
Chapter 11: Amortized Analysis

11.1 When the number of trees after the insertions is more than the number before.

11.2 Although each insertion takes roughly log NO, and each DeleteMinO takes 2log NO actual
time, our accounting system is charging these particular operations as 2 for the insertion
and 3log NO−2 for the DeleteMin.O The total time is still the same; this is an accounting
gimmick. If the number of insertions and DeleteMinsO are roughly equivalent, then it
really is just a gimmick and not very meaningful; the bound has more significance if, for
instance, there are NO insertions and OO(NO/ log NO) DeleteMinsO (in which case, the total
time is linear).

11.3 Insert the sequence NO, NO + 1, NO − 1, NO + 2, NO − 2, NO + 3, ..., 1, 2NO into an initially
empty skew heap. The right path has NO nodes, so any operation could take Ω(NO) time.

11.5 We implement DecreaseKey(X, H) as follows: If lowering the value of XO creates a heap
order violation, then cut XO from its parent, which creates a new skew heap HO1 with the
new value of XO as a root, and also makes the old skew heap HO smaller. This operation
might also increase the potential of HO, but only by at most log NO. We now merge HO and
HO1. The total amortized time of the MergeO is OO(log NO), so the total time of the
DecreaseKeyO operation is OO(log NO).

11.8 For the zigO−zigO case, the actual cost is 2, and the potential change is
RPfOO(XO) + RPfOO(PO) + RPfOO(GO) − RiO(XO) − RiO(PO) − RiO(GO). This gives an amortized
time bound of

ATzigO−zigO = 2 + RPfOO(XO) + RPfOO(PO) + RPfOO(GO) − RiO(XO) − RiO(PO) − RiO(GO)

Since RPfOO(XO) = RiO(GO), this reduces to

 = 2 + RPfOO(PO) + RPfOO(GO) − RiO(XO) − RiO(PO)

Also, RPfOO(XO) > RPfOO(PO) and RiO(XO) < RiO(PO), so

ATzigO−zigO < 2 + RPfOO(XO) + RPfOO(GO) − 2RiO(XO)

Since SiO(XO) + SPfOO(GO) < SPfOO(XO), it follows that RiO(XO) + RPfOO(GO) < 2RPfOO(XO) − 2.
Thus

ATzigO−zigO < 3RPfOO(XO) − 3RiO(XO)

11.9 (a) Choose WO(iO) = 1/ NO for each item. Then for any access of node XO, RPfOO(XO) = 0, and
RiO(XO) ≥ −log NO, so the amortized access for each item is at most 3 log NO + 1, and the
net potential drop over the sequence is at most NO log NO, giving a bound of
OO(MOlog NO + MO + NOlog NO), as claimed.

(b) Assign a weight of qiO/MO to items iO. Then RPfOO(XO) = 0, RiO(XO) ≥ log(qiO/MO), so the
amortized cost of accessing item iO is at most 3 log(MO/qiO) + 1, and the theorem follows
immediately.

11.10 (a) To merge two splay trees TO1 and TO2, we access each node in the smaller tree and
insert it into the larger tree. Each time a node is accessed, it joins a tree that is at least

-63-

Uploaded By: anonymousSTUDENTS-HUB.com

twice as large; thus a node can be inserted log NO times. This tells us that in any sequence
of NO−1 merges, there are at most NOlog NO inserts, giving a time bound of OO(NOlog2NO).
This presumes that we keep track of the tree sizes. Philosophically, this is ugly since it
defeats the purpose of self-adjustment.

(b) Port and Moffet [6] suggest the following algorithm: If TO2 is the smaller tree, insert its
root into TO1. Then recursively merge the left subtrees of TO1 and TO2, and recursively
merge their right subtrees. This algorithm is not analyzed; a variant in which the median
of TO2 is splayed to the root first is with a claim of OO(NOlog NO) for the sequence of
merges.

11.11 The potential function is cO times the number of insertions since the last rehashing step,
where cO is a constant. For an insertion that doesn’t require rehashing, the actual time is
1, and the potential increases by cO, for a cost of 1 + cO.
If an insertion causes a table to be rehashed from size SO to 2SO, then the actual cost is
1 + dSO, where dSO represents the cost of initializing the new table and copying the old
table back. A table that is rehashed when it reaches size SO was last rehashed at size SO/ 2,
so SO/ 2 insertions had taken place prior to the rehash, and the initial potential was cSO/ 2.
The new potential is 0, so the potential change is −cSO/ 2, giving an amortized bound of
(dO − cO/ 2)SO + 1. We choose cO = 2dO, and obtain an OO(1) amortized bound in both cases.

11.12 We show that the amortized number of node splits is 1 per insertion. The potential func-
tion is the number of three-child nodes in TO. If the actual number of nodes splits for an
insertion is sO, then the change in the potential function is at most 1 − sO, because each
split converts a three-child node to two two-child nodes, but the parent of the last node
split gains a third child (unless it is the root). Thus an insertion costs 1 node split, amor-
tized. An NO node tree has NO units of potential that might be converted to actual time, so
the total cost is OO(MO + NO). (If we start from an initially empty tree, then the bound is
OO(MO).)

11.13 (a) This problem is similar to Exercise 3.22. The first four operations are easy to imple-
ment by placing two stacks, SLO and SRO, next to each other (with bottoms touching). We
can implement the fifth operation by using two more stacks, MLO and MRO (which hold
minimums).

If both SLO and SRO never empty, then the operations can be implemented as follows:

Push(X,D): push XO onto SLO; if XO is smaller than or equal to the top of MLO, push XO onto
MLO as well.

Inject(X,D): same operation as PushO, except use SRO and MRO.
Pop(D): pop SLO; if the popped item is equal to the top of MLO, then pop MLO as well.

Eject(D): same operation as PopO, except use SRO and MRO.
FindMin(D): return the minimum of the top of MLO and MRO.
These operations don’t work if either SLO or SRO is empty. If a PopO or EPjectO is attempted
on an empty stack, then we clear MLO and MRO. We then redistribute the elements so that
half are in SLO and the rest in SRO, and adjust MLO and MRO to reflect what the state would be.
We can then perform the PopO or EPjectO in the normal fashion. Fig. 11.1 shows a transfor-
mation.

Define the potential function to be the absolute value of the number of elements in SLO
minus the number of elements in SRO. Any operation that doesn’t empty SLO or SRO can

-64-

Uploaded By: anonymousSTUDENTS-HUB.com

3, 1, 4, 6, 5, 9, 2, 6

1, 2, 6

3, 1, 4, 6 5, 9, 2, 6

1, 4, 6 5, 2

SLO SRO

MLO MRO

SLO SRO

MLO MRO

Fig. 11.1.
increase the potential by only 1; since the actual time for these operations is constant, so
is the amortized time.

To complete the proof, we show that the cost of a reorganization is OO(1) amortized time.
Without loss of generality, if SRO is empty, then the actual cost of the reorganization is
O|OSLOO|O units. The potential before the reorganization is O|OSLOO|O; afterward, it is at most 1.
Thus the potential change is 1−O|OSLOO|O, and the amortized bound follows.

-65-

Uploaded By: anonymousSTUDENTS-HUB.com

