
Chapter 3

Programming Languages principles

Language Translation

Early programmers used Machine Language to program i.e., The language of

numbers. The Programmer wrote his program in HEX which is translated

automatically to binary. For example, look at the following piece of code:

2 4 63

3 4 46

5 4 57

This is a Machine Language program.

Later on, they improved this and created assembly. In compiler construction,

there is no difference between Assembly and Machine Language. Assembly

simply gave mnemonics to Machine Language instructions. The above hex

program would be translated into:

LOD 4,X
ADD 4,Y
STO 4,Z

in Assembly. Assuming 4 is a certain register, the above code means:

- Load the contents of memory location 63 whose name is X into register 4.

- Add the value stored in memory location 46 whose

name is Y to the value in register 4.

- Store the value stored in register 4 to the memory

location 57 whose name is Z.

This was still difficult. After Assembly, we created High Level Languages such

as Pascal, Basic, ADA, C, etc. And with the creation of High Level Languages,

there was now a need for Translators.

 Uploaded By: Ayham NobaniSTUDENTS-HUB.com

What is a Translator?

The Most general definition of a translator is:

Translator is an Algorithm Which Translates the Source Code Into a Target
Code.

If the source code is an assembly language program, and the target code is a

machine language program, the translator is called an Assembler. If the

source code is a high-level language program, and the target code is

assembly or machine language, the translator is called a Compiler.

Compilers

given the above, a compiler is defined as :

An Algorithm that Translates High Level Language Program to an Assembly or
a Machine Language Program.

The Process of compilation and execution, for say, C code is :

Library Linking Input

Data V V

Source Code(*.c) -> Compiler(gcc) -> Object Code(*.obj) -> Executable Code(*.bin) -> Output Data

A Compiler generates Object Code (Machine Code).

Advantages:

1- Generate Object Code
2- Faster Programs execution.

Disadvantage

1- Complex and hard to implementation.
2- Not Portable.

Interpreters

A Simple definition of an interpreter is:

An Interpreter is an Algorithm that Translates the Source Code to an

Intermediate Code which is Executed by Another Algorithm(Program) with

the Input Data to Produce the Output Data.

The General process of interpretation is :

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Input Data

V

Source Code -> Interpreter -> Intermediate Code -> Another Algorithm -> Output Data

Input Data

V

infix Code -> Translator Converter -> postfix Code -> Some Program -> Result

Input Data

V

*.java -> Java Compiler -> Byte Code -> JVM -> Result

A simple interpretation would be changing an equation from infix to postfix and
calculation it.

in Java :

Advantages

 Interpreters generate a Portable intermediate code.

 Easier to Implement

Disadvantages

Slower

Both Compilers and Interpreters Perform the Following Steps :

Lexical Analysis(scanner) : Which simply groups the characters of the

source code to form what is called the Tokens. This Only detects legal

character errors.

Syntax Analysis (Parser) : Groups the set of tokens from the scanner to

form Syntax Structures.

Semantic Analysis: Gives the syntax structures meaning. This is the

hardest task.

Code Generation : Both Compilers and Interpreters do code generation,

but they differ in how. While the Compiler generates Object Code, the
Uploaded By: Ayham NobaniSTUDENTS-HUB.com

interpreter generates Intermediate Code.

These similarities and differences are highlighted in the following diagram:

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Even though this flowchart makes it seem that these steps take place one after
the other, these steps(lexical analysis, syntax analysis, semantic analysis, etc)
are not done independent from each other. Today, almost all compilers are One-
Pass Compilers.

Runtime Environment

A Runtime Environment is defined as :

The Space Allocation for Programs and Data in Memory During Execution.

There are 3 types of Runtime Environment :

1. Fully-Static Environment.

2. Fully-Dynamic Environment.

3. Stack-Based Environment.

Fully-Static Environments

In this type of environment, all properties of the programming language are

predetermined before execution. This means that all the address allocation is

performed when the code is loaded, not when it is run.

FORTRAN for example, uses this scheme. In FORTRAN, all memory locations

of all variables are fixed during program execution. In Addition, FORTRAN has

only one type of procedure/function called subroutine. In Subroutines, there

are no nested subroutines, i.e. you cannot define a subroutine in a

subroutine. This also means that there is no recursion. Thus, the original

FORTRAN is suitable for a fully-static environment.

Fully-Dynamic Environments

This Scheme is more suitable for dynamically computed procedures such as

LISP. It is best with functional and logical programming. This is because it

allows us to do recursive function calls, as the allocation is done

dynamically.

Stack Based Environments

It Is A hybrid of the above 2 schemes. In This Kind of environment, the static

allocation is used for the variables and other data structures, while a stack is

used for recursion, nested functions, and procedures during execution. This

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

https://en.wikipedia.org/wiki/One-pass_compiler
https://en.wikipedia.org/wiki/One-pass_compiler

scheme is best.

used with block structured languages (Imperative/Procedural languages) such as

all ALGOL-like languages including Pascal, C, Modula, Ada, etc. Most

languages today use this scheme.

Languages with strong static structures are more likely to be compiled. i.e.,

generally, imperative languages are compiled. Conversely, Languages with

more dynamic structures are more likely to be interpreted, i.e., generally,

functional and logical languages are interpreted.

Error Detection and recovery

During any point or place in the translation process, errors can arise. Generally,

efficiency is a trade-off with complexity in error handling. The Faster we handle

errors, the less robust our error handling will be. More complex error handling

routines, while they do make using the language and fixing bugs easier, they

take more processing power and time.

There are 4 types of errors that can arise in the compilation process:

1. Lexical Errors : Lexical Errors arise when an illegal character is detected.

an example of this is the number symbol in C. they are easiest to find and fix

and are detected during Lexical Analysis.

2. Syntax errors : Syntax Errors arise when grammatical errors are detected.

This happens when the source code does not follow the grammar of the

syntax language, ie, the Production Rules. An example of this is missing

semicolons in C and Java. They are the a little harder but still easy to find and

fix. They are detected during Syntax Analysis

3. Semantic Errors : Semantic Errors are detected either during Semantic

Analysis or During Execution. There are 2 types of Semantic Errors :

Static : And these are pre-execution. An example of these are type
mismatch errors.

Dynamic : And these are detected only during execution. An example of
these is division by zero.

4. Logical Errors : These are errors that are related to the logic the code was

written in, and what the programmer thinks he means with a statement vs

what the compiler actually understands it as. This is completely human error,

and is the hardest to fix.
Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Programming Languages Domain

Programming Languages are divided into several domains

1. Scientific Domain : This Domain includes all applications with a

computational base. Languages in this domain include FORTRAN, C, and

ALGOL60. This is where programming started originally.

2. Business Domain : This Domain includes all applications used for

commercial purposes. Languages in this domain include COBOL(and

Database languages) and JAVA. This came afterwards when businesses,

especially banks, found use for programming.

3. Artificial Intelligence Domain : This Domain includes languages used for

AI. Languages in this domain are LISP and PROLOG.

4. Systems Programming : Which is programming all aspects of the

computer (including hardware). Languages in this domain include

Machine Language, Assembly Language, and C.

5. Very High Level Languages : These are essentially scripting languages.

Languages in this domain include python and bash.

Language Evaluation Criteria : Which Language is the Best?

There is no "best" general programming language. However, we can say that a

programming language is more suitable for a certain application. There are a lot

of factors to consider when we want to choose a programming language.

However, we can compare similar programming languages on certain

benchmarks such as speed, space usage, ease of use, libraries available, etc.

 Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Factors that Affect Programming Languages

Readability

It is the most important criteria of programing languages (we made programming
languages to be able to understand code after all). It is judging the language by
simplicity of which programs can be read and understood, ie, how hard it is to
understand a segment of source code. There are several things that contribute to
the readability of a language :

Simplicity : a language with a large number of basic components is difficult

to learn. Users generally tend to use only some of those features(according

to personal preferences). An example of this is how there are many types

of loops available(while, for, recursion), but each person has a different

affinity to them, or multiplicity (x=x+1,x+=1,x++,++x), where there is more

than one way to increment or decrement a variable, and a user only likes to

use one of them.

Orthogonality : Orthogonality means the symmetry of relationships among

primitives combined to form the constructs/controls ie, the language should

not behave differently in different contexts. An example of this is in Pascal,

the block statement in loops must start with BEGIN and end with END like

this :

```PASCL 

for(...) 

BEGIN 

... 

END 

``` 

except in the ```repeat``` statement,

which uses


```PASCAL 

REPEAT 

... 

UNTIL 

``` 

or in IBM mainframe, where :


```ASSEMBLY 

A Reg1,mem 

``` 

but

:


```ASSEMBLY 

AR Reg1,Reg2 

``` 


or in VAX(an OS for mainframe digital corporation), where

there is only 1 add instruction for all types of memory(memory

locations and registers) :


```ASSEMBLY 

Add op1,op2 Uploaded By: Ayham NobaniSTUDENTS-HUB.com



int 

``` 


In this case, VAX is said to be more

Orthogonal. in short:

> The Less the Orthogonality, The More Instructions There are.

However:

> The Higher the Orthogonality, The More Problems There are to the Compiler.

Control Structures : Early Languages such as FORTRAN and COBOL had a

limited number of control structures(COBOL had 1 type of loop, the for loop) .

As such, the use of the goto statement was more prevalent. This caused the

language to be less readable. In the 70's, block structured programming

languages were introduced as a solution to poor readability.

Data Types and Structures : Sometimes, the use of a datatype can be

confusing. Pascal, for example, solved this issue. say we want to have a flag.

In pascal, we have the Boolean type :

flag:Boolean;

...

flag:=true;

if flag

then

...

However, In C, we don't have a boolean type, so if we want to define a flag, we
have to use the datatype:
int flag;

flag = 1;

...

if(flag)

...

Syntax Consideration :

Identifier length(eg int , for), separators.

Using Keywords(eg BEGIN , END) in compound statements.

Writability

Writability is the ability to write programs in a certain language. It is not

separated from the readability issue. We can say that the writability issue is the

same as the readability issue. Generally, if a programming language is easy to

read, it is easy to write and vice versa. The Factors which effect readability also

effect writability.

We should compare writability of the programming language in the same

domain. COBOL is no good for writing a scientific programs, while ALGOL60 is.

In the same way, its not a good idea to do AI in ALGOL60 compared, to say,

PROLOG. Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Reliability

Reliability is how much we "trust" a programming language. A Programing

language is said to be reliable if it performs well under all conditions.

The Reliability issue is effected by the following factors :

Type Checking : That is, to check that the operands of a certain operation are of

a compatible data type.

Exception Handling : That is, the ability to detect the error, report the error, and

recover from it.

Aliasing : That is, Having 2 or more distinct referencing methods , ie, having 2

different names for the same memory location.

Cost

Cost is divided into categories :

Programmer Training. Programmer Training is a

function of simplicity and orthogonality. Software

Creation. Software Creation is a function of writability.

Cost of Compilation. This means how much time/processing power and

space we need to compile the source and create an executable.

Cost of Execution. This means how much time/processing power

and space we need to run a program. Cost of Compiler

Development.

Cost of Maintenance. This is also a function of readability.

Other Factors

There are also other factors to consider when comparing languages :

Portability : The Ability to move the program and run it on a different platform.
This is a huge plus.

Generality : That is, is the programming language a general purpose

programming language? Can we use it for everything?

 Efficiency : And This includes 3 types of efficiency:

 Efficiency in Translation.

Efficiency in Execution.

Efficiency in Writing Programs.

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

	What is a Translator?
	Compilers
	Interpreters
	Advantages
	Disadvantages

	Runtime Environment
	Fully-Static Environments
	Fully-Dynamic Environments
	Stack Based Environments

	Programming Languages Domain
	Language Evaluation Criteria : Which Language is the Best?
	Factors that Affect Programming Languages
	Readability
	It is the most important criteria of programing languages (we made programming languages to be able to understand code after all). It is judging the language by simplicity of which programs can be read and understood, ie, how hard it is to understand ...
	Writability
	Reliability
	Cost
	Other Factors
	Efficiency in Translation.
	Efficiency in Execution.
	Efficiency in Writing Programs.

