5

Applications of Differentiation

Definition A function f defined on an interval I is called (strictly) increasing on I if

$$f(x_1) < f(x_2)$$
 whenever $x_1 < x_2$ in I

and is called (strictly) decreasing on I if

$$f(x_1) > f(x_2)$$
 whenever $x_1 < x_2$ in I

First-Derivative Test for Monotonicity Suppose f is continuous on [a, b] and differentiable on (a, b).

- (a) If f'(x) > 0 for all $x \in (a, b)$, then f is increasing on [a, b].
- **(b)** If f'(x) < 0 for all $x \in (a, b)$, then f is decreasing on [a, b].

EXAMPLE 1

Determine where the function

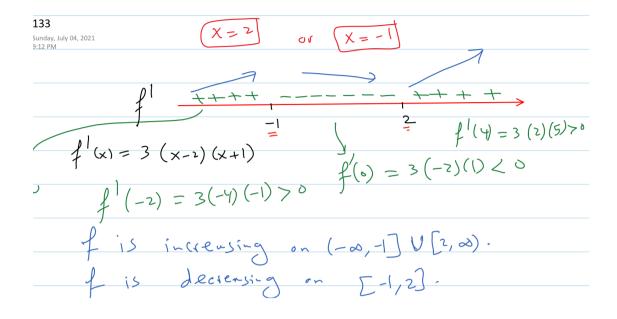
$$f(x) = x^3 - \frac{3}{2}x^2 - 6x + 3, \quad x \in \mathbf{R}$$

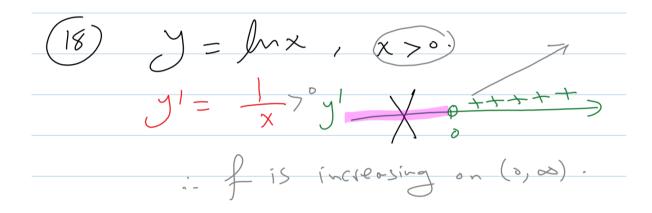
is increasing and where it is decreasing.

$$f(x) = 3x^{2} - \frac{3}{2}(2x) - 6$$

$$= 3x^{2} - 3x - 6 = \frac{3}{2}(x^{2} - x - 2)$$

$$= 3(x - 2)(x + 1) = 0$$





Definition A differentiable function f(x) is **concave up** on an interval I if the first derivative f'(x) is an increasing function on I. f(x) is **concave down** on an interval I if the first derivative f'(x) is a decreasing function on I.

Second-Derivative Test for Concavity Suppose that f is twice differentiable on an open interval I.

- (a) If f''(x) > 0 for all $x \in I$, then f is <u>concave up</u> on I.
- **(b)** If f''(x) < 0 for all $x \in I$, then f is concave down on I.

EXAMPLE 3

Determine where the function

$$f(x) = x^3 - \frac{3}{2}x^2 - 6x + 3, \quad x \in \mathbf{R}$$

is concave up and where it is concave down.

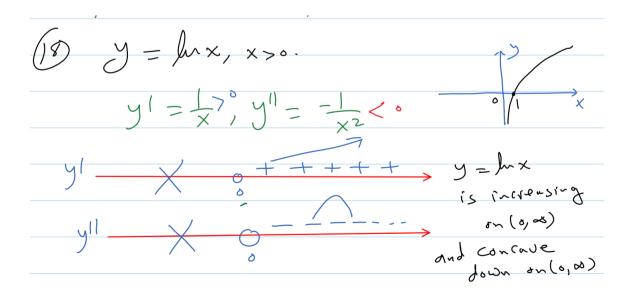
Sol:
$$f$$
 is cond. and diffile on \mathbb{R} .

$$f''(x) = 3x^2 - 3x - 6$$

$$f'''(x) = 6x - 3 = 0 \implies x = \frac{3}{6} = \frac{1}{2}$$

$$f'''(x) = -3 < 0 \implies f'''(x) = 6 - 3 > 0$$

$$f'''(x) = -3 < 0 \implies (\frac{1}{2}, \infty)$$



A continuous function has a local minimum at c if the function is decreasing to the left of c and increasing to the right of c. A continuous function has a local maximum at c if the function is increasing to the left of c and decreasing to the right of c.

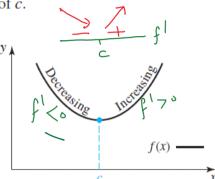


Figure 5.36 The function y = f(x) has a local minimum at x = c.

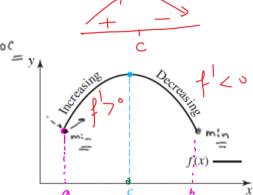


Figure 5.37 The function y = f(x) has a local maximum at x = c.

- 1. Find all numbers c where f'(c) = 0
- **2.** Find all numbers c where f'(c) does not exist.
- 3. Find the endpoints of the domain of f.

Critical points

Mon(f)

:12 PM

EXAMPLE 2

Find all local and global extrema of

 $D_f = (-\infty, \infty).$

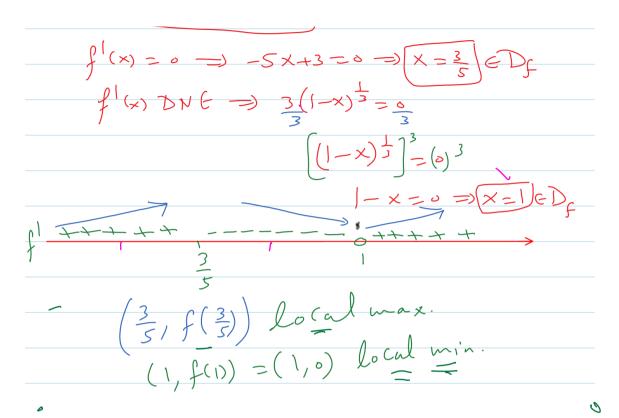
$$f(x) = x(1-x)^{2/3}, \quad x \in \mathbf{R}$$

$$f'(x) = (x) \frac{2}{3}(1-x)^{-\frac{1}{3}}(-1) + (1-x)^{\frac{2}{3}}(1).$$

$$= \frac{-2x}{3(1-x)^{\frac{1}{3}}} + (1-x)^{\frac{2}{3}}(3(1-x)^{\frac{1}{3}})$$

$$= \frac{(-2x)(1) + (1-x)^{\frac{2}{3}}(3(1-x)^{\frac{1}{3}})}{3(1-x)^{\frac{1}{3}}(1)}.$$

$$\int_{-2x}^{2x} + 3(1-x)^{\frac{1}{3}} = -\frac{5x+3}{3(1-x)^{\frac{1}{3}}}$$



Inflection points are points where the concavity of a function changes—that is, where the function changes from concave up to concave down or from concave down to concave up.

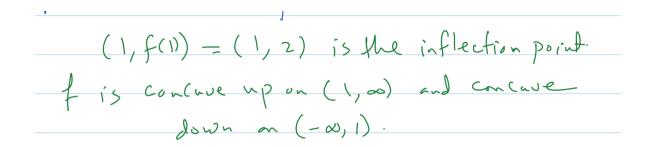
EXAMPLE 3 Show that the function

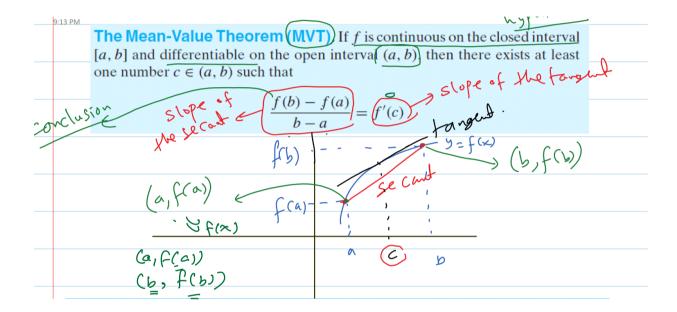
$$f(x) = \frac{1}{2}x^3 - \frac{3}{2}x^2 + 2x + 1, \quad x \in \mathbf{R}$$

has an inflection point at x = 1.

Sol. f is cont. + diffble on TR.

July 04, 2021 $\int_{-2}^{2} (x) = \frac{3}{2} x^{2} - \frac{6}{2} x + 2$ $= \frac{3}{2} x^{2} - 3x + 2$ $\int_{-2}^{11} (x) - (3x - 3) = 0 \Rightarrow (x = 1)$





35. Suppose $f(x) = x^2, x \in [0, 2]$.

(a) Find the slope of the secant line connecting the points (0, 0) and (2, 4).

(b) Find a number $c \in (0, 2)$ such that f'(c) is equal to the slope of the secant line you computed in (a), and explain why such a number must exist in (0, 2).

Sol. (a) Slope =
$$\frac{4-0}{2-0} = 2$$

(b) By MVT, there is $C \in (6,12)$:
$$f(c) = f(2) - f(6)$$

$$\frac{1}{2-0} = 2$$

$$2C = \frac{4-0}{2-0} = 2$$

$$C = 1 \in (0,12)$$
.

Rolle's Theorem If f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), and if f(a) = f(b), then there exists a number $c \in (a, b)$ such that f'(c) = 0.

L'Hospital's Rule Suppose that f and g are differentiable functions and that

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$

or

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$$

If

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$$

then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L$$

Example:

$$\lim_{x \to 2} \frac{x^6 - 64}{x^2 - 4} \implies \lim_{x \to 2} \frac{2^6 - 64}{2^2 - 4} = \frac{0}{0}$$

$$\Rightarrow \lim_{x \to 2} \frac{6x^5}{2x} = \lim_{x \to 2} 3x^4 = 3.2^4 = 3.16 = 48$$

$$\lim_{x \to \infty} \frac{\ln x}{x} \implies \lim_{x \to \infty} \frac{\lim_{x \to \infty} \frac{\ln x}{x}}{\lim_{x \to \infty} \frac{\ln x}{x}} \implies \lim_{x \to \infty} \frac{\lim_{x \to \infty} \frac{\ln x}{x}}{\lim_{x \to \infty} \frac{\ln x}{x}} \implies \lim_{x \to \infty} \frac{\lim_{x \to \infty} \frac{\ln x}{x}}{\lim_{x \to \infty} \frac{\ln x}{x}} \implies \lim_{x \to \infty} \frac{\lim_{x \to \infty} \frac{\ln x}{x}}{\lim_{x \to \infty} \frac{\ln x}{x}} \implies \lim_{x \to \infty} \frac{\lim_{x \to \infty} \frac{\ln x}{x}}{\lim_{x \to \infty} \frac{\ln x}{x}} \implies \lim_{x \to \infty} \frac{\lim_{x \to \infty} \frac{\ln x}{x}}{\lim_{x \to \infty} \frac{\ln x}{x}} = \lim_{x \to \infty} \frac{\lim_{x \to \infty} \frac{\ln x}{x}}{\lim_{x \to \infty} \frac{\ln x}{x}} = \lim_{x \to \infty} \frac{\lim_{x \to \infty} \frac{\ln x}{x}}{\lim_{x \to \infty} \frac{\ln x}{x}} = \lim_{x \to \infty} \frac{\lim_{x \to \infty} \frac{\ln x}{x}}{\lim_{x \to \infty} \frac{\ln x}{x}} = \lim_{x \to \infty} \frac{\lim_{x \to \infty} \frac{\ln x}{x}}{\lim_{x \to \infty} \frac{\ln x}{x}} = \lim_{x \to \infty} \frac{\lim_{x \to \infty} \frac{\ln x}{x}}{\lim_{x \to \infty} \frac{\ln x}{x}} = \lim_{x \to \infty} \frac{\lim_{x \to \infty} \frac{\ln x}{x}}{\lim_{x \to \infty} \frac{\ln x}{x}} = \lim_{x \to \infty} \frac{\ln x}{x}$$

$$\Rightarrow \lim_{x \to \infty} \frac{1}{\alpha} = \frac{1}{\alpha} = 0$$

$$\frac{31 \lim_{x \to \infty} \frac{e^x}{x}}{x} \Rightarrow \frac{e^{\infty}}{\infty} = \frac{\infty}{\infty}$$

$$\Rightarrow \lim_{x \to \infty} \frac{e^x}{x} = \infty \quad (DNE)$$

$$|H| \lim_{x \to 0^+} x \ln x \implies 0. \text{ for } 0^+ = 0.(-\infty)$$

$$\Rightarrow \lim_{X \to 0^{-1}} \frac{\rho_{nx}}{\frac{1}{x}} = \lim_{X \to 0^{+}} \frac{1}{x} = \lim_{X \to 0^{+}} \frac{x^{2}}{x} = \lim_{X \to 0^{+}} \frac{1}{x} = 0$$

$$\lim_{x \to (\frac{\pi}{2})^{-}} (\tan x - \sec x) = \lim_{x \to (\frac{\pi}{2})^{-}} \tan \left(\frac{\pi}{2}\right)^{-} - \sec \left(\frac{\pi}{2}\right)^{-}$$

$$= \infty - \infty$$

$$\Rightarrow$$
 tanx - Seux = $\frac{1}{\cos x}$ - $\frac{1}{\cos x}$

=)
$$\lim_{x \to \frac{\pi}{2}^{-}} \lim_{x \to \frac{\pi}{2}^{-}} \lim$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{-\sin x} = -\lim_{x \to \frac{\pi}{2}} \cot x$$

$$\lim_{x \to 0^+} x^x = 0$$

$$\Rightarrow x^{X} = e^{P_{n}(X^{x})} = e^{x * P_{n}x}$$

$$e^{D} = \frac{1}{2}$$
, so $\lim_{x \to 0^{+}} x^{x} = 1$