Applications of
Differentiation

Definition A function f defined on an interval I is called (strictly) increasing

on [ if
jlx1) = () whenever@*in 1

and is called (strictly) decreasing on [ if

i) > [(n) whenever@ﬁn 1

First-Derivative Test for Monotonicity Suppose f is continuous on [a, b] and
differentiable on (a, b).

(a) If f'(x) > Oforall x € (a, b). then f is increasing on [a, b].

(b) If f'(x) < Oforall x € (a,b), then f is decreasing on [a, b].

m Determine where the function

3 3,
ﬁx)=x'———5x“——6x+3. xe_@

is increasing and where it is decreasing.
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Definition A differentiable function f(x) is concave l{on an interval [ if the
first derivative f'(x) is an increasing function on /. f(x) is concave down on
an interval [ if the first derivative f’(x) is a decreasing functionon I. J

~ .

Second-Derivative Test for Concavity Suppose that f is twice differentiable
on an open interval /.

(a) If m orall x € I, then f is concave up on I §
(b) If orall x € I, then f is concave down on /.
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m Determine where the function

(']

f(x)= X—x2—6x+3, xeR

|

is concave up and where it is concave down.
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A continuous function has a local minimum at ¢ if the function is decreasing to
the left of ¢ and increasing to the right of ¢. A continuous function has a local
maximum at ¢ if the function is increasing to the left of ¢ and decreasing to the

~ /[

right of c.

YA

Figure 5.36 The function y = f(x) ) )
has a local minimum at x = c. Figure 5.37 The functiony = f(x)
has a local maximum at x = c.

1. Find all numbers ¢ wher¢ f'(¢) =0 C/w

2. Find all numbers ¢ where f'(c) does not exist” _ ~ 3\
ap /‘_)7 \ Lo
C e

3. Find the endpoints of the domain of f. ()

o~ o\
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BETETFY Find all local and global extrema of /_ch = (=),
j(x)::x(l——x)”3,<grg]i\>
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Inflection points are points where the concavity of a function changes—that is,
where the function changes from concave up to concave down or from concayv

P — = e S

down to concave up. | \ ) /™\
—_— \

m Show that the function

1y 3,
f(x):ix —Ex +2x+1, xeR

as an inflection point at x = 1.
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The Mean-Value Theorem @ If f is continuous on the closed interval
[a, b] and differentiable on the open interva( (a, b)§ then there exists at least

one number ¢ € (a, b) such that s\o\’< 6(’ M%‘”‘VL&'
R G
e ﬁ@) \- - - = ¢
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35. Suppose\f(x) = x%, x € [0, 2]. X, V)
(a) Find the slope of the secant line connecting the points (0, 0)

and (2, 4).
(b) Find a number ¢ € (0, 2) such that(f’(c)lis equal to the slope

of the secant line you computed in (a). and explain why such a
number must exist in (0, 2).
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Rolle’s Theorem If f is continuous on the closed interval [a, b] and
differentiable on the open interval (a, b), and if f(a) = f(b), then there exists
a number ¢ € (a, b) such that f'(c) = 0.

L’Hospital’s Rule Suppose that f and g are differentiable functions and that

lim f(x) = lim g(x) =0

X—a X—>a

or
lim f(x) = lim g(x) =
If
lim 2% _ 1
x—a &'(X)
then
im 2% _

x—a 8(X)
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