
Objectives
 ■ To create graphical user interfaces with various user-interface controls

(§§16.2–16.11).

 ■ To create a label with text and graphics using the Label class, and
explore properties in the abstract Labeled class (§16.2).

 ■ To create a button with text and graphic using the Button class, and set
a handler using the setOnAction method in the abstract ButtonBase
class (§16.3).

 ■ To create a check box using the CheckBox class (§16.4).

 ■ To create a radio button using the RadioButton class, and group radio
buttons using a ToggleGroup (§16.5).

 ■ To enter data using the TextField class and password using the
PasswordField class (§16.6).

 ■ To enter data in multiple lines using the TextArea class (§16.7).

 ■ To select a single item using ComboBox (§16.8).

 ■ To select a single or multiple items using ListView (§16.9).

 ■ To select a range of values using ScrollBar (§16.10).

 ■ To select a range of values using Slider and explore differences
between ScrollBar and Slider (§16.11).

 ■ To develop a tic-tac-toe game (§16.12).

 ■ To view and play video and audio using the Media, MediaPlayer,
and MediaView (§16.13).

 ■ To develop a case study for showing the national flag and playing the
national anthem (§16.14).

JùĎùFX UI CćĆČĊćĄċ
ùĆü MčĄČāąýüāù

CHAPTER

16

M16_LIAN9966_12_SE_C16.indd 643 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

644 Chapter 16 JavaFX UI Controls and Multimedia

16.1 Introduction
JavaFX provides many UI controls for developing a comprehensive user interface.

A graphical user interface (GUI) makes a program user-friendly and easy to use. Creating a
GUI requires creativity and knowledge of how UI controls work. Since the UI controls in
JavaFX are very flexible and versatile, you can create a wide assortment of useful user inter-
faces for rich GUI applications.

Oracle provides tools for visually designing and developing GUIs. This enables the program-
mer to rapidly assemble the elements of a GUI with minimum coding. Tools, however, cannot
do everything. You have to modify the programs they produce. Consequently, before you begin
to use the visual tools, you must understand the basic concepts of JavaFX GUI programming.

Previous chapters used UI controls such as Button, Label, and TextField. This chapter
introduces the frequently used UI controls in detail (see Figure 16.1).

Point
Key

GUI

FIGURE 16.1 These UI controls are frequently used to create user interfaces.

Parent

TextInputControl

Node Control

ListView

ComboBoxBase ComboBox

Labeled

ScrollBar

Slider

ButtonBase

Label

RadioButton

Button

PasswordField

CheckBox

ToggleButton

TextArea

TextField

MediaView

ImageView Covered in
Chapter 14

Note
Throughout this book, the prefixes lbl, bt, chk, rb, tf, pf, ta, cbo, lv, scb,
sld, and mp are used to name reference variables for Label, Button, CheckBox,
RadioButton, TextField, PasswordField, TextArea, ComboBox, ListView,
ScrollBar, Slider, and MediaPlayer, respectively.

16.2 Labeled and Label
A label is a display area for a short text, a node, or both. It is often used to label other
controls (usually text fields).

Labels and buttons share many common properties. These common properties are defined in
the Labeled class, as shown in Figure 16.2.

A Label can be constructed using one of the three constructors shown in Figure 16.3.
The graphic property can be any node such as a shape, an image, or a control. Listing

16.1 gives an example that displays several labels with text and images in the label, as shown
in Figure 16.4.

LISTING 16.1 LabelWithGraphic.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.ContentDisplay;

naming convention for
controls

Point
Key

M16_LIAN9966_12_SE_C16.indd 644 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

FIGURE 16.2 Labeled defines common properties for Label, Button, CheckBox, and RadioButton.

–alignment: ObjectProperty<Pos>

–contentDisplay:
 ObjectProperty<ContentDisplay>

–graphic: ObjectProperty<Node>

–graphicTextGap: DoubleProperty

–textFill: ObjectProperty<Paint>

–text: StringProperty

–underline: BooleanProperty

–wrapText: BooleanProperty

javafx.scene.control.Labeled

Specifies the alignment of the text and node in the labeled.

Specifies the position of the node relative to the text using the constants
 TOP,BOTTOM,LEFT, and RIGHT defined in ContentDisplay.

A graphic for the label.

The gap between the graphic and the text.

The paint used to fill the text.

A text for the label.

Whether text should be underlined.

Whether text should be wrapped if the text exceeds the width.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

 5 import javafx.scene.control.Label;
 6 import javafx.scene.image.Image;
 7 import javafx.scene.image.ImageView;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.StackPane;
10 import javafx.scene.paint.Color;
11 import javafx.scene.shape.Circle;
12 import javafx.scene.shape.Rectangle;
13 import javafx.scene.shape.Ellipse;
14
15 public class LabelWithGraphic extends Application {
16 @Override // Override the start method in the Application class
17 public void start(Stage primaryStage) {
18 ImageView us = new ImageView(new Image("image/us.gif"));
19 Label lb1 = new Label("US\n50 States", us);
20 lb1.setStyle("−fx−border−color: green; −fx-border−width: 2");
21 lb1.setContentDisplay(ContentDisplay.BOTTOM);
22 lb1.setTextFill(Color.RED);
23
24 Label lb2 = new Label("Circle", new Circle(50, 50, 25));
25 lb2.setContentDisplay(ContentDisplay.TOP);
26 lb2.setTextFill(Color.ORANGE);
27
28 Label lb3 = new Label("Rectangle", new Rectangle(10, 10, 50, 25));
29 lb3.setContentDisplay(ContentDisplay.RIGHT);
30
31 Label lb4 = new Label("Ellipse", new Ellipse(50, 50, 50, 25));
32 lb4.setContentDisplay(ContentDisplay.LEFT);
33

create a label

set node position

create a label

set node position

create a label

create a label

FIGURE 16.3 Label is created to display a text or a node, or both.

javafx.scene.control.Label

+Label()

+Label(text: String)

+Label(text: String, graphic: Node)

javafx.scene.control.Labeled

Creates an empty label.

Creates a label with the specified text.

Creates a label with the specified text and graphic.

16.2 Labeled and Label 645

M16_LIAN9966_12_SE_C16.indd 645 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

646 Chapter 16 JavaFX UI Controls and Multimedia

34 Ellipse ellipse = new Ellipse(50, 50, 50, 25);
35 ellipse.setStroke(Color.GREEN);
36 ellipse.setFill(Color.WHITE);
37 StackPane stackPane = new StackPane();
38 stackPane.getChildren().addAll(ellipse, new Label("JavaFX"));
39 Label lb5 = new Label("A pane inside a label", stackPane);
40 lb5.setContentDisplay(ContentDisplay.BOTTOM);
41
42 HBox pane = new HBox(20);
43 pane.getChildren().addAll(lb1, lb2, lb3, lb4, lb5);
44
45 // Create a scene and place it in the stage
46 Scene scene = new Scene(pane, 450, 150);
47 primaryStage.setTitle("LabelWithGraphic"); // Set the stage title
48 primaryStage.setScene(scene); // Place the scene in the stage
49 primaryStage.show(); // Display the stage
50 }
51 }

add labels to pane

create a label

The program creates a label with a text and an image (line 19). The text is US\n50 States,
so it is displayed in two lines. Line 21 specifies that the image is placed at the bottom of the text.

The program creates a label with a text and a circle (line 24). The circle is placed on top of
the text (line 25). The program creates a label with a text and a rectangle (line 28). The rect-
angle is placed on the right of the text (line 29). The program creates a label with a text and an
ellipse (line 31). The ellipse is placed on the left of the text (line 32).

The program creates an ellipse (line 34), places it along with a label to a stack pane (line 38),
and creates a label with a text and the stack pane as the node (line 39). As seen from this exam-
ple, you can place any node in a label.

The program creates an HBox (line 42) and places all five labels into the HBox (line 43).

 16.2.1 How do you create a label with a node without a text?

 16.2.2 How do you place a text on the right of the node in a label?

 16.2.3 Can you display multiple lines of text in a label?

 16.2.4 Can the text in a label be underlined?

16.3 Button
A button is a control that triggers an action event when clicked.

JavaFX provides regular buttons, toggle buttons, check box buttons, and radio buttons. The common
features of these buttons are defined in ButtonBase and Labeled classes as shown in Figure 16.5.

The Labeled class defines the common properties for labels and buttons. A button is just
like a label, except that the button has the onAction property defined in the ButtonBase
class, which sets a handler for handling a button’s action.

Point
Check

Point
Key

FIGURE 16.4 The program displays labels with texts and nodes. Source: booka/Fotolia.

M16_LIAN9966_12_SE_C16.indd 646 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

16.3 Button 647

Listing 16.2 gives a program that uses the buttons to control the movement of a text, as
shown in Figure 16.6.

LISTING 16.2 ButtonDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.geometry.Pos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.image.ImageView;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.layout.HBox;
 9 import javafx.scene.layout.Pane;
10 import javafx.scene.text.Text;
11
12 public class ButtonDemo extends Application {
13 protected Text text = new Text(50, 50, "JavaFX Programming");
14
15 protected BorderPane getPane() {
16 HBox paneForButtons = new HBox(20);
17 Button btLeft = new Button("Left",
18 new ImageView("image/left.gif"));
19 Button btRight = new Button("Right",
20 new ImageView("image/right.gif"));
21 paneForButtons.getChildren().addAll(btLeft, btRight);
22 paneForButtons.setAlignment(Pos.CENTER);
23 paneForButtons.setStyle("−fx−border−color: green");
24
25 BorderPane pane = new BorderPane();
26 pane.setBottom(paneForButtons);
27
28 Pane paneForText = new Pane();
29 paneForText.getChildren().add(text);
30 pane.setCenter(paneForText);
31
32 btLeft.setOnAction(e –> text.setX(text.getX() – 10));
33 btRight.setOnAction(e –> text.setX(text.getX() + 10));
34
35 return pane;

create a button

add buttons to pane

create a border pane
add buttons to the bottom

add an action handler

return a pane

FIGURE 16.5 ButtonBase extends Labeled and defines common features for all buttons.

javafx.scene.control.ButtonBase

–onAction: ObjectProperty<EventHandler
 <ActionEvent>>

javafx.scene.control.Labeled

javafx.scene.control.Button

+Button()

+Button(text: String)

+Button(text: String, graphic: Node)

Defines a handler for handling a button’s action.

Creates an empty button.

Creates a button with the specified text.

Creates a button with the specified text and graphic.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

M16_LIAN9966_12_SE_C16.indd 647 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

648 Chapter 16 JavaFX UI Controls and Multimedia

36 }
37
38 @Override // Override the start method in the Application class
39 public void start(Stage primaryStage) {
40 // Create a scene and place it in the stage
41 Scene scene = new Scene(getPane(), 450, 200);
42 primaryStage.setTitle("ButtonDemo"); // Set the stage title
43 primaryStage.setScene(scene); // Place the scene in the stage
44 primaryStage.show(); // Display the stage
45 }
46 }

set pane to scene

CheckBox chkUS 5 new CheckBox("US");
chkUS.setGraphic(new ImageView("image/usIcon.gif"));
chkUS.setTextFill(Color.GREEN);
chkUS.setContentDisplay(ContentDisplay.LEFT);

chkUS.setStyle("-fx-border-color: black");
chkUS.setSelected(true);
chkUS.setPadding(new Insets(5, 5, 5, 5));

The program creates two buttons, btLeft and btRight, with each button containing a
text and an image (lines 17–20). The buttons are placed in an HBox (line 21) and the HBox is
placed in the bottom of a border pane (line 26). A text is created in line 13 and is placed in the
center of the border pane (line 30). The action handler for btLeft moves the text to the left
(line 32). The action handler for btRight moves the text to the right (line 33).

The program purposely defines a protected getPane() method to return a pane (line 15).
This method will be overridden by subclasses in the upcoming examples to add more nodes in
the pane. The text is declared protected so it can be accessed by subclasses (line 13).

 16.3.1 How do you create a button with a text and a node? Can you apply all the methods
for Labeled to Button?

 16.3.2 Why is the getPane() method protected in Listing 16.2? Why is the data field
text protected?

 16.3.3 How do you set a handler for processing a button-clicked action?

16.4 CheckBox
A CheckBox is used for the user to make a selection.

Like Button, CheckBox inherits all the properties such as onAction, text, graphic,
alignment, graphicTextGap, textFill, and contentDisplay from ButtonBase and
Labeled, as shown in Figure 16.7. In addition, it provides the selected property to indicate
whether a check box is selected.

Here is an example of a check box with text US, a graphic image, green text color, black
border, and initially selected.

getPane() protected

Point
Check

Point
Key

FIGURE 16.6 The program demonstrates using buttons. Source: Copyright © 1995–2016
Oracle and/or its affiliates. All rights reserved. Used with permission.

M16_LIAN9966_12_SE_C16.indd 648 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

16.4 CheckBox 649

FIGURE 16.8 The program demonstrates check boxes. Source: Copyright © 1995–2016 Oracle and/or its affiliates.
All rights reserved. Used with permission.

VBox
containing
two check
boxes

When a check box is clicked (checked or unchecked), it fires an ActionEvent. To see if
a check box is selected, use the isSelected() method.

We now write a program that adds two check boxes named Bold and Italic to the preceding
example to let the user specify whether the message is in bold or italic, as shown in Figure 16.8.

FIGURE 16.7 CheckBox contains the properties inherited from ButtonBase and Labeled.

javafx.scene.control.ButtonBase

–onAction: ObjectProperty<EventHandler
 <ActionEvent>>

javafx.scene.control.Labeled

javafx.scene.control.CheckBox

–selected: BooleanProperty

Defines a handler for handling a button’s action.

Indicates whether this check box is checked.

Creates an empty check box.

Creates a check box with the specified text.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+CheckBox()

+CheckBox(text: String)

There are at least two approaches to writing this program. The first is to revise the pre-
ceding ButtonDemo class to insert the code for adding the check boxes and processing their
events. The second is to define a subclass that extends ButtonDemo. Please implement the
first approach as an exercise. Listing 16.3 gives the code to implement the second approach.

LISTING 16.3 CheckBoxDemo.java
 1 import javafx.event.ActionEvent;
 2 import javafx.event.EventHandler;
 3 import javafx.geometry.Insets;
 4 import javafx.scene.control.CheckBox;
 5 import javafx.scene.layout.BorderPane;
 6 import javafx.scene.layout.VBox;
 7 import javafx.scene.text.Font;
 8 import javafx.scene.text.FontPosture;
 9 import javafx.scene.text.FontWeight;
10
11 public class CheckBoxDemo extends ButtonDemo {
12 @Override // Override the getPane() method in the super class
13 protected BorderPane getPane() {
14 BorderPane pane = super.getPane();
15
16 Font fontBoldItalic = Font.font("Times New Roman",
17 FontWeight.BOLD, FontPosture.ITALIC, 20);

override getPane()
invoke super.getPane()

create fonts

Application

ButtonDemo

CheckBoxDemo

M16_LIAN9966_12_SE_C16.indd 649 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

650 Chapter 16 JavaFX UI Controls and Multimedia

18 Font fontBold = Font.font("Times New Roman",
19 FontWeight.BOLD, FontPosture.REGULAR, 20);
20 Font fontItalic = Font.font("Times New Roman",
21 FontWeight.NORMAL, FontPosture.ITALIC, 20);
22 Font fontNormal = Font.font("Times New Roman",
23 FontWeight.NORMAL, FontPosture.REGULAR, 20);
24
25 text.setFont(fontNormal);
26
27 VBox paneForCheckBoxes = new VBox(20);
28 paneForCheckBoxes.setPadding(new Insets(5, 5, 5, 5));
29 paneForCheckBoxes.setStyle("−fx−border−color: green");
30 CheckBox chkBold = new CheckBox("Bold");
31 CheckBox chkItalic = new CheckBox("Italic");
32 paneForCheckBoxes.getChildren().addAll(chkBold, chkItalic);
33 pane.setRight(paneForCheckBoxes);
34
35 EventHandler<ActionEvent> handler = e −> {
36 if (chkBold.isSelected() && chkItalic.isSelected()) {
37 text.setFont(fontBoldItalic); // Both check boxes checked
38 }
39 else if (chkBold.isSelected()) {
40 text.setFont(fontBold); // The Bold check box checked
41 }
42 else if (chkItalic.isSelected()) {
43 text.setFont(fontItalic); // The Italic check box checked
44 }
45 else {
46 text.setFont(fontNormal); // Both check boxes unchecked
47 }
48 };
49
50 chkBold.setOnAction(handler);
51 chkItalic.setOnAction(handler);
52
53 return pane; // Return a new pane
54 }
55
56 public static void main(String[] args) {
57 launch(args);
58 }
59 }

CheckBoxDemo extends ButtonDemo and overrides the getPane() method (line 13).
The new getPane() method invokes the super.getPane() method from the ButtonDemo
class to obtain a border pane that contains the buttons and a text (line 14). The check boxes are
created and added to paneForCheckBoxes (lines 30–32). paneForCheckBoxes is added to
the border pane (lines 33).

The handler for processing the action event on check boxes is created in lines 35–48. It sets
the appropriate font based on the status of the check boxes.

The start method for this JavaFX program is defined in ButtonDemo and inherited in
CheckBoxDemo. Therefore, when you run CheckBoxDemo, the start method in ButtonDemo
is invoked. Since the getPane() method is overridden in CheckBoxDemo, the method in
CheckBoxDemo is invoked from line 41 in Listing 16.2, ButtonDemo.java. For additional
information, see CheckPoint question 16.4.1.

 16.4.1 What is the output of the following code?

public class Test {
 public static void main(String[] args) {

pane for check boxes

create check boxes

create a handler

set handler for action

return a pane

Point
Check

M16_LIAN9966_12_SE_C16.indd 650 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

16.5 RadioButton 651

 Test test = new Test();
 test.new B().start();
 }

 class A {
 public void start() {
 System.out.println(getP());
 }

 public int getP() {
 return 1;
 }
 }

 class B extends A {
 public int getP() {
 return 2 + super.getP();
 }
 }
}

 16.4.2 How do you test if a check box is selected?

 16.4.3 Can you apply all the methods for Labeled to CheckBox?

 16.4.4 Can you set a node for the graphic property in a check box?

16.5 RadioButton
Radio buttons, also known as option buttons, enable you to choose a single item from
a group of choices.

In appearance, radio buttons resemble check boxes, but check boxes display a square that is
either checked or blank, whereas radio buttons display a circle that is either filled (if selected)
or blank (if not selected).

RadioButton is a subclass of ToggleButton. The difference between a radio button and a
toggle button is that a radio button displays a circle, but a toggle button is rendered similar to a
button. The UML diagrams for ToggleButton and RadioButton are shown in Figure 16.9.

Point
Key

option buttons

FIGURE 16.9 ToggleButton and RadioButton are specialized buttons for making selections.

javafx.scene.control.ToggleButton

–selected: BooleanProperty

–toggleGroup:
 ObjectProperty<ToggleGroup>

+ToggleButton()

+ToggleButton(text: String)

+ToggleButton(text: String, graphic: Node)

javafx.scene.control.RadioButton

+RadioButton()

+RadioButton(text: String)

Indicates whether the button is selected.

Specifies the button group to which the button belongs.

Creates an empty toggle button.

Creates a toggle button with the specified text.

Creates a toggle button with the specified text and graphic.

Creates an empty radio button.

Creates a radio button with the specified text.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

M16_LIAN9966_12_SE_C16.indd 651 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

652 Chapter 16 JavaFX UI Controls and Multimedia

FIGURE 16.10 The program demonstrates using radio buttons. Source: Copyright © 1995–2016
Oracle and/or its affiliates. All rights reserved. Used with permission.

VBox
containing
three radio

buttons

Radiobutton rbUS 5 new RadioButton("US");
rbUS.setGraphic(new ImageView("image/usIcon.gif"));
rbUS.setTextFill(Color.GREEN);

rbUS.setContentDisplay(ContentDisplay.LEFT);
rbUS.setStyle("-fx-border-color: black");

rbUS.setSelected(true);
rbUS.setPadding(new Insets(5, 5, 5, 5));

Here is an example of a radio button with text US, a graphic image, green text color, black
border, and initially selected.

Application

ButtonDemo

CheckBoxDemo

RadioButtonDemo

Again, there are at least two approaches to writing this program. The first is to revise the
preceding CheckBoxDemo class to insert the code for adding the radio buttons and processing
their events. The second is to define a subclass that extends CheckBoxDemo. Listing 16.4 gives
the code to implement the second approach.

LISTING 16.4 RadioButtonDemo.java
 1 import javafx.geometry.Insets;
 2 import javafx.scene.control.RadioButton;
 3 import javafx.scene.control.ToggleGroup;
 4 import javafx.scene.layout.BorderPane;
 5 import javafx.scene.layout.VBox;
 6 import javafx.scene.paint.Color;
 7
 8 public class RadioButtonDemo extends CheckBoxDemo {
 9 @Override // Override the getPane() method in the super class
10 protected BorderPane getPane() {
11 BorderPane pane = super.getPane();
12

override getPane()
invoke super.getPane()

To group radio buttons, you need to create an instance of ToggleGroup and set a radio
button’s toggleGroup property to join the group, as follows:

 ToggleGroup group = new ToggleGroup();
 rbRed.setToggleGroup(group);
 rbGreen.setToggleGroup(group);
 rbBlue.setToggleGroup(group);

This code creates a button group for radio buttons rbRed, rbGreen, and rbBlue so buttons
rbRed, rbGreen, and rbBlue are selected mutually exclusively. Without grouping, these
buttons would be independent.

When a radio button is changed (selected or deselected), it fires an ActionEvent. To see
if a radio button is selected, use the isSelected() method.

We now give a program that adds three radio buttons named Red, Green, and Blue to the
preceding example to let the user choose the color of the message, as shown in Figure 16.10.

M16_LIAN9966_12_SE_C16.indd 652 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

16.5 RadioButton 653

13 VBox paneForRadioButtons = new VBox(20);
14 paneForRadioButtons.setPadding(new Insets(5, 5, 5, 5));
15 paneForRadioButtons.setStyle
16 ("−fx−border−width: 2px; −fx−border−color: green");
17
18 RadioButton rbRed = new RadioButton("Red");
19 RadioButton rbGreen = new RadioButton("Green");
20 RadioButton rbBlue = new RadioButton("Blue");
21 paneForRadioButtons.getChildren().addAll(rbRed, rbGreen, rbBlue);
22 pane.setLeft(paneForRadioButtons);
23
24 ToggleGroup group = new ToggleGroup();
25 rbRed.setToggleGroup(group);
26 rbGreen.setToggleGroup(group);
27 rbBlue.setToggleGroup(group);
28
29 rbRed.setOnAction(e −> {
30 if (rbRed.isSelected()) {
31 text.setFill(Color.RED);
32 }
33 });
34
35 rbGreen.setOnAction(e −> {
36 if (rbGreen.isSelected()) {
37 text.setFill(Color.GREEN);
38 }
39 });
40
41 rbBlue.setOnAction(e −> {
42 if (rbBlue.isSelected()) {
43 text.setFill(Color.BLUE);
44 }
45 });
46
47 return pane;
48 }
49
50 public static void main(String[] args) {
51 launch(args);
52 }
53 }

RadioButtonDemo extends CheckBoxDemo and overrides the getPane() method (line 10). The
new getPane() method invokes the getPane() method from the CheckBoxDemo class to create a
border pane that contains the check boxes, buttons, and a text (line 11). This border pane is returned from
invoking super.getPane(). The radio buttons are created and added to paneForRadioButtons
(lines 18–21). paneForRadioButtons is added to the border pane (line 22).

The radio buttons are grouped together in lines 24–27. The handlers for processing the
action event on radio buttons are created in lines 29–45. It sets the appropriate color based on
the status of the radio buttons.

The start method for this JavaFX program is defined in ButtonDemo and inherited in
 CheckBoxDemo then in RadioButtonDemo. Thus, when you run RadioButtonDemo, the start
method in ButtonDemo is invoked. Since the getPane() method is overridden in RadioButtonDemo,
the method in RadioButtonDemo is invoked from line 41 in Listing 16.2, ButtonDemo.java.

 16.5.1 How do you test if a radio button is selected?

 16.5.2 Can you apply all the methods for Labeled to RadioButton?

 16.5.3 Can you set any node in the graphic property in a radio button?

 16.5.4 How do you group radio buttons?`

add to border pane

create radio buttons

group radio buttons

handle radio button

return border pane

Point
Check

pane for radio buttons

M16_LIAN9966_12_SE_C16.indd 653 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

654 Chapter 16 JavaFX UI Controls and Multimedia

16.6 TextField
A text field can be used to enter or display a string.

TextField is a subclass of TextInputControl. Figure 16.11 lists the properties and con-
structors in TextField.

Here is an example of creating a noneditable text field with red text color, a specified font,
and right horizontal alignment:

Point
Key

TextField tfMessage 5 new TextField("T-Storm");
tfMessage.setEditable(false);
tfMessage.setStyle("-fx-text-fill: red");
tfMessage.setFont(Font.font("Times", 20));
tfMessage.setAlignment(Pos.BASELINE_RIGHT);

FIGURE 16.11 TextField enables the user to enter or display a string.

javafx.scene.control.TextInputControl

–text: StringProperty

–editable: BooleanProperty

javafx.scene.control.TextField

–alignment: ObjectProperty<Pos>

–prefColumnCount: IntegerProperty

–onAction:
 ObjectProperty<EventHandler<ActionEvent>>

The text content of this control.

Indicates whether the text can be edited by the user.

Specifies how the text should be aligned in the text field.

Specifies the preferred number of columns in the text field.

Specifies the handler for processing the action event on the
 text field.

Creates an empty text field.

Creates a text field with the specified text.

The getter and setter methods for property values
and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+TextField()

+TextField(text: String)

Application

ButtonDemo

CheckBoxDemo

RadioButtonDemo

TextFieldDemo
FIGURE 16.12 The program demonstrates using text fields. Source: Copyright © 1995–2016
Oracle and/or its affiliates. All rights reserved. Used with permission.

When you move the cursor in the text field and press the Enter key, it fires an ActionEvent.
Listing 16.5 gives a program that adds a text field to the preceding example to let the user

set a new message, as shown in Figure 16.12.

M16_LIAN9966_12_SE_C16.indd 654 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

16.7 TextArea 655

LISTING 16.5 TextFieldDemo.java
 1 import javafx.geometry.Insets;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.control.Label;
 4 import javafx.scene.control.TextField;
 5 import javafx.scene.layout.BorderPane;
 6
 7 public class TextFieldDemo extends RadioButtonDemo {
 8 @Override // Override the getPane() method in the super class
 9 protected BorderPane getPane() {
10 BorderPane pane = super.getPane();
11
12 BorderPane paneForTextField = new BorderPane();
13 paneForTextField.setPadding(new Insets(5, 5, 5, 5));
14 paneForTextField.setStyle("−fx−border−color: green");
15 paneForTextField.setLeft(new Label("Enter a new message: "));
16
17 TextField tf = new TextField();
18 tf.setAlignment(Pos.BOTTOM_RIGHT);
19 paneForTextField.setCenter(tf);
20 pane.setTop(paneForTextField);
21
22 tf.setOnAction(e −> text.setText(tf.getText()));
23
24 return pane;
25 }
26
27 public static void main(String[] args) {
28 launch(args);
29 }
30 }

TextFieldDemo extends RadioButtonDemo (line 7) and adds a label and a text field to
let the user enter a new text (lines 12–20). After you set a new text in the text field and press
the Enter key, a new message is displayed (line 22). Pressing the Enter key on the text field
triggers an action event.

Note
If a text field is used for entering a password, use PasswordField to replace
 TextField. PasswordField extends TextField and hides the input text with
echo characters ******.

 16.6.1 Can you disable editing of a text field?

 16.6.2 Can you apply all the methods for TextInputControl to TextField?

 16.6.3 Can you set a node as the graphic property in a text field?

 16.6.4 How do you align the text in a text field to the right?

16.7 TextArea
A TextArea enables the user to enter multiple lines of text.

If you want to let the user enter multiple lines of text, you may create several instances of
TextField. A better alternative, however, is to use TextArea, which enables the user to
enter multiple lines of text. Figure 16.13 lists the properties and constructors in TextArea.

Here is an example of creating a text area with 5 rows and 20 columns, wrapped to the next
line, red text color, and Courier font 20 pixels.

override getPane()
invoke super.getPane()

pane for label and text field

create text field

add to border pane

handle text field action

return border pane

PasswordField

Point
Check

Point
Key

M16_LIAN9966_12_SE_C16.indd 655 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

656 Chapter 16 JavaFX UI Controls and Multimedia

 TextArea taNote = new TextArea("This is a text area");
 taNote.setPrefColumnCount(20);
 taNote.setPrefRowCount(5);
 taNote.setWrapText(true);
 taNote.setStyle("-fx-text-fill: red");
 taNote.setFont(Font.font("Times", 20));

TextArea provides scrolling, but often it is useful to create a ScrollPane object to hold an
instance of TextArea and let ScrollPane handle scrolling for TextArea, as follows:

// Create a scroll pane to hold text area
ScrollPane scrollPane = new ScrollPane(taNote);

Tip
You can place any node in a ScrollPane. ScrollPane automatically provides vertical
and horizontal scrolling if the node is too large to fit in the viewing area.

We now give a program that displays an image and a short text in a label, and a long text
in a text area, as shown in Figure 16.14.

ScrollPane

FIGURE 16.13 TextArea enables the user to enter or display multiple lines of characters.

javafx.scene.control.TextInputControl

–text: StringProperty

–editable: BooleanProperty

javafx.scene.control.TextArea

–prefColumnCount: IntegerProperty

–prefRowCount: IntegerProperty

–wrapText: BooleanProperty

The text content of this control.

Indicates whether the text can be edited by the user.

Specifies the preferred number of text columns.

Specifies the preferred number of text rows.

Specifies whether the text is wrapped to the next line.

Creates an empty text area.

Creates a text area with the specified text.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+TextArea()

+TextArea(text: String)

Here are the major steps in the program:

1. Define a class named DescriptionPane that extends BorderPane, as shown in
Listing 16.6. This class contains a text area inside a scroll pane and a label for displaying
an image icon and a title. The class DescriptionPane will be reused in later examples.

FIGURE 16.14 The program displays an image in a label, a title in a label, and text in the text area. Source: Copyright
© 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

DescriptionPane

A text area
inside a
scroll pane

A label
showing an
image and a
text

M16_LIAN9966_12_SE_C16.indd 656 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

16.7 TextArea 657

2. Define a class named TextAreaDemo that extends Application, as shown in List-
ing 16.7. Create an instance of DescriptionPane and add it to the scene. The rela-
tionship between DescriptionPane and TextAreaDemo is shown in Figure 16.15.

LISTING 16.6 DescriptionPane.java
 1 import javafx.geometry.Insets;
 2 import javafx.scene.control.Label;
 3 import javafx.scene.control.ContentDisplay;
 4 import javafx.scene.control.ScrollPane;
 5 import javafx.scene.control.TextArea;
 6 import javafx.scene.image.ImageView;
 7 import javafx.scene.layout.BorderPane;
 8 import javafx.scene.text.Font;
 9
10 public class DescriptionPane extends BorderPane {
11 /** Label for displaying an image and a title */
12 private Label lblImageTitle = new Label();
13
14 /** Text area for displaying text */
15 private TextArea taDescription = new TextArea();
16
17 public DescriptionPane() {
18 // Center the icon and text and place the text under the icon
19 lblImageTitle.setContentDisplay(ContentDisplay.TOP);
20 lblImageTitle.setPrefSize(200, 100);
21
22 // Set the font in the label and the text field
23 lblImageTitle.setFont(new Font("SansSerif", 16));
24 taDescription.setFont(new Font("Serif", 14));
25
26 taDescription.setWrapText(true);
27 taDescription.setEditable(false);
28
29 // Create a scroll pane to hold the text area
30 ScrollPane scrollPane = new ScrollPane(taDescription);
31
32 // Place label and scroll pane in the border pane
33 setLeft(lblImageTitle);
34 setCenter(scrollPane);
35 setPadding(new Insets(5, 5, 5, 5));
36 }
37
38 /** Set the title */

label

text area

label properties

wrap text

read only

scroll pane

FIGURE 16.15 TextAreaDemo uses DescriptionPane to display an image, title, and text
description of a national flag.

1 1
TextAreaDemo

javafx.application.Application

DescriptionPane

–lblImageTitle: Label

–taDescription: TextArea

javafx.scene.layout.BorderPane

+setImageView(im: ImageView): void

+setDescription(text: String): void

+setTitle(title: String): void

M16_LIAN9966_12_SE_C16.indd 657 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

658 Chapter 16 JavaFX UI Controls and Multimedia

39 public void setTitle(String title) {
40 lblImageTitle.setText(title);
41 }
42
43 /** Set the image view */
44 public void setImageView(ImageView icon) {
45 lblImageTitle.setGraphic(icon);
46 }
47
48 /** Set the text description */
49 public void setDescription(String text) {
50 taDescription.setText(text);
51 }
52 }

The text area is inside a ScrollPane (line 30), which provides scrolling functions for the
text area.

The wrapText property is set to true (line 26) so the line is automatically wrapped when
the text cannot fit in one line. The text area is set as noneditable (line 27), so you cannot edit
the description in the text area.

It is not necessary to define a separate class for DescriptionPane in this example. How-
ever, this class was defined for reuse in the next section, where you will use it to display a
description pane for various images.

LISTING 16.7 TextAreaDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.image.ImageView;
 5
 6 public class TextAreaDemo extends Application {
 7 @Override // Override the start method in the Application class
 8 public void start(Stage primaryStage) {
 9 // Declare and create a description pane
10 DescriptionPane descriptionPane = new DescriptionPane();
11
12 // Set title, text, and image in the description pane
13 descriptionPane.setTitle("Canada");
14 String description = "The Canadian national flag ... ";
15 descriptionPane.setImageView(new ImageView("image/ca.gif"));
16 descriptionPane.setDescription(description);
17
18 // Create a scene and place it in the stage
19 Scene scene = new Scene(descriptionPane, 450, 200);
20 primaryStage.setTitle("TextAreaDemo"); // Set the stage title
21 primaryStage.setScene(scene); // Place the scene in the stage
22 primaryStage.show(); // Display the stage
23 }
24 }

The program creates an instance of DescriptionPane (line 10) and sets the title (line 13),
image (line 15), and text (line 16) in the description pane. DescriptionPane is a subclass of
Pane. DescriptionPane contains a label for displaying an image, a title, and a text area for
displaying a description of the image.

 16.7.1 How do you create a text area with 10 rows and 20 columns?

 16.7.2 How do you obtain the text from a text area?

create descriptionPane

set title

set image

add descriptionPane
to scene

Point
Check

M16_LIAN9966_12_SE_C16.indd 658 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

16.8 ComboBox 659

 16.7.3 Can you disable editing of a text area?

 16.7.4 What method do you use to wrap text to the next line in a text area?

16.8 ComboBox
A combo box, also known as a choice list or drop-down list, contains a list of items
from which the user can choose.

A combo box is useful for limiting a user’s range of choices and avoids the cumbersome
validation of data input. Figure 16.16 lists several frequently used properties and constructors
in ComboBox. ComboBox is defined as a generic class like the ArrayList class. The generic
type T specifies the element type for the elements stored in a combo box.

The following statements create a combo box with four items, red color, and value set to
the first item:

Point
Key

ComboBox<String> cbo 5 new ComboBox<>();
cbo.getItems().addAll("Item 1", "Item 2",
 "Item 3", "Item 4");
cbo.setStyle("−fx−color: #EB0D1B");
cbo.setValue("item 1");

ComboBox inherits from ComboBoxBase. ComboBox can fire an ActionEvent. Whenever
an item is selected, an ActionEvent is fired. ObservableList is a subinterface of java
.util.List. Therefore, you can apply all the methods defined in List for an ObservableList.
For convenience, JavaFX provides the static method FXCollections.observableArray-
List(arrayOfElements) for creating an ObservableList from an array of elements.

Listing 16.8 gives a program that lets the user view an image and a description of a country’s
flag by selecting the country from a combo box, as shown in Figure 16.17.

Here are the major steps in the program:

1. Create the user interface.
Create a combo box with country names as its selection values. Create a DescriptionPane
object (the DescriptionPane class was introduced in the preceding section). Place the combo
box at the top of the border pane, and the description pane in the center of the border pane.

FIGURE 16.16 ComboBox enables the user to select an item from a list of items.

javafx.scene.control.ComboBoxBase<T>

–value: ObjectProperty<T>

–editable: BooleanProperty

–onAction:
 ObjectProperty<EventHandler<ActionEvent>>

javafx.scene.control.ComboBox<T>

–items: ObjectProperty<ObservableList<T>>

–visibleRowCount: IntegerProperty

The value selected in the combo box.

Specifies whether the combo box allows user input.

Specifies the handler for processing the action event.

The items in the combo box popup.

The maximum number of visible rows of the items in the
 combo box popup.

Creates an empty combo box.

Creates a combo box with the specified items.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+ComboBox()

+ComboBox(items: ObservableList<T>)

M16_LIAN9966_12_SE_C16.indd 659 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

660 Chapter 16 JavaFX UI Controls and Multimedia

2. Process the event.
Create a handler for handling action event from the combo box to set the flag title, image,
and text in the description pane for the selected country name.

LISTING 16.8 ComboBoxDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.collections.FXCollections;
 4 import javafx.collections.ObservableList;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.ComboBox;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.image.ImageView;
 9 import javafx.scene.layout.BorderPane;
10
11 public class ComboBoxDemo extends Application {
12 // Declare an array of Strings for flag titles
13 private String[] flagTitles = {"Canada", "China", "Denmark",
14 "France", "Germany", "India", "Norway", "United Kingdom",
15 "United States of America"};
16
17 // Declare an ImageView array for the national flags of 9 countries
18 private ImageView[] flagImage = {new ImageView("image/ca.gif"),
19 new ImageView("image/china.gif"),
20 new ImageView("image/denmark.gif"),
21 new ImageView("image/fr.gif"),
22 new ImageView("image/germany.gif"),
23 new ImageView("image/india.gif"),
24 new ImageView("image/norway.gif"),
25 new ImageView("image/uk.gif"), new ImageView("image/us.gif")};
26
27 // Declare an array of strings for flag descriptions
28 private String[] flagDescription = new String[9];
29
30 // Declare and create a description pane
31 private DescriptionPane descriptionPane = new DescriptionPane();
32
33 // Create a combo box for selecting countries
34 private ComboBox<String> cbo = new ComboBox<>(); // flagTitles;
35
36 @Override // Override the start method in the Application class
37 public void start(Stage primaryStage) {
38 // Set text description

countries

image views

description

combo box

FIGURE 16.17 Information about a country, including an image and a description of its flag,
is displayed when the country is selected in the combo box. Source: Copyright © 1995–2016
Oracle and/or its affiliates. All rights reserved. Used with permission.

DescriptionPane

ComboBox

M16_LIAN9966_12_SE_C16.indd 660 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

16.8 ComboBox 661

39 flagDescription[0] = "The Canadian national flag ... ";
40 flagDescription[1] = "Description for China ... ";
41 flagDescription[2] = "Description for Denmark ... ";
42 flagDescription[3] = "Description for France ... ";
43 flagDescription[4] = "Description for Germany ... ";
44 flagDescription[5] = "Description for India ... ";
45 flagDescription[6] = "Description for Norway ... ";
46 flagDescription[7] = "Description for UK ... ";
47 flagDescription[8] = "Description for US ... ";
48
49 // Set the first country (Canada) for display
50 setDisplay(0);
51
52 // Add combo box and description pane to the border pane
53 BorderPane pane = new BorderPane();
54
55 BorderPane paneForComboBox = new BorderPane();
56 paneForComboBox.setLeft(new Label("Select a country: "));
57 paneForComboBox.setCenter(cbo);
58 pane.setTop(paneForComboBox);
59 cbo.setPrefWidth(400);
60 cbo.setValue("Canada");
61
62 ObservableList<String> items =
63 FXCollections.observableArrayList(flagTitles);
64 cbo.getItems().addAll(items);
65 pane.setCenter(descriptionPane);
66
67 // Display the selected country
68 cbo.setOnAction(e −> setDisplay(items.indexOf(cbo.getValue())));
69
70 // Create a scene and place it in the stage
71 Scene scene = new Scene(pane, 450, 170);
72 primaryStage.setTitle("ComboBoxDemo"); // Set the stage title
73 primaryStage.setScene(scene); // Place the scene in the stage
74 primaryStage.show(); // Display the stage
75 }
76
77 /** Set display information on the description pane */
78 public void setDisplay(int index) {
79 descriptionPane.setTitle(flagTitles[index]);
80 descriptionPane.setImageView(flagImage[index]);
81 descriptionPane.setDescription(flagDescription[index]);
82 }

83 }

The program stores the flag information in three arrays: flagTitles, flagImage, and
flagDescription (lines 13–28). The array flagTitles contains the names of nine coun-
tries, the array flagImage contains image views of each of the nine countries’ flags, and the
array flagDescription contains descriptions of the flags.

The program creates an instance of DescriptionPane (line 31), which was presented
in Listing 16.6, DescriptionPane.java. The program creates a combo box with values from
flagTitles (lines 62 and 63). The getItems() method returns a list from the combo box
(line 64) and the addAll method adds multiple items into the list.

When the user selects an item in the combo box, the action event triggers the execution of
the handler. The handler finds the selected index (line 68) and invokes the setDisplay(int
index) method to set its corresponding flag title, flag image, and flag description on the pane
(lines 78–82).

set combo box value

observable list

add to combo box

M16_LIAN9966_12_SE_C16.indd 661 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

662 Chapter 16 JavaFX UI Controls and Multimedia

 16.8.1 How do you create a combo box and add three items to it?

 16.8.2 How do you retrieve an item from a combo box? How do you retrieve a selected
item from a combo box?

 16.8.3 How do you get the number of items in a combo box? How do you retrieve an
item at a specified index in a combo box?

 16.8.4 What events would a ComboBox fire upon selecting a new item?

16.9 ListView
A list view is a control that basically performs the same function as a combo box, but
it enables the user to choose a single value or multiple values.
Figure 16.18 lists several frequently used properties and constructors in ListView. ListView
is defined as a generic class like the ArrayList class. The generic type T specifies the element
type for the elements stored in a list view.

Point
Check

Point
Key

VideoNote

Use ListView

FIGURE 16.18 ListView enables the user to select one or multiple items from a list of items.

javafx.scene.control.ListView<T>

–items: ObjectProperty<ObservableList<T>>

–orientation: BooleanProperty

–selectionModel:
 ObjectProperty<MultipleSelectionModel<T>>

+ListView()

+ListView(items: ObservableList<T>)

The items in the list view.

Indicates whether the items are displayed horizontally or vertically
 in the list view.

Specifies how items are selected. The SelectionModel is also used
 to obtain the selected items.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Creates an empty list view.

Creates a list view with the specified items.

FIGURE 16.19 SelectionMode has two selection modes: single selection and multiple-
interval selection. Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights
reserved. Used with permission.

(c) Multiple selection(a) Single selection (b) Multiple selection

The getSelectionModel() method returns an instance of SelectionModel, which
contains the methods for setting a selection mode and obtaining selected indices and items.
The selection mode is defined in one of the two constants SelectionMode.MULTIPLE and
SelectionMode.SINGLE, which indicates whether a single item or multiple items can be
selected. The default value is SelectionMode.SINGLE. Figure 16.19a shows a single selec-
tion and Figures 16.19b and c show multiple selections.

M16_LIAN9966_12_SE_C16.indd 662 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

16.9 ListView 663

The following statements create a list view of six items with multiple selections allowed:

 ObservableList<String> items =
 FXCollections.observableArrayList("Item 1", "Item 2",
 "Item 3", "Item 4", "Item 5", "Item 6");
 ListView<String> lv = new ListView<>(items);
 lv.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

The selection model in a list view has the selectedItemProperty property, which is an
instance of Observable. As discussed in Section 15.10, you can add a listener to this property
for handling the property change as follows:

 lv.getSelectionModel().selectedItemProperty().addListener(
 new InvalidationListener() {
 public void invalidated(Observable ov) {
 System.out.println("Selected indices: "
 + lv.getSelectionModel().getSelectedIndices());
 System.out.println("Selected items: "
 + lv.getSelectionModel().getSelectedItems());
 }
 });

This anonymous inner class can be simplified using a lambda expression as follows:

 lv.getSelectionModel().selectedItemProperty().addListener(ov -> {
 System.out.println("Selected indices: "
 + lv.getSelectionModel().getSelectedIndices());
 System.out.println("Selected items: "
 + lv.getSelectionModel().getSelectedItems());
 });

Listing 16.9 gives a program that lets users select the countries in a list and displays the flags
of the selected countries in the image views. Figure 16.20 shows a sample run of the program.

FIGURE 16.20 When the countries in the list are selected, corresponding images of their
flags are displayed in the image views. Source: booka/Fotolia.

FlowPane

An ImageView
is displayed

ListView
inside a

scroll pane

Here are the major steps in the program:

1. Create the user interface.
Create a list view with nine country names as selection values and place the list view
inside a scroll pane. Place the scroll pane on the left of a border pane. Create nine image
views to be used to display the countries’ flag images. Create a flow pane to hold the
image views and place the pane in the center of the border pane.

2. Process the event.
Create a listener to implement the invalidated method in the InvalidationListener
interface to place the selected countries’ flag image views in the pane.

M16_LIAN9966_12_SE_C16.indd 663 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

664 Chapter 16 JavaFX UI Controls and Multimedia

LISTING 16.9 ListViewDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.collections.FXCollections;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.ListView;
 6 import javafx.scene.control.ScrollPane;
 7 import javafx.scene.control.SelectionMode;
 8 import javafx.scene.image.ImageView;
 9 import javafx.scene.layout.BorderPane;
10 import javafx.scene.layout.FlowPane;
11
12 public class ListViewDemo extends Application {
13 // Declare an array of Strings for flag titles
14 private String[] flagTitles = {"Canada", "China", "Denmark",
15 "France", "Germany", "India", "Norway", "United Kingdom",
16 "United States of America"};
17
18 // Declare an ImageView array for the national flags of 9 countries
19 private ImageView[] ImageViews = {
20 new ImageView("image/ca.gif"),
21 new ImageView("image/china.gif"),
22 new ImageView("image/denmark.gif"),
23 new ImageView("image/fr.gif"),
24 new ImageView("image/germany.gif"),
25 new ImageView("image/india.gif"),
26 new ImageView("image/norway.gif"),
27 new ImageView("image/uk.gif"),
28 new ImageView("image/us.gif")
29 };
30
31 @Override // Override the start method in the Application class
32 public void start(Stage primaryStage) {
33 ListView<String> lv = new ListView<>
34 (FXCollections.observableArrayList(flagTitles));
35 lv.setPrefSize(400, 400);
36 lv.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);
37
38 // Create a pane to hold image views
39 FlowPane imagePane = new FlowPane(10, 10);
40 BorderPane pane = new BorderPane();
41 pane.setLeft(new ScrollPane(lv));
42 pane.setCenter(imagePane);
43
44 lv.getSelectionModel().selectedItemProperty().addListener(
45 ov −> {
46 imagePane.getChildren().clear();
47 for (Integer i: lv.getSelectionModel().getSelectedIndices()) {
48 imagePane.getChildren().add(ImageViews[i]);
49 }
50 });
51
52 // Create a scene and place it in the stage
53 Scene scene = new Scene(pane, 450, 170);
54 primaryStage.setTitle("ListViewDemo"); // Set the stage title
55 primaryStage.setScene(scene); // Place the scene in the stage
56 primaryStage.show(); // Display the stage
57 }
58 }

create a list view

set list view properties

place list view in pane

listen to item selected

add image views of selected
items

M16_LIAN9966_12_SE_C16.indd 664 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

16.10 ScrollBar 665

The program creates an array of strings for countries (lines 14–16) and an array of nine image
views for displaying flag images for nine countries (lines 19–29) in the same order as in the
array of countries. The items in the list view are from the array of countries (line 34). Thus,
the index 0 of the image view array corresponds to the first country in the list view.

The list view is placed in a scroll pane (line 41) so it can be scrolled when the number of
items in the list extends beyond the viewing area.

By default, the selection mode of the list view is single. The selection mode for the list view
is set to multiple (line 36), which allows the user to select multiple items in the list view. When
the user selects countries in the list view, the listener’s handler (lines 44–50) is executed, which
gets the indices of the selected items and adds their corresponding image views to the flow pane.

 16.9.1 How do you create an observable list with an array of strings?

 16.9.2 How do you set the orientation in a list view?

 16.9.3 What selection modes are available for a list view? What is the default selection
mode? How do you set a selection mode?

 16.9.4 How do you obtain the selected items and selected indices?

16.10 ScrollBar
ScrollBar is a control that enables the user to select from a range of values.

Figure 16.21 shows a scroll bar. Normally, the user changes the value of a scroll bar by making
a gesture with the mouse. For example, the user can drag the scroll bar’s thumb, click on the
scroll bar track, or the scroll bar’s left or right buttons.

Point
Check

Point
Key

FIGURE 16.21 A scroll bar graphically represents a range of values.

Minimal value

Track

Thumb

Maximal value

Left button Right button

FIGURE 16.22 ScrollBar enables the user to select from a range of values.

javafx.scene.control.ScrollBar

–blockIncrement: DoubleProperty

–max: DoubleProperty

–min: DoubleProperty

–unitIncrement: DoubleProperty

–value: DoubleProperty

–visibleAmount: DoubleProperty

–orientation: ObjectProperty<Orientation>

The amount to adjust the scroll bar if the track of the bar is clicked (default: 10).

The maximum value represented by this scroll bar (default: 100).

The minimum value represented by this scroll bar (default: 0).

The amount to adjust the scroll bar when the increment() and decrement()
 methods are called (default: 1).

Current value of the scroll bar (default: 0).

The width of the scroll bar (default: 15).

Specifies the orientation of the scroll bar (default: HORIZONTAL).

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Creates a default horizontal scroll bar.

Increments the value of the scroll bar by unitIncrement.

Decrements the value of the scroll bar by unitIncrement.

+ScrollBar()

+increment()

+decrement()

ScrollBar has the following properties, as shown in Figure 16.22.

M16_LIAN9966_12_SE_C16.indd 665 16/09/19 8:09 PM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

666 Chapter 16 JavaFX UI Controls and Multimedia

Note
The width of the scroll bar’s track corresponds to max + visibleAmount. When a
scroll bar is set to its maximum value, the left side of the bubble is at max, and the right
side is at max + visibleAmount.

When the user changes the value of the scroll bar, it notifies the listener of the change. You can
register a listener on the scroll bar’s valueProperty for responding to this change as follows:

 ScrollBar sb = new ScrollBar();
 sb.valueProperty().addListener(ov −> {
 System.out.println("old value: " + oldVal);
 System.out.println("new value: " + newVal);
 });

Listing 16.10 gives a program that uses horizontal and vertical scroll bars to move a text dis-
played on a pane. The horizontal scroll bar is used to move the text to the left and the right, and the
vertical scroll bar to move it up and down. A sample run of the program is shown in Figure 16.23.

Here are the major steps in the program:

1. Create the user interface.
Create a Text object and place it in a pane and place the pane in the center of the border
pane. Create a vertical scroll bar and place it on the right of the border pane. Create a
horizontal scroll bar and place it at the bottom of the border pane.

2. Process the event.
Create listeners to move the text according to the bar movement in the scroll bars upon
the change of the value property.

LISTING 16.10 ScrollBarDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.geometry.Orientation;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.ScrollBar;
 6 import javafx.scene.layout.BorderPane;
 7 import javafx.scene.layout.Pane;
 8 import javafx.scene.text.Text;
 9
10 public class ScrollBarDemo extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 Text text = new Text(20, 20, "JavaFX Programming");
14
15 ScrollBar sbHorizontal = new ScrollBar();
16 ScrollBar sbVertical = new ScrollBar();
17 sbVertical.setOrientation(Orientation.VERTICAL);
18
19 // Create a text in a pane

horizontal scroll bar
vertical scroll bar

FIGURE 16.23 The scroll bars move the message on a pane horizontally and vertically. Source:
Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Vertical scroll
bar

Horizontal scroll
bar

Text

M16_LIAN9966_12_SE_C16.indd 666 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

16.10 ScrollBar 667

20 Pane paneForText = new Pane();
21 paneForText.getChildren().add(text);
22
23 // Create a border pane to hold text and scroll bars
24 BorderPane pane = new BorderPane();
25 pane.setCenter(paneForText);
26 pane.setBottom(sbHorizontal);
27 pane.setRight(sbVertical);
28
29 // Listener for horizontal scroll bar value change
30 sbHorizontal.valueProperty().addListener(ov −>
31 text.setX(sbHorizontal.getValue() * paneForText.getWidth() /
32 sbHorizontal.getMax()));
33
34 // Listener for vertical scroll bar value change
35 sbVertical.valueProperty().addListener(ov −>
36 text.setY(sbVertical.getValue() * paneForText.getHeight() /
37 sbVertical.getMax()));
38
39 // Create a scene and place it in the stage
40 Scene scene = new Scene(pane, 450, 170);
41 primaryStage.setTitle("ScrollBarDemo"); // Set the stage title
42 primaryStage.setScene(scene); // Place the scene in the stage
43 primaryStage.show(); // Display the stage
44 }
45 }

The program creates a text (line 13) and two scroll bars (sbHorizontal and sbVertical)
(lines 15 and 16). The text is placed in a pane (line 21) that is then placed in the center of the
border pane (line 25). If the text were directly placed in the center of the border pane, the
position of the text could not be changed by resetting its x and y properties. The sbHorizon-
tal and sbVertical are placed on the right and at the bottom of the border pane (lines 26
and 27), respectively.

You can specify the properties of the scroll bar. By default, the property value is 100 for
max, 0 for min, 10 for blockIncrement, and 15 for visibleAmount.

A listener is registered to listen for the sbHorizontal value property change (lines
30–32). When the value of the scroll bar changes, the listener is notified by invoking the han-
dler to set a new x value for the text that corresponds to the current value of sbHorizontal
(lines 31 and 32).

A listener is registered to listen for the sbVertical value property change (lines 35–37).
When the value of the scroll bar changes, the listener is notified by invoking the handler to set a
new y value for the text that corresponds to the current value of sbVertical (lines 36 and 37).

Alternatively, the code in lines 30–37 can be replaced by using binding properties as
follows:

 text.xProperty().bind(sbHorizontal.valueProperty().
 multiply(paneForText.widthProperty()).
 divide(sbHorizontal.maxProperty()));

 text.yProperty().bind(sbVertical.valueProperty().multiply(
 paneForText.heightProperty().divide(
 sbVertical.maxProperty())));

 16.10.1 How do you create a horizontal scroll bar? How do you create a vertical scroll bar?

 16.10.2 How do you write the code to respond to the value property change of a scroll bar?

 16.10.3 How do you get the value from a scroll bar? How do you get the maximum value
from a scroll bar?

add text to a pane

border pane

set new location for text

set new location for text

Point
Check

M16_LIAN9966_12_SE_C16.indd 667 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

668 Chapter 16 JavaFX UI Controls and Multimedia

16.11 Slider
Slider is similar to ScrollBar, but Slider has more properties and can appear in
many forms.

Figure 16.24 shows two sliders. Slider lets the user graphically select a value by sliding a
knob within a bounded interval. The slider can show both major and minor tick marks between
them. The number of pixels between the tick marks is specified by the majorTickUnit and
minorTickUnit properties. Sliders can be displayed horizontally or vertically, with or with-
out ticks, and with or without labels.

Point
Key

VideoNote

Use Slider

FIGURE 16.24 The sliders move the message on a pane horizontally and vertically. Source:
Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

Vertical slider

Horizontal slider

Text

FIGURE 16.25 Slider enables the user to select from a range of values.

javafx.scene.control.Slider

–blockIncrement: DoubleProperty

–max: DoubleProperty

–min: DoubleProperty

–value: DoubleProperty

–orientation: ObjectProperty<Orientation>

–majorTickUnit: DoubleProperty

–minorTickCount: IntegerProperty

–showTickLabels: BooleanProperty

–showTickMarks: BooleanProperty

The amount to adjust the slider if the track of the bar is clicked (default: 10).

The maximum value represented by this slider (default: 100).

The minimum value represented by this slider (default: 0).

Current value of the slider (default: 0).

Specifies the orientation of the slider (default: HORIZONTAL).

The unit distance between major tick marks.

The number of minor ticks to place between two major ticks.

Specifies whether the labels for tick marks are shown.

Specifies whether the tick marks are shown.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

+Slider()

+Slider(min: double, max: double,
 value: double)

Creates a default horizontal slider.

Creates a slider with the specified min, max, and value.

The frequently used constructors and properties in Slider are shown in Figure 16.25.

Note
The values of a vertical scroll bar increase from top to bottom, but the values of a vertical
slider decrease from top to bottom.

You can add a listener to listen for the value property change in a slider in the same way
as in a scroll bar. We now rewrite the program in the preceding section using the sliders to
move a text displayed on a pane in Listing 16.11. A sample run of the program is shown in
Figure 16.24.

M16_LIAN9966_12_SE_C16.indd 668 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

16.11 Slider 669

LISTING 16.11 SliderDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.geometry.Orientation;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Slider;
 6 import javafx.scene.layout.BorderPane;
 7 import javafx.scene.layout.Pane;
 8 import javafx.scene.text.Text;
 9
10 public class SliderDemo extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 Text text = new Text(20, 20, "JavaFX Programming");
14
15 Slider slHorizontal = new Slider();
16 slHorizontal.setShowTickLabels(true);
17 slHorizontal.setShowTickMarks(true);
18
19 Slider slVertical = new Slider();
20 slVertical.setOrientation(Orientation.VERTICAL);
21 slVertical.setShowTickLabels(true);
22 slVertical.setShowTickMarks(true);
23 slVertical.setValue(100);
24
25 // Create a text in a pane
26 Pane paneForText = new Pane();
27 paneForText.getChildren().add(text);
28
29 // Create a border pane to hold text and scroll bars
30 BorderPane pane = new BorderPane();
31 pane.setCenter(paneForText);
32 pane.setBottom(slHorizontal);
33 pane.setRight(slVertical);
34
35 slHorizontal.valueProperty().addListener(ov −>
36 text.setX(slHorizontal.getValue() * paneForText.getWidth() /
37 slHorizontal.getMax()));
38
39 slVertical.valueProperty().addListener(ov −>
40 text.setY((slVertical.getMax() – slVertical.getValue())
41 * paneForText.getHeight() / slVertical.getMax()));
42
43 // Create a scene and place it in the stage
44 Scene scene = new Scene(pane, 450, 170);
45 primaryStage.setTitle("SliderDemo"); // Set the stage title
46 primaryStage.setScene(scene); // Place the scene in the stage
47 primaryStage.show(); // Display the stage
48 }
49 }

Slider is similar to ScrollBar but has more features. As shown in this example, you can
specify labels, major ticks, and minor ticks on a Slider (lines 16 and 17).

A listener is registered to listen for the slHorizontal value property change (lines 35–37)
and another one is for the sbVertical value property change (lines 39–41). When the value
of the slider changes, the listener is notified by invoking the handler to set a new position for
the text (lines 36 and 37 and 40 and 41). Note since the value of a vertical slider decreases from
top to bottom, the corresponding y value for the text is adjusted accordingly.

horizontal slider
set slider properties

vertical slider
set slider properties

add text to a pane

border pane

set new location for text

set new location for text

M16_LIAN9966_12_SE_C16.indd 669 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

670 Chapter 16 JavaFX UI Controls and Multimedia

The code in lines 35–41 can be replaced by using binding properties as follows:

 text.xProperty().bind(slHorizontal.valueProperty().
 multiply(paneForText.widthProperty()).
 divide(slHorizontal.maxProperty()));

 text.yProperty().bind((slVertical.maxProperty().subtract(
 slVertical.valueProperty()).multiply(
 paneForText.heightProperty().divide(
 slVertical.maxProperty()))));

Listing 15.17 gives a program that displays a bouncing ball. You can add a slider to control
the speed of the ball movement, as shown in Figure 16.26. The new program is given in
Listing 16.12.

FIGURE 16.26 You can increase or decrease the speed of the ball using a slider. Source:
Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

LISTING 16.12 BounceBallSlider.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Slider;
 5 import javafx.scene.layout.BorderPane;
 6
 7 public class BounceBallSlider extends Application {
 8 @Override // Override the start method in the Application class
 9 public void start(Stage primaryStage) {
10 BallPane ballPane = new BallPane();
11 Slider slSpeed = new Slider();
12 slSpeed.setMax(20);
13 ballPane.rateProperty().bind(slSpeed.valueProperty());
14
15 BorderPane pane = new BorderPane();
16 pane.setCenter(ballPane);
17 pane.setBottom(slSpeed);
18
19 // Create a scene and place it in the stage
20 Scene scene = new Scene(pane, 250, 250);
21 primaryStage.setTitle("BounceBallSlider"); // Set the stage title
22 primaryStage.setScene(scene); // Place the scene in the stage
23 primaryStage.show(); // Display the stage
24 }
25 }

The BallPane class defined in Listing 15.17 animates a ball bouncing in a pane.
The rateProperty() method in BallPane returns a property value for the animation

create a ball pane
create a slider
set max value for slider
bind rate with slider value

create a border pane
add ball pane to center
add slider to the bottom

M16_LIAN9966_12_SE_C16.indd 670 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

16.12 Case Study: Developing a Tic-Tac-Toe Game 671

rate. The animation stops if the rate is 0. If the rate is greater than 20, the animation will be too
fast. Therefore, we purposely set the rate to a value between 0 and 20. This value is bound to
the slider value (line 13). Thus, the slider max value is set to 20 (line 12).

 16.11.1 How do you create a horizontal slider? How do you create a vertical slider?

 16.11.2 How do you add a listener to handle the property value change of a slider?

 16.11.3 How do you get the value from a slider? How do you get the maximum value
from a slider?

16.12 Case Study: Developing a Tic-Tac-Toe Game
This section develops a program for playing tic-tac-toe game.

From the many examples in this and earlier chapters, you have learned about objects, classes,
arrays, class inheritance, GUI, and event-driven programming. Now it is time to put what you
have learned to work in developing comprehensive projects. In this section, we will develop
a JavaFX program with which to play the popular game of tic-tac-toe.

Two players take turns marking an available cell in a 3 * 3 grid with their respective tokens
(either X or O). When one player has placed three tokens in a horizontal, vertical, or diagonal
row on the grid, the game is over and that player has won. A draw (no winner) occurs when
all the cells on the grid have been filled with tokens and neither player has achieved a win.
Figure 16.27 shows the representative sample runs of the game.

Point
Check

Point
Key

VideoNote

Tic-Tac-Toe

All the examples you have seen so far show simple behaviors that are easy to model with
classes. The behavior of the tic-tac-toe game is somewhat more complex. To define classes
that model the behavior, you need to study and understand the game.

Assume all the cells are initially empty, and that the first player takes the X token and the
second player the O token. To mark a cell, the player points the mouse to the cell and clicks
it. If the cell is empty, the token (X or O) is displayed. If the cell is already filled, the player’s
action is ignored.

From the preceding description, it should be obvious that a cell is a GUI object that
handles the mouse-click event and displays tokens. There are many choices for this
object. We will use a pane to model a cell and to display a token (X or O). How do you
know the state of the cell (empty, X, or O)? You use a property named token of the
char type in the Cell class. The Cell class is responsible for drawing the token when
an empty cell is clicked, so you need to write the code for listening to the mouse-clicked
action and for painting the shapes for tokens X and O. The Cell class can be defined as
shown in Figure 16.28.

FIGURE 16.27 Two players play a tic-tac-toe game. Source: Copyright © 1995–2016 Oracle and/or its affiliates.
All rights reserved. Used with permission.

(a) The X player won the game (b) Draw—no winners (c) The O player won the game

M16_LIAN9966_12_SE_C16.indd 671 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

672 Chapter 16 JavaFX UI Controls and Multimedia

The tic-tac-toe board consists of nine cells, created using new Cell[3][3]. To determine
which player’s turn it is, you can introduce a variable named whoseTurn of the char type.
whoseTurn is initially 'X', then changes to 'O', and subsequently changes between 'X' and
'O' whenever a new cell is occupied. When the game is over, set whoseTurn to ' '.

How do you know whether the game is over, whether there is a winner, and who is the
winner, if any? You can define a method named isWon(char token) to check whether a
specified token has won and a method named isFull() to check whether all the cells are
occupied.

Clearly, two classes emerge from the foregoing analysis. One is the Cell class, which
handles operations for a single cell; the other is the TicTacToe class, which plays the whole
game and deals with all the cells. The relationship between these two classes is shown in
Figure 16.29.

FIGURE 16.28 The Cell class displays the token in a cell.

Cell

–token: char

+getToken(): char

+setToken(token: char): void

–handleMouseClick(): void

javafx.scene.layout.Pane

Token used in the cell (default: ' ').

Returns the token in the cell.

Sets a new token in the cell.

Handles a mouse-click event.

FIGURE 16.29 The TicTacToe class contains nine cells.

TicTacToe

–whoseTurn: char

–cell: Cell[][]

–lblStatus: Label

+TicTacToe()

+isFull(): boolean

+isWon(token: char): boolean

javafx.application.ApplicationCell

Indicates which player has the turn, initially X.

A 3 3 3, two-dimensional array for cells.

A label to display game status.

Constructs the TicTacToe user interface.

Returns true if all cells are filled.

Returns true if a player with the specified token has won.

9

1

Since the Cell class is only to support the TicTacToe class, it can be defined as an inner
class in TicTacToe. The complete program is given in Listing 16.13.

LISTING 16.13 TicTacToe.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.layout.BorderPane;

M16_LIAN9966_12_SE_C16.indd 672 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

16.12 Case Study: Developing a Tic-Tac-Toe Game 673

 6 import javafx.scene.layout.GridPane;
 7 import javafx.scene.layout.Pane;
 8 import javafx.scene.paint.Color;
 9 import javafx.scene.shape.Line;
 10 import javafx.scene.shape.Ellipse;
 11
 12 public class TicTacToe extends Application {
 13 // Indicate which player has a turn, initially it is the X player
 14 private char whoseTurn = 'X';
 15
 16 // Create and initialize cell
 17 private Cell[][] cell = new Cell[3][3];
 18
 19 // Create and initialize a status label
 20 private Label lblStatus = new Label("X's turn to play");
 21
 22 @Override // Override the start method in the Application class
 23 public void start(Stage primaryStage) {
 24 // Pane to hold cell
 25 GridPane pane = new GridPane();
 26 for (int i = 0; i < 3; i++)
 27 for (int j = 0; j < 3; j++)
 28 pane.add(cell[i][j] = new Cell(), j, i);
 29
 30 BorderPane borderPane = new BorderPane();
 31 borderPane.setCenter(pane);
 32 borderPane.setBottom(lblStatus);
 33
 34 // Create a scene and place it in the stage
 35 Scene scene = new Scene(borderPane, 450, 170);
 36 primaryStage.setTitle("TicTacToe"); // Set the stage title
 37 primaryStage.setScene(scene); // Place the scene in the stage
 38 primaryStage.show(); // Display the stage
 39 }
 40
 41 /** Determine if the cell are all occupied */
 42 public boolean isFull() {
 43 for (int i = 0; i < 3; i++)
 44 for (int j = 0; j < 3; j++)
 45 if (cell[i][j].getToken() == ' ')
 46 return false;
 47
 48 return true;
 49 }
 50
 51 /** Determine if the player with the specified token wins */
 52 public boolean isWon(char token) {
 53 for (int i = 0; i < 3; i++)
 54 if (cell[i][0].getToken() == token
 55 && cell[i][1].getToken() == token
 56 && cell[i][2].getToken() == token) {
 57 return true;
 58 }
 59
 60 for (int j = 0; j < 3; j++)
 61 if (cell[0][j].getToken() == token
 62 && cell[1][j].getToken() == token
 63 && cell[2][j].getToken() == token) {
 64 return true;
 65 }

main class TicTacToe

hold nine cells

create a cell

tic-tac-toe cells in center
label at bottom

check isFull

check rows

check columns

M16_LIAN9966_12_SE_C16.indd 673 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

674 Chapter 16 JavaFX UI Controls and Multimedia

 66
 67 if (cell[0][0].getToken() == token
 68 && cell[1][1].getToken() == token
 69 && cell[2][2].getToken() == token) {
 70 return true;
 71 }
 72
 73 if (cell[0][2].getToken() == token
 74 && cell[1][1].getToken() == token
 75 && cell[2][0].getToken() == token) {
 76 return true;
 77 }
 78
 79 return false;
 80 }
 81
 82 // An inner class for a cell
 83 public class Cell extends Pane {
 84 // Token used for this cell
 85 private char token = ' ';
 86
 87 public Cell() {
 88 setStyle("−fx−border−color: black");
 89 this.setPrefSize(2000, 2000);
 90 this.setOnMouseClicked(e −> handleMouseClick());
 91 }
 92
 93 /** Return token */
 94 public char getToken() {
 95 return token;
 96 }
 97
 98 /** Set a new token */
 99 public void setToken(char c) {
100 token = c;
101
102 if (token == 'X') {
103 Line line1 = new Line(10, 10,
104 this.getWidth() – 10, this.getHeight() – 10);
105 line1.endXProperty().bind(this.widthProperty().subtract(10));
106 line1.endYProperty().bind(this.heightProperty().subtract(10));
107 Line line2 = new Line(10, this.getHeight() – 10,
108 this.getWidth() – 10, 10);
109 line2.startYProperty().bind(
110 this.heightProperty().subtract(10));
111 line2.endXProperty().bind(this.widthProperty().subtract(10));
112
113 // Add the lines to the pane
114 this.getChildren().addAll(line1, line2);
115 }
116 else if (token == 'O') {
117 Ellipse ellipse = new Ellipse(this.getWidth() / 2,
118 this.getHeight() / 2, this.getWidth() / 2 – 10,
119 this.getHeight() / 2 – 10);
120 ellipse.centerXProperty().bind(
121 this.widthProperty().divide(2));
122 ellipse.centerYProperty().bind(
123 this.heightProperty().divide(2));
124 ellipse.radiusXProperty().bind(
125 this.widthProperty().divide(2).subtract(10));

check major diagonal

check subdiagonal

inner class Cell

register listener

display X

display O

M16_LIAN9966_12_SE_C16.indd 674 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

16.12 Case Study: Developing a Tic-Tac-Toe Game 675

126 ellipse.radiusYProperty().bind(
127 this.heightProperty().divide(2).subtract(10));
128 ellipse.setStroke(Color.BLACK);
129 ellipse.setFill(Color.WHITE);
130
131 getChildren().add(ellipse); // Add the ellipse to the pane
132 }
133 }
134
135 /* Handle a mouse click event */
136 private void handleMouseClick() {
137 // If cell is empty and game is not over
138 if (token == ' ' && whoseTurn != ' ') {
139 setToken(whoseTurn); // Set token in the cell
140
141 // Check game status
142 if (isWon(whoseTurn)) {
143 lblStatus.setText(whoseTurn + " won! The game is over");
144 whoseTurn = ' '; // Game is over
145 }
146 else if (isFull()) {
147 lblStatus.setText("Draw! The game is over");
148 whoseTurn = ' '; // Game is over
149 }
150 else {
151 // Change the turn
152 whoseTurn = (whoseTurn == 'X') ? 'O' : 'X';
153 // Display whose turn
154 lblStatus.setText(whoseTurn + "'s turn");
155 }
156 }
157 }
158 }
159 }

The TicTacToe class initializes the user interface with nine cells placed in a grid pane (lines
25–28). A label named lblStatus is used to show the status of the game (line 20). The variable
whoseTurn (line 14) is used to track the next type of token to be placed in a cell. The methods
isFull (lines 42–49) and isWon (lines 52–80) are for checking the status of the game.

Since Cell is an inner class in TicTacToe, the variable whoseTurn and methods isFull
and isWon defined in TicTacToe can be referenced from the Cell class. The inner class
makes programs simple and concise. If Cell were not defined as an inner class of TicTacToe,
you would have to pass an object of TicTacToe to Cell in order for the variables and methods
in TicTacToe to be used in Cell.

The listener for the mouse-click action is registered for the cell (line 90). If an empty cell
is clicked and the game is not over, a token is set in the cell (line 138). If the game is over,
whoseTurn is set to ' ' (lines 144 and 148). Otherwise, whoseTurn is alternated to a new
turn (line 152).

Tip
Use an incremental approach in developing and testing a Java project of this kind. For
example, this program can be divided into five steps:

1. Lay out the user interface and display a fixed token X on a cell.
2. Enable the cell to display a fixed token X upon a mouse click.
3. Coordinate between the two players so as to display tokens X and O alternately.
4. Check whether a player wins, or whether all the cells are occupied without a winner.
5. Implement displaying a message on the label upon each move by a player.

handle mouse click

incremental development
and testing

M16_LIAN9966_12_SE_C16.indd 675 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

676 Chapter 16 JavaFX UI Controls and Multimedia

 16.12.1 When the game starts, what value is in whoseTurn? When the game is over,
what value is in whoseTurn?

 16.12.2 What happens when the user clicks on an empty cell if the game is not over?
What happens when the user clicks on an empty cell if the game is over?

 16.12.3 How does the program check whether a player wins? How does the program
check whether all cells are filled?

16.13 Video and Audio
You can use the Media class to obtain the source of the media, the MediaPlayer
class to play and control the media, and the MediaView class to display the video.

Media (video and audio) is essential in developing rich GUI applications. JavaFX provides the
Media, MediaPlayer, and MediaView classes for working with media. Currently, JavaFX sup-
ports MP3, AIFF, WAV, and MPEG-4 audio formats and FLV and MPEG-4 video formats.

The Media class represents a media source with properties duration, width, and height,
as shown in Figure 16.30. You can construct a Media object from an Internet URL string.

Point
Check

Point
Key

VideoNote

Use Media, MediaPlayer, and
MediaView

FIGURE 16.30 Media represents a media source such as a video or an audio.

javafx.scene.media.Media

–duration: ReadOnlyObjectProperty
 <Duration>

–width: ReadOnlyIntegerProperty

–height: ReadOnlyIntegerProperty

+Media(source: String)

The duration in seconds of the source media.

The width in pixels of the source video.

The height in pixels of the source video.

Creates a Media from a URL source.

The getter methods for property values are provided
in the class, but omitted in the UML diagram for brevity.

FIGURE 16.31 MediaPlayer plays and controls a media.

javafx.scene.media.MediaPlayer

–autoPlay: BooleanProperty

–currentCount: ReadOnlyIntegerProperty

–cycleCount: IntegerProperty

–mute: BooleanProperty

–volume: DoubleProperty

–totalDuration:
 ReadOnlyObjectProperty<Duration>

+MediaPlayer(media: Media)

+play(): void

+pause(): void

+seek(): void

Specifies whether the playing should start automatically.

The number of completed playback cycles.

Specifies the number of time the media will be played.

Specifies whether the audio is muted.

The volume for the audio.

The amount of time to play the media from start to finish.

Creates a player for a specified media.

Plays the media.

Pauses the media.

Seeks the player to a new playback time.

The getter and setter methods for property values
and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

The MediaPlayer class plays and controls the media with properties such as a uto-
Play, currentCount, cycleCount, mute, volume, and totalDuration, as shown in
 Figure 16.31. You can construct a MediaPlayer object from a media and use the pause()
and play() methods to pause and resume playing.

M16_LIAN9966_12_SE_C16.indd 676 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

16.13 Video and Audio 677

The MediaView class is a subclass of Node that provides a view of the Media being played
by a MediaPlayer. The MediaView class provides the properties for viewing the media, as
shown in Figure 16.32.

Listing 16.14 gives an example that displays a video in a view, as shown in Figure 16.33. You
can use the play/pause button to play or pause the video and use the rewind button to restart
the video, and use the slider to control the volume of the audio.

LISTING 16.14 MediaDemo.java
 1 import javafx.application.Application;
 2 import javafx.stage.Stage;
 3 import javafx.geometry.Pos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.control.Label;
 7 import javafx.scene.control.Slider;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.scene.layout.HBox;
10 import javafx.scene.layout.Region;
11 import javafx.scene.media.Media;

FIGURE 16.32 MediaView provides the properties for viewing the media.

javafx.scene.media.MediaView

–x: DoubleProperty

–y: DoubleProperty

–mediaPlayer:
 ObjectProperty<MediaPlayer>

+MediaView()

-fitHeight: Doubleproperty

-fitWidth: Doubleproperty

+MediaView(mediaPlayer: MediaPlayer)

Creates an empty media view.

Creates a media view with the specified media player.

Specifies the current x-coordinate of the media view.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

Specifies the current y-coordinate of the media view.

Specifies a media player for the media view.

Specifies the width of the view for the media to fit.

Specifies the height of the view for the media to fit.

FIGURE 16.33 The program controls and plays a video.

M16_LIAN9966_12_SE_C16.indd 677 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

678 Chapter 16 JavaFX UI Controls and Multimedia

12 import javafx.scene.media.MediaPlayer;
13 import javafx.scene.media.MediaView;
14 import javafx.util.Duration;
15
16 public class MediaDemo extends Application {
17 private static final String MEDIA_URL =
18 "http://liveexample.pearsoncmg.com/common/sample.mp4";
19
20 @Override // Override the start method in the Application class
21 public void start(Stage primaryStage) {
22 Media media = new Media(MEDIA_URL);
23 MediaPlayer mediaPlayer = new MediaPlayer(media);
24 MediaView mediaView = new MediaView(mediaPlayer);
25
26 Button playButton = new Button(">");
27 playButton.setOnAction(e –> {
28 if (playButton.getText().equals(">")) {
29 mediaPlayer.play();
30 playButton.setText("||");
31 } else {
32 mediaPlayer.pause();
33 playButton.setText(">");
34 }
35 });
36
37 Button rewindButton = new Button("<<");
38 rewindButton.setOnAction(e –> mediaPlayer.seek(Duration.ZERO));
39
40 Slider slVolume = new Slider();
41 slVolume.setPrefWidth(150);
42 slVolume.setMaxWidth(Region.USE_PREF_SIZE);
43 slVolume.setMinWidth(30);
44 slVolume.setValue(50);
45 mediaPlayer.volumeProperty().bind(
46 slVolume.valueProperty().divide(100));
47
48 HBox hBox = new HBox(10);
49 hBox.setAlignment(Pos.CENTER);
50 hBox.getChildren().addAll(playButton, rewindButton,
51 new Label("Volume"), slVolume);
52
53 BorderPane pane = new BorderPane();
54 pane.setCenter(mediaView);
55 pane.setBottom(hBox);
56
57 // Create a scene and place it in the stage
58 Scene scene = new Scene(pane, 650, 500);
59 primaryStage.setTitle("MediaDemo"); // Set the stage title
60 primaryStage.setScene(scene); // Place the scene in the stage
61 primaryStage.show(); // Display the stage
62 }
63 }

The source of the media is a URL string defined in lines 17 and 18. The program creates a
Media object from this URL (line 22), a MediaPlayer from the Media object (line 23), and
a MediaView from the MediaPlayer object (line 24). The relationship among these three
objects is shown in Figure 16.34.

create a media
create a media player
create a media view

create a play/pause button
add handler for button action

play media

pause media

create a rewind button
create a handler for

rewinding
create a slider for volume

set current volume
bind volume with slider

add buttons, slider to hBox

place media view in a pane

M16_LIAN9966_12_SE_C16.indd 678 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

16.14 Case Study: National Flags and Anthems 679

A Media object supports live streaming. You can now download a large media file and play it
in the same time. A Media object can be shared by multiple media players and different views
can use the same MediaPlayer object.

A play button is created (line 26) to play/pause the media (line 29). The button’s text is
changed to || (line 30) if the button’s current text is > (line 28). If the button’s current text is
||, it is changed to > (line 33) and the player is paused (line 32).

A rewind button is created (line 37) to reset the playback time to the beginning of the media
stream by invoking seek(Duration.ZERO) (line 38).

A slider is created (line 40) to set the volume. The media player’s volume property is bound
to the slider (lines 45 and 46).

The buttons and slider are placed in an HBox (lines 48–51) and the media view is placed in the
center of the border pane (line 54) and the HBox is placed at the bottom of the border pane (line 55).

 16.13.1 How do you create a Media from a URL? How do you create a MediaPlayer?
How do you create a MediaView?

 16.13.2 If the URL is typed as liveexample.pearsoncmg.com/common/sample.mp4
 without http:// in front of it, will it work?

 16.13.3 Can you place a Media in multiple MediaPlayers? Can you place a MediaPlayer
in multiple MediaViews? Can you place a MediaView in multiple Panes?

16.14 Case Study: National Flags and Anthems
This case study presents a program that displays a nation’s flag and plays its anthem.

The images for seven national flags, named flag0.gif, flag1.gif, . . . , flag6.gif for Denmark,
Germany, China, India, Norway, the United Kingdom, and the United States are stored under
http://liveexample.pearsoncmg.com/common/image. The audio consists of national anthems for
these seven nations, named anthem0.mp3, anthem1.mp3, . . . , anthem6.mp3. They are
stored under http://liveexample.pearsoncmg.com/common/audio.

The program enables the user to select a nation from a combo box, then displays its flag
and plays its anthem. The user can suspend the audio by clicking the || button, and resume it
by clicking the < button, as shown in Figure 16.35.

Point
Check

Point
Key

FIGURE 16.34 The media represents the source, the media player controls the playing, and the media view displays the video.

mediaPlayer: MediaPlayer mediaView: MediaViewmedia: Media

FIGURE 16.35 The program displays a national flag and plays its anthem. Source: booka/
Fotolia.

M16_LIAN9966_12_SE_C16.indd 679 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

680 Chapter 16 JavaFX UI Controls and Multimedia

The program is given in Listing 16.15.

LISTING 16.15 FlagAnthem.java
 1 import javafx.application.Application;
 2 import javafx.collections.FXCollections;
 3 import javafx.collections.ObservableList;
 4 import javafx.stage.Stage;
 5 import javafx.geometry.Pos;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Button;
 8 import javafx.scene.control.ComboBox;
 9 import javafx.scene.control.Label;
10 import javafx.scene.image.Image;
11 import javafx.scene.image.ImageView;
12 import javafx.scene.layout.BorderPane;
13 import javafx.scene.layout.HBox;
14 import javafx.scene.media.Media;
15 import javafx.scene.media.MediaPlayer;
16
17 public class FlagAnthem extends Application {
18 private final static int NUMBER_OF_NATIONS = 7;
19 private final static String URLBase =
20 "https://liveexample.pearsoncmg.com/common";
21 private int currentIndex = 0;
22
23 @Override // Override the start method in the Application class
24 public void start(Stage primaryStage) {
25 Image[] images = new Image[NUMBER_OF_NATIONS];
26 MediaPlayer[] mp = new MediaPlayer[NUMBER_OF_NATIONS];
27
28 // Load images and audio
29 for (int i = 0; i < NUMBER_OF_NATIONS; i++) {
30 images[i] = new Image(URLBase + "/image/flag" + i + ".gif");
31 mp[i] = new MediaPlayer(new Media(
32 URLBase + "/audio/anthem/anthem" + i + ".mp3"));
33 }
34
35 Button btPlayPause = new Button("||");
36 btPlayPause.setOnAction(e –> {
37 if (btPlayPause.getText().equals(">")) {
38 btPlayPause.setText("||");
39 mp[currentIndex].play();
40 }
41 else {
42 btPlayPause.setText(">");
43 mp[currentIndex].pause();
44 }
45 });
46
47 ImageView imageView = new ImageView(images[currentIndex]);
48 ComboBox<String> cboNation = new ComboBox<>();
49 ObservableList<String> items = FXCollections.observableArrayList
50 ("Denmark", "Germany", "China", "India", "Norway", "UK", "US");
51 cboNation.getItems().addAll(items);
52 cboNation.setValue(items.get(0));
53 cboNation.setOnAction(e −> {
54 mp[currentIndex].stop();
55 currentIndex = items.indexOf(cboNation.getValue());
56 imageView.setImage(images[currentIndex]);
57 mp[currentIndex].play();

URLBase for image and audio

track current image/audio

image array

media player array

load image
load audio

create play button
handle button action

play audio

pause audio

create image view

create combo box
create observable list

process combo selection

choose a new nation
play audio

M16_LIAN9966_12_SE_C16.indd 680 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

Chapter Summary 681

58 btPlayPause.setText("||");
59 });
60
61 HBox hBox = new HBox(10);
62 hBox.getChildren().addAll(btPlayPause,
63 new Label("Select a nation: "), cboNation);
64 hBox.setAlignment(Pos.CENTER);
65
66 // Create a pane to hold nodes
67 BorderPane pane = new BorderPane();
68 pane.setCenter(imageView);
69 pane.setBottom(hBox);
70
71 // Create a scene and place it in the stage
72 Scene scene = new Scene(pane, 350, 270);
73 primaryStage.setTitle("FlagAnthem"); // Set the stage title
74 primaryStage.setScene(scene); // Place the scene in the stage
75 primaryStage.show(); // Display the stage
76 mp[currentIndex].play(); // Play the current selected anthem
77 }
78 }

The program loads the image and audio from the Internet (lines 29–33). A play/pause button
is created to control the playing of the audio (line 35). When the button is clicked, if the button’s
current text is > (line 37), its text is changed to || (line 38) and the player is paused (line 39);
If the button’s current text is ||, it is changed to > (line 42) and the player is paused (line 43).

An image view is created to display a flag image (line 47). A combo box is created for
selecting a nation (line 48–51). When a new country name in the combo box is selected, the
current audio is stopped (line 54), the newly selected nation’s image is displayed (line 56) and
the new anthem is played (line 57).

JavaFX also provides the AudioClip class for creating auto clips. An AudioClip
object can be created using new AudioClip(URL). An audio clip stores the audio in mem-
ory. AudioClip is more efficient for playing a small audio clip in the program than using
 MediaPlayer. AudioClip has the similar methods as in the MediaPlayer class.

 16.14.1 In Listing 16.15, which code sets the initial image icon and which code plays the audio?

 16.14.2 In Listing 16.15, what does the program do when a new nation is selected in the
combo box?

CHAPTER SUMMARY

1. The abstract Labeled class is the base class for Label, Button, CheckBox, and
RadioButton. It defines properties alignment, contentDisplay, text, graphic,
graphicTextGap, textFill, underline, and wrapText.

2. The abstract ButtonBase class is the base class for Button, CheckBox, and
 RadioButton. It defines the onAction property for specifying a handler for action events.

3. The abstract TextInputContorl class is the base class for TextField and TextArea.
It defines the properties text and editable.

4. A TextField fires an action event when clicking the Enter key with the text field
focused. A TextArea is often used for editing a multiline text.

5. ComboBox<T> and ListView<T> are generic classes for storing elements of type T.
The elements in a combo box or a list view are stored in an observable list.

Point
Check

M16_LIAN9966_12_SE_C16.indd 681 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

682 Chapter 16 JavaFX UI Controls and Multimedia

6. A ComboBox fires an action event when a new item is selected.

7. You can set a single item or multiple items selection for a ListView and add a listener
for processing selected items.

8. You can use a ScrollBar or Slider to select a range of values and add a listener to
the value property to respond to the change of the value.

9. JavaFX provides the Media class for loading a media, the MediaPlayer class for con-
trolling a media, and the MediaView for displaying a media.

QUIZ

Answer the quiz for this chapter online at the book Companion Website.

PROGRAMMING EXERCISES

Sections 16.2–16.5
 *16.1 (Use radio buttons) Write a GUI program as shown in Figure 16.36a. You can

use buttons to move the message to the left and right and use the radio buttons to
change the color for the message displayed.

FIGURE 16.36 (a) The 6 = and = 7 buttons move the message, and the radio buttons change the color for the message.
(b) The program displays a circle, rectangle, and ellipse when you select a shape type. Source: Copyright © 1995–2016
Oracle and/or its affiliates. All rights reserved. Used with permission.

StackPane

HBox

(b)(a)

 *16.2 (Select geometric figures) Write a program that draws various figures, as
shown in Figure 16.36b. The user selects a figure from a radio button and
uses a check box to specify whether it is filled.

 **16.3 (Traffic lights) Write a program that simulates a traffic light. The program
lets the user select one of three lights: red, yellow, or green. When a radio
button is selected, the light is turned on. Only one light can be on at a time
(see Figure 16.37a). No light is on when the program starts.

M16_LIAN9966_12_SE_C16.indd 682 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 683

 *16.4 (Create a miles/kilometers converter) Write a program that converts miles and
kilometers, as shown in Figure 16.37b. If you enter a value in the Mile text field
and press the Enter key, the corresponding kilometer measurement is displayed
in the Kilometer text field. Likewise, if you enter a value in the Kilometer text
field and press the Enter key, the corresponding miles is displayed in the Mile
text field.

 *16.5 (Convert numbers) Write a program that converts among decimal, hex, and binary
numbers, as shown in Figure 16.37c. When you enter a decimal value in the
 decimal-value text field and press the Enter key, its corresponding hex and binary
numbers are displayed in the other two text fields. Likewise, you can enter values
in the other fields and convert them accordingly. (Hint: Use the Integer
.parseInt(s, radix) method to parse a string to a decimal and use Integer
.toHexString(decimal) and Integer.toBinaryString(decimal) to
obtain a hex number or a binary number from a decimal.)

 *16.6 (Demonstrate TextField properties) Write a program that sets the
horizontal-alignment and column-size properties of a text field dynamically, as
shown in Figure 16.38a.

VideoNote

Use radio buttons and text
fields

FIGURE 16.37 (a) The radio buttons are grouped to let you turn only one light on at a time. (b) The program
 converts miles to kilometers and vice versa. (c) The program converts among decimal, hex, and binary numbers.
Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

(a) (b) (c)

FIGURE 16.38 (a) You can set a text field’s properties for the horizontal alignment and
 column size dynamically. (b) The program displays the time specified in the text fields.
Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with
permission.

(a) (b)

M16_LIAN9966_12_SE_C16.indd 683 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

684 Chapter 16 JavaFX UI Controls and Multimedia

 *16.7 (Set clock time) Write a program that displays a clock and sets the time with the
input from three text fields, as shown in Figure 16.38b. Use the ClockPane in
Listing 14.21. Resize the clock to the center of the pane.

 **16.8 (Geometry: two circles intersect?) Write a program that enables the user to spec-
ify the location and size of the circles, and displays whether the two circles
intersect, as shown in Figure 16.39a. Enable the user to point the mouse inside a
circle and drag it. As the circle is being dragged, the circle’s center coordinates
in the text fields are updated.

 **16.9 (Geometry: two rectangles intersect?) Write a program that enables the user to
specify the location and size of the rectangles and displays whether the two rect-
angles intersect, as shown in Figure 16.39b. Enable the user to point the mouse
inside a rectangle and drag it. As the rectangle is being dragged, the rectangle’s
center coordinates in the text fields are updated.

Sections 16.6–16.8
 **16.10 (Text viewer) Write a program that displays a text file in a text area, as shown

in Figure 16.40a. The user enters a file name in a text field and clicks the View
button; the file is then displayed in a text area.

FIGURE 16.39 Check whether two circles and two rectangles are overlapping. Source:
 Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

(a) (b)

FIGURE 16.40 (a) The program displays the text from a file in a text area. (b) The program
displays a histogram that shows the occurrences of each letter in the file. Source: Copyright
© 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

(a) (b)

M16_LIAN9966_12_SE_C16.indd 684 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 685

 **16.11 (Create a histogram for occurrences of letters) Write a program that reads a
file and displays a histogram to show the occurrences of each letter in the file,
as shown in Figure 16.40b. The file name is entered from a text field. Pressing
the Enter key on the text field causes the program to start to read, process the
file, and display the histogram. The histogram is displayed in the center of the
window. Define a class named Histogram that extends Pane. The class con-
tains the property counts that is an array of 26 elements. counts[0] stores the
number of A, counts[1] the number of B, and so on. The class also contains a
setter method for setting a new counts and displaying the histogram for the new
counts.

 *16.12 (Demonstrate TextArea properties) Write a program that demonstrates the
properties of a text area. The program uses a check box to indicate whether the
text is wrapped onto next line, as shown in Figure 16.41a.

 *16.13 (Compare loans with various interest rates) Rewrite Programming Exercise
5.21 to create a GUI, as shown in Figure 16.41b. Your program should let the
user enter the loan amount and loan period in the number of years from text
fields, and it should display the monthly and total payments for each interest
rate starting from 5% to 8%, with increments of one-eighth, in a text area.

 **16.14 (Select a font) Write a program that can dynamically change the font of a text in
a label displayed on a stack pane. The text can be displayed in bold and italic at
the same time. You can select the font name or font size from combo boxes, as
shown in Figure 16.42a. The available font names can be obtained using Font
.getFontNames(). The combo box for the font size is initialized with numbers
from 1 to 100.

VideoNote

Set fonts

FIGURE 16.41 (a) You can set the options to enable text editing and text wrapping. (b) The program displays a table for
monthly payments and total payments on a given loan based on various interest rates. Source: Copyright © 1995–2016
Oracle and/or its affiliates. All rights reserved. Used with permission.

(a) (b)

FIGURE 16.42 You can dynamically set the font for the message. (b) You can set the alignment and text-position
 properties of a label dynamically. Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used
with permission.

(a) (b)

M16_LIAN9966_12_SE_C16.indd 685 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

686 Chapter 16 JavaFX UI Controls and Multimedia

 **16.15 (Demonstrate Label properties) Write a program to let the user dynamically
set the properties contentDisplay and graphicTextGap, as shown in
Figure 16.42b.

 *16.16 (Use ComboBox and ListView) Write a program that demonstrates selecting
items in a list. The program uses a combo box to specify a selection mode, as
shown in Figure 16.43a. When you select items, they are displayed in a label
below the list.

Sections 16.6–16.8
 **16.17 (Use ScrollBar and Slider) Write a program that uses scroll bars or sliders

to select the color for a text, as shown in Figure 16.43b. Four horizontal scroll
bars are used for selecting the colors: red, green, blue, and opacity percentages.

 **16.18 (Simulation: a running fan) Rewrite Programming Exercise 15.28 to add a slider
to control the speed of the fan, as shown in Figure 16.43c.

 **16.19 (Control a group of fans) Write a program that displays three fans in a group,
with control buttons to start and stop all of them, as shown in Figure 16.44.

 *16.20 (Count-up stopwatch) Write a program that simulates a stopwatch, as shown
in Figure 16.45a. When the user clicks the Start button, the button’s label is
changed to Pause, as shown in Figure 16.45b. When the user clicks the Pause
button, the button’s label is changed to Resume, as shown in Figure 16.45c. The
Clear button resets the count to 0 and resets the button’s label to Start.

FIGURE 16.43 (a) You can choose single or multiple selection modes in a list. (b) The color changes in the text as
you adjust the scroll bars. (c) The program simulates a running fan. Source: Copyright © 1995–2016 Oracle and/or its
 affiliates. All rights reserved. Used with permission.

(a) (b) (c)

FIGURE 16.44 The program runs and controls a group of fans. Source: Copyright
© 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

M16_LIAN9966_12_SE_C16.indd 686 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 687

 *16.21 (Count-down stopwatch) Write a program that allows the user to enter time
in seconds in the text field and press the Enter key to count down the sec-
onds, as shown in Figure 16.45d. The remaining seconds are redisplayed
every second. When the seconds are expired, the program starts to play music
continuously.

 16.22 (Play, loop, and stop a sound clip) Write a program that meets the following
requirements:

 ■ Get an audio file from the class directory using AudioClip.
 ■ Place three buttons labeled Play, Loop, and Stop, as shown in Figure 16.46a.
 ■ If you click the Play button, the audio file is played once. If you click the Loop

button, the audio file keeps playing repeatedly. If you click the Stop button,
the playing stops.

FIGURE 16.45 (a–c) The program counts up the time. (d) The program counts down the time. Source: Copyright
© 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

(a) (b) (c) (d)

FIGURE 16.46 (a) Click Play to play an audio clip once, click Loop to play an audio repeatedly, and click Stop
to terminate playing. Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with
 permission. (b) The program lets the user specify image files, an audio file, and the animation speed.

(a) (b)

M16_LIAN9966_12_SE_C16.indd 687 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

688 Chapter 16 JavaFX UI Controls and Multimedia

 **16.23 (Create an image animator with audio) Create animation in Figure 16.46b to
meet the following requirements:

 ■ Allow the user to specify the animation speed in a text field.
 ■ Get the number of images and image’s file-name prefix from the user. For

example, if the user enters n for the number of images and L for the image
prefix, then the files are L1.gif, L2.gif, and so on, to Ln.gif. Assume the
images are stored in the image directory, a subdirectory of the program’s class
directory. The animation displays the images one after the other.

 ■ Allow the user to specify an audio file URL. The audio is played while the
animation runs.

 **16.24 (Revise Listing 16.14 MediaDemo.java) Add a slider to enable the user to set the
current time for the video and a label to display the current time and the total
time for the video. As shown in Figure 16.47a, the total time is 5 minutes and 3
seconds and the current time is 3 minutes and 58 seconds. As the video plays, the
slider value and current time are continuously updated.

 **16.25 (Racing cars) Write a program that simulates four cars racing, as shown in
 Figure 16.47b. You can set the speed for each car, with a maximum of 100.

 **16.26 (Simulation: raise flag and play anthem) Write a program that displays a flag
rising up, as shown in Figure 15.15. As the national flag rises, play the national
anthem. (You may use a flag image and anthem audio file from Listing 16.15.)

Comprehensive
 **16.27 (Display country flag and flag description) Listing 16.8, ComboBoxDemo.

java, gives a program that lets the user view a country’s flag image and descrip-
tion by selecting the country from a combo box. The description is a string
coded in the program. Rewrite the program to read the text description from
a file. Suppose the descriptions are stored in the files description0.txt, . . . ,

FIGURE 16.47 (a) A slider for current video time and a label to show the current time and total time are added.
(b) You can set the speed for each car. Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights reserved.
Used with permission.

(a) (b)

M16_LIAN9966_12_SE_C16.indd 688 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

Programming Exercises 689

and description8.txt under the text directory for the nine countries Canada,
China, Denmark, France, Germany, India, Norway, the United Kingdom, and
the United States, in this order.

 **16.28 (Slide show) Programming Exercise 15.30 developed a slide show using images.
Rewrite that program to develop a slide show using text files. Suppose that
10 text files named slide0.txt, slide1.txt, . . . , slide9.txt are stored in the text
directory. Each slide displays the text from one file. Each slide is shown for one
second, and the slides are displayed in order. When the last slide finishes, the
first slide is redisplayed, and so on. Use a text area to display the slide.

 ***16.29 (Display a calendar) Write a program that displays the calendar for the current
month. You can use the Prior and Next buttons to show the calendar of the
 previous or next month. Display the dates in the current month in black and
 display the dates in the previous month and next month in gray, as shown in
Figure 16.48.

 **16.30 (Pattern recognition: consecutive four equal numbers) Write a GUI program
for Programming Exercise 8.19, as shown in Figures 16.49a–b. Let the user
enter the numbers in the text fields in a grid of 6 rows and 7 columns. The user
can click the Solve button to highlight a sequence of four equal numbers, if it
exists. Initially, the values in the text fields are randomly filled with numbers
from 0 to 9.

FIGURE 16.48 The program displays the calendar for the current month. Source: Copyright
© 1995–2016 Oracle and/or its affiliates. All rights reserved. Used with permission.

FIGURE 16.49 (a and b) Clicking the Solve button highlights the four consecutive numbers in a
row, a column, or a diagonal. Source: Copyright © 1995–2016 Oracle and/or its affiliates. All rights
reserved. Used with permission. (c) The program enables two players to play the connect-four game.

(a) (b) (c)

M16_LIAN9966_12_SE_C16.indd 689 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

690 Chapter 16 JavaFX UI Controls and Multimedia

 ***16.31 (Game: connect four) Programming Exercise 8.20 enables two players to play
the connect-four game on the console. Rewrite a GUI version for the program,
as shown in Figure 16.49c. The program enables two players to place red and
yellow discs in turn. To place a disk, the player needs to click an available cell.
An available cell is unoccupied and its downward neighbor is occupied. The
program flashes the four winning cells if a player wins, and reports no winners
if all cells are occupied with no winners.

M16_LIAN9966_12_SE_C16.indd 690 16/09/19 8:09 PM

STUDENTS-HUB.com

https://students-hub.com

