as the packets header) 2) Routing (Global): determinu source-destination paths taken by packets (routing abolithims) or entire packed should arrive a trouter to be transmitted on next link. or Packet queuing & los): - happens when arrival rate exceeds & transmission rate - packets start quening and wait to be transmitted to output links. - if memory (buffer) in routers Pillup Packets can be dropped

or internet structure

- there exists local & global transit ISP (Internet server providers)

- costumer & provider ISPS have an economic agreement

- IXP (Internet exchange point) is to exchange data between to diff. ISPs that are in two dill global ISPs.

- packets queue in router buffers.

Tier 1 ISPs

when rate of input link exceeds output link capacity -> packet loss

Regional ISP

- Delay types

(1) transmission Dulay: Ptrans

accell ISP

when the packet is dropped from the device to the link. (L/R)

(2) processing delay:

makes sure the packet has arrived complety & checks

its data. (check bit errors idetermines output link, < msec)

(3) queing delay:

delay caused by waiting for previous packets

to be transmitted to the link. (depends on congestion)

(4) propagation delay; dprop

delay of packets travelling through the link to the destination. dprop = d/5 2×108

Gnodal = Oprocess + dqueue + dtrans + dprop

becture 4	
a packet quening delay	
a: avo packet arrival rate	
La/R ~> no squall queue delay	
2 -> 1 /5/De 1/ 1/	
La/R ~> no samall queue delay	
along end to end whent path towards de	
· Nobe: 560 why delays decrease ??	insk er
· in tracerouting · · means no response & T	probe's lost & router
is not replying:	
. the larger the packet size is, the larger to	
delay is	Adjoint Co.
+ throughput: rate at which bits are sent fro	m sender
it can be instror avg	
. bottleneck link: link on and-end path that c	onstraints
end-end throughput	
· particular representations	
· Emglusne auses i	
· virus: sell replicating infection by	excuting

spy ware malware: records tegstrokes, website history, uploaded into to collection site.

· worm: self replicating injection by passively recieving object that gets itself executed

- w in Encapsulation
 - · source & destination go through all layers
 - · switches go through Physical & link
 - routers go upto Network
- ISO/OSI have two layers in addition to the one in internet protocol stacks
 - 1 presentation: allows applications to interpret data, (encryption, compression,)
 - (2) session: synchronization, execkpoints, recovery al data exchange.