

speed of light in measure

fractive index is a measure of how much bending will occur for the light when it a medium.

STUDENTS-HUB.com

Uploaded By: Malak Obaid

$$J = J = -J + J = J = \int_{U} \int$$

Experiment 6: Index of Refraction
•
$$\mathcal{M} = \text{Index of Refraction} \Rightarrow \mathcal{M} = \frac{c}{12}$$

 $\Rightarrow c = \text{speed of Light in Vacuum = 3 × U8 m/s}$
 $v = \text{speed of Light in medium}$
 $V = \text{speed of Light in medium}$
 $V = \text{speed of Light in medium}$
 $M = 1$
 $M = 1$

• Max sin(t) = Myos sn(t)
I sn(t) = Myos sn(t)
Japh sn(t) vr sn(t)
Map = slape
The values
$$\Rightarrow$$
 Myos = 152
More = 146
• Map = sin(t) \Rightarrow $Map = Map \left[(ss(t) \ bt + (su(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (su(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (su(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (su(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (su(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (su(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (st(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (st(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (st(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (st(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (st(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (st(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (st(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (st(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (st(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = Map \left[(ss(t) \ bt + (st(t) \ cr) \right]$
 $=$ $Map = sin(t) \Rightarrow Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$ $Map = map \left[(ss(t) \ cr) \right]$
 $=$