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LEGENDRE POLYNOMIALS AND APPLICATIONS

We construct Legendre polynomials and apply them to solve Dirichlet problems
in spherical coordinates.

1. LEGENDRE EQUATION: SERIES SOLUTIONS

The Legendre equation is the second order differential equation

(1) (1—2%)y" —2zy + Ay =0

which can also be written in self-adjoint form as

(2) [(1—a2?)y] +xy=0.

This equation has regular singular points at © = —1 and at * = 1 while z = 0 is an

ordinary point. We can find power series solutions centered at z = 0 (the radius of
convergence will be at least 1). Now we construct such series solutions.

Assume that
o0
y = Z cjx?
j=0
be a solution of (1). By substituting such a series in (1), we get

(1=2)) - Deja? ™ =220 jesal ™+ XD ejal =0
j=2 j=1 §=0

D36 = Dot 2 =" = Dejal =Y 2jeja? + A ejal =0
j=2 j=2 j=1 =0

After re-indexing the first series and grouping the other series, we get

DTG +2)0 + Dejpar? =3 (52 +5 = Neja? =0
j=0 j=0
and then
> .
Z [(G+2)(G+D)ejpe— (P + 75— Nejl2? =0.
§=0
By equating each coefficient to 0, we obtain the recurrence relations
(J+1)j—A .
Cito = 17— <Cj, ]:O7172’...
GG+

We can obtain two independent solutions as follows. For the first solution we
make ¢g # 0 and ¢; = 0. In this case the recurrence relation gives

2—A 12—\
C3: 6 01207 C5: 20 0320’ "'7COdd:O'
The coefficients with even index can be written in terms of cq:
- 2-3—-AX 2-3=X2)(=X
62:760, C4:( 1.3 )02:( 4')( )CO
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we prove by induction that

[(2k — 1)(2k — 2) — N[(2k — 3)(2k — 4) — A+ [3- 2 — A|[-A]
2k = (2k)! o

We can write this in compact form as

k—1
Cot = % (H[(Qz’ +1)(26) — A])

i=

This give a solution

oo k—1 ka
nio) = (H[@i F1)20) - A]) el

=0 \i=0

A second series solution (independent from the first) can be obtained by making
co =0 and ¢; # 0. In this case ceven = 0 and

k
C2k+1 = ﬁ (H[Q@(QZ —1) - A])

i=1
The corresponding solution is

2k+1

o) k
ya(a) =1y (HK%(% —1- A]) m

k=0 \i=1

Remark 1. It can be proved by using the ratio test that the series defining y; and
y2 converge on the interval (—1, 1) (check this as an exercise).

2. Tt is also proved that for every A either y; or ys is unbounded on (—1, 1). That
is, as x — 1 or as * — —1, one of the following holds, either |y;(z)] — oo or
()] = oc.

3. The only case in which Legendre equation has a bounded solution on [—1, 1] is
when the parameter A has the form A = n(n + 1) with n = 0 or n € Z*. In this
case either y; or y, is a polynomial (the series terminates). This case is considered
below.

2. LEGENDRE POLYNOMIALS

Consider the following problem
Problem. Find the parameters A\ € R so that the Legendre equation

(3) [(1—m2)y/]/+)\y:0, -1<z<1.

has a bounded solution.

This is a singular Sturm-Liouville problem. It is singular because the function
(1 — 22) equals 0 when x = £1. For such a problem, we don’t need boundary con-
ditions. The boundary conditions are replaced by the boundedness of the solution.
As was pointed out in the above remark, the only values of A for which we have
bounded solutions are A = n(n + 1) with n =0, 1, 2,---. These values of X\ are
the eigenvalues of the SL-problem.

To understand why this is so, we go back to the construction of the series solu-
tions and look again at the recurrence relations giving the coefficients

o UHDi=A
Cj+2—(

~ T A i=0.1.2. .-
TRl


https://students-hub.com

STUDENTS-HUB.com

LEGENDRE POLYNOMIALS AND APPLICATIONS 3

If X =n(n+1), then
(n+1n—A
c =—— ¢, =0.
2T mr2)(n+ 1) "
By repeating the argument, we get ¢, +4 = 0 and in general ¢, 495 = 0 for k£ > 1.
This means
e if n = 2p (even), the series for y; terminates at ¢z, and y; is a polynomial
of degree 2p. The series for y, is infinite and has radius of convergence
equal to 1 and y- is unbounded.
o If n =2p+ 1 (odd), then the series for yo terminates at cgpyq1 and yo is a
polynomial of degree 2p + 1 while the solution y; is unbounded.
For A = n(n+1), we can rewrite the recurrence relation for a polynomial solution
in terms of ¢,. We have,

o G+2e+ry o (H2)0+ D)
C = == Cjt2 = — - -
jG+1) = n(n+1) (n=j)(n+j+1)
for j=n—-2, n—4, ---1or 0. Equivalently,
. __(n—2k:+2)(n—2k+1)c
n—2k = @20 —2k+ 1) n—2k+2;

cj+27

k=1,2 -, [n/2.

I will leave it as an exercise to verify the following formula for ¢, _of in terms of ¢,:

(—1)k nn—1)---(n—2k+1)

=2k T Rk 2n—1)(2n—3) - (2n—2k+ 1) "
The polynomial solution is therefore
LD an-) -2k )y,

y() = ];) 26k 2n—1)(2n —3)---(2n — 2k + 1)
where ¢, is an arbitrary constant. The n-th Legendre polynomial P,(z) is the above
polynomial of degree n for the particular value of ¢,

_ (2n)!
Cp = (e

This particular value of ¢, is chosen to make P,(1) = 1. We have then (after
simplification)
[n/2

]
1 —
PO 3 L G

Note that if n is even (resp. odd), then the only powers of z involved in P, are
even (resp. odd) and so P, is an even (resp. odd).
The first six Legendre polynomials are.

DFEn—2k) o
) (n— 2k) "

Py(z) = 11 Py(x) :ai”
Py(z) = =(32% — 1) Ps(z) = %(5353 — 3z)
Py(z) = §(35x4 — 3027 + 3) Ps(z) = §(63x5 — 702 + 157)

We have the following proposition.
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— Py —_ P
2 — P
_P4 —P
6 —_ P

N w e

Proposition. If y(z) is a bounded solution on the interval (—1, 1) of the Legendre
equation (1) with A = n(n + 1), then there exists a constant K such that

y(x) = KPy(x)
where P, is the n-th Legendre polynomial.
Remark. When A = n(n + 1) a second solution of the Legendre equation, inde-
pendent from P, can be found in the form

1 1+

n(@) = =Py(x)]
Qu(@) = 5 Pala) 0

where R, is a polynomial of degree n — 1. The construction of @,, can be achieved
by the method of reduction of order. Note that |Q,(x)] — oo as © — £1. The
general solution of the Legendre equation is then

y(x) = AP, (z) + BnQn(z)

and such a function is bounded on the interval (—1, 1) if and only if B = 0.

+ R, ()

3. RODRIGUES’ FORMULA
The Legendre polynomials can be expressed in a more compact form.

Theorem 1. (Rodrigues’ Formula) The n-th Legendre polynomial P, is given by
the following
1 da

_ - 2 n
) Fu() = 2n nldxn [ —1)7]
(thus expression (4) gives a solution of (3) with A =n(n+1)).
Proof. Let y = (% — 1)". We have following
Claim. The k-th derivative y(*)(z) of y satisfies the following:

d?y) dy )
J— 2 — J—
(5) (1—2z%) Ip2 +2(n—k—1)x o

Proof of the Claim. By induction. For k =0, y = y(?). We have

+ (2n — k) (k + 1)y = 0.

y =2nz(2®* —1)"' = (1 -2y +2nay=0
and after differentiation, we get

(1—22)y" +2(n —1)zy +2ny =0
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So formula (5) holds when k& = 0. By induction suppose the (5) holds up to order
k — 1. We can rewrite (5) for k — 1 as

dy(k) k k
(1 —z?) . +2(n — kB)ay™ + 2n — k+ Dky*=Y = 0.
We differentiate to obtain
d?y ) dy )

(1—2?) e +2(n—k) — 2]z o +2(n— k) + k@2n —k+ 1))y® =o0.

which is precisely (5).
Now if we let k = n in (5), we obtain

d?y™ ) dy™

(1—1‘2) de? .%' dx +”(”+1)y(k)=0-

Hence 3™ solves the Legendre equation with A = n(n+1). Since y™ is a polyno-
mial of degree 2n, then by Proposition 1, it is a multiple of P,. There is a constant
K such that P,(z) = Ky™(z). To complete the proof, we need to find K. For
this notice that the coefficient of 2™ in P, is (2n)!/(2" (n!)?). The coefficient of x™
in y( is that of

dr(z*") (2n)!
= (2 2n—1)---(2n — D" = n
@ — men 1) 20—+ 1an = 2
Hence
(2n)!  (2n)! 1
nl  2n (n!)2 Coonpl

This completes the proof of the Rodrigues’ formula.

A consequence of this formula is the following property between three consecutive
Legendre polynomials.

Proposition. The Legendre polynomials satisfy the following
(6) 2n+1)Py(z) = P4 (z) — Py (2)

Proof. From Rodrigues’ formula we have

d 1 dF 2k dF _
P/é(x) = dz (dek[(xg - 1)k]) = Ww[v’c(ﬂﬂz - 1)k 1]

1 dk—l
T2k (f — 1)l dak 1
For k =n+1, we get

(28 = 1)a? = 1)(@? = 1)* 7]

L a 2 2 n—1
P’QH(:E):QTn!daT" [(2n+1)2® - 1)(2* —1)" "]
From Rodrigues’ formula at n — 1, we get

/ _d 1 ! 2 yn—17) _ 2n d" oy
Poa(@) = dx \ 2n—1(n — 1) dan—1 (@ =)™ ) = 27 ! dxm (== 1"

As a consequence, we have

2n+1 d"
P - P = —
n+1(gj) n—l(z) mnl den

(@ = 1)"] = (2n + 1) Pa(a) .
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Generating function. It can be shown that the Legendre polynomials are gener-

ated by the function
1

V1—2xt+¢2°

More precisely, if we extend g(x,t) as a Taylor series in ¢, then the coefficient of "
is the polynomial P, (z):

g(x,t) =

@ V1-—2xt+ VI_2st+ 22 Z

A consequence of (7) is the following relation between three consecutive Legendre
polynomials.

Proposition. The Legendre polynomials satisfy the following
(8) 2n+ 1zaP,(x) = (n+ 1)Pyy1(x) + nPp_1(x)

Proof. We differentiate (7) with respect to t:

(x;t an -1
\/].—2{Et+t2 n=1

We multiply by 1 — 2zt + t? and use (7)

D (@ = t)Py(x)t" =Y (1 -2zt + )Py ()" .

n=0 n=1
Equivalently,
Z zP,(x Z P, (x)t" = Z nP,(z)t" - Z 2na P, ( t”+z nP, (z)t" !
n=0 n=1 n=1

and after grouping the series

xPy(x) — Py(x) + Z [(2n+ DzP,(z) — (n+ 1) Prg1(z) — nPp_q1(x)] t"

n=1

Property (8) is obtained by equating to 0 the coefficient of ¢™.

4. ORTHOGONALITY OF LEGENDRE POLYNOMIALS

When the Legendre equation is considered as a (singular) Sturm-Liouville prob-
lem on [—1, 1], we get the following orthogonality theorem

Theorem 2. Consider the singular SL-problem
Q=2 =22y + dy=0 —l<z<l1,

with y bounded on (—1, 1). The eigenvalues are A,, = n(n + 1) with corresponding
eigenfunctions P,(x). Furthermore, the eigenfunctions corresponding to distinct
eigenvalues are orthogonal. That is

() < Po(x) /P 2)dz =0, ntm.
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Proof. Recall that the self-adjoint form of the Legendre equation is
[(1—a®)y) + Xy =0,

(with p(x) = 1 — 22, r(x) = 1, and g(z) = 0. The corresponding weight function
is r = 1. We have already seen that the eigenvalues and eigenfunctions are given
by A\, =n(n+ 1) and P,(z). We are left to verify the orthogonality. We write the
Legendre equation for P,, and P,:

AnPo(z) = [(2° = 1) P} ()]’

Am P (2) = [(2* = 1) P}, ()]

Multiply the first equation by P,,, the second by P, and subtract. We get,
(Ao = Am) Pu(@) P () = [(22 = 1) P (@) Pou() = [(2 = ) Py, ()] P ()
= [@ = V)P (@) P (@) — (22 = 1) Py, () P (2)]
= [(@® = 1)(P}(2) Pn(2) = Py (2) Pu(z))]
Integrate from —1 to 1

(An — Am)/ Po(2) Py (2)der = [(32 = 1) (P (2) Poa () = Py ()P ()], = 0.

-1
The square norms of the Legendre polynomials are given below.

Theorem 3. We have the following

2
2n+1

(10) 1P = [ Paa)e =

Proof. We use generating function (7) to get

2
m_ (ZP ) = Z Py () Py ()t ™

n,m>0

Now we integrate from —1 to 1:

1
dx
— P n+m
/ 1—2ut + 12 </ dm)'f

By using the orthogonality of P,, and P, (for n # m), we get

o [ln|172xt+t2 | ZHP MR

and after simplifying the left side:
L+t > "
e EONLACTAS
Recall that for |s| < 1, the Taylor series of In(1 + s) is

n(l+s) Z

Jj=1

] 1
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Hence for |t| < 1, we have

1 1+t

—1In
t 1—1t

It follows that
o0 2 o0
t2n _ Pn 2t2n .
3 it = X A
An identification of the coefficient of 2" gives (10).

5. LEGENDRE SERIES

The collection of Legendre polynomials {P,(x)},>0 forms a complete family in
the space Cj[—1, 1] of piecewise smooth functions on the interval [-1, 1]. Any
piecewise function f has then a generalized Fourier series representation in terms of
these polynomials. The associated series is called the Legendre series of f. Hence,

o0
f@) ~ > enPol)
n=0
where
o = <S@), Pa(z) >
" [P ()2

2n+1 !
=2 [ r@)Pas
2/,
Theorem 4. Let f be a piecewise smooth function on [—1, 1]. Then,
fah) + @) <
fan(@) = == = ;cnpn(x) :
In particular at the points x, where f is continuous, we have

f@) = enPul2).

n=0

Remark 1. For each m, the Legendre polynomials Py, P, --- , P, forms a basis
in the space of polynomials of degree m. Thus, if R(z) is a polynomial of degree
m, then the Legendre series of R terminates at the order m (i.e. ¢ = 0 for k > m).
In particular,

2™ =coPo(x) + a1 Pi(z) + -+ emP(x) = co + 1z + %(3302 1)+
For example,
z? = §P0($) + 0P (z) + %PQ((I})
23 =0Py(2) + gpl(x) + 0Py (z) + %PS(I)
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Remark 2. Suppose that f is an odd function. Since P, is odd when n is odd and
P, is even when n is even, then the Legendre coefficients of f with even indices are

all zero (co; = 0). The Legendre series of f contains only odd indexed polynomials.
That is,

Jav(z) = ZCZijlP?jJrl(x)
=0

where

cojr1 = (2027 +1) + 1)/0 f(@)Pojyr(z)de = (4 + 3)/0 f(@)Pajir(x)da.

Similarly, if f is an even function, then its Legendre series contains only even
indexed polynomials.

fao(x) =Y c2;Paj()
J=0
where

oy = e+ [ J@Py@dr =@+ [ @)y

If a function f is defined on the interval [0, 1], then we can extend it as an even
function feven to the interval [—1, 1]. The Legendre series of feven contains only
even-indexed polynomials. Similarly, if we extend f as an odd function f,qq4 to
[—1, 1], then the Legendre series contains only odd-indexed polynomials. We have
the following theorem.

Theorem 5. Let f be a piecewise smooth function on [0, 1]. Then, f has an
expansion into even Legendre polynomials

Jav(x) = w = coPay(a).
j=0

Similarly, f has an expansion into odd Legendre polynomials

w = Zc2j+1p2j+1(x) :

Jj=0

faw(®) =
The coefficients are given by
1
cn = (2n+ 1)/ f(z)P(z)dx .
0

1 0<x<l,

Example 1. Consider the function f(z) = { 0 —le<z<o

The n-th Legendre

coefficient of f is

Cn = 2n 1 /1 f(x)Py(z)dx = 2t 1 /1 P, (x)dx .
—1 0

2 2
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The first four coefficients are

2 ) 2
T 1,4 7
3= 3 /o 2(5:0 3z)dr = 16
Hence,
1 3 7
1=_-Py(z)+ -Pi(z) — —Ps(x)+--- 0<z<l,

1 3

0= *Po(l‘) + 7P1(x) - 7P3(1;) + -

i

—1<xz<0

2 4 16
Example 2. Let f(z) = 1_1 (11<‘<r :r<<170 . Since f is odd, its Legendre series

contains only odd indexed polynomials. We have

1
Con+1 = (4n + 3)/ P2n+1($)d.73 .
0

By using the recurrence relation (6) ((2k +1)P, = P/, — P{_,) with k =2n +1,
we get

1
Cong1 = / (Papi2(w) = Py (2))dw = Panya(1) — Pant2(0) = Pan(1) + P2n(0) -
0
Since Py;(1) =1 that P»;(0) = (—1)7 (25)!/2%(j!)? (see exercise 1), then it follows

that
(—1)"(4n+3)> (2n)!
2nt+l(p 4 1) (nh)2 "

Cant+1 = Pan(0) — Pap12(0) = <

We have then the expansion

2L ((=1)"(4n +3)\ (2n)!
1:Z<(2"llgn++1))> En!))2p2n+1(m): 0<z<l.

6. SEPARATION OF VARIABLES FOR Awu = 0 IN SPHERICAL COORDINATES

n=0

Recall that if (x,y,2) and (p,0,¢) denote, respectively, the cartesian and the
spherical coordinates in R3:

x =pcosfsing, y=psinfsing, 2z = pcosq,
then the Laplace operator has expression

% 20 1 02 1 9> cotp O
“or Tt o, T ez 0 T ez T 2 o9
9p*  pdp  p?sin®¢ 00~ p*0¢ p? 0¢
with p >0, 6 e R, and ¢ € (0, 7).
Consider the problem of finding bounded solutions v = u(p, 8, ¢) of the Laplace
equation Au = 0. That is, u(p, 0, ¢) bounded inside the sphere p < A and satisfies
0%u  20u 1 u 1 0%u cotqﬁ% B

() 92 oo T penieor Vo T 2 0
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The method at our disposal is that of separation of variables. Suppose that
u(p,8,¢) = R(p)O(0)2(¢)

solves the Laplace equation (we are assuming that © and ©’ are 27-periodic). After

replacing u and its derivatives in terms of R, ©, ® and their derivatives, we can
rewrite (11) as

2R (p) R (p) ©"(0) ®"(¢)  coto®'()
2
Rip) "R o6 | @(0) T ()
Separating the variable p from 6 and ¢ leads to

e"(9) "(¢) | cotgP'(¢)
2 plt /
p"R"+2pR — AR =0, - + + =—-A
sin? ¢ 0(0)  0(¢) ®(¢)
where A is the separation constant. A further separation of the second equation
leads to the three ODEs

(12) —0

(13) p*R"(p) + 2pR'(p) — AR(p) = 0

(14) 0"(0) + aO(h) =0

(15) o' (6) + 220 (9) + (A S ) () = 0
sin ¢ sin? ¢

with a and A constants. The R-equation and ©-equation are familiar and we know
how to solve them: (13) is a Cauchy-Euler equation and (14) has constant coeffi-
cients. Furthermore, the periodicity of © implies that a = m? with m nonnegative
integer and the eigenfunctions are cos(mf) and sin(m#).

A class of solutions of Au = 0. Consider the case « = m = 0. In this case
O(0) = 1 and the function u is independent on §. The R-equation and P-equations
are

(16) P*R"(p) + 2pR'(p) — AR(p) = 0
a7) () + S50 (0) + AB(6) =0

Equation (16) is a Cauchy-Euler equation with solutions

Ri(p) = p™, Ra(p) =p™
where p; 5 are the roots of p? +p — A = 0.
To understand the ®-equation, we need to make a change of variable. For ¢ €
(0, m), consider the change of variable

t = cos ¢ te(-1, 1),
and let
w(t) = ®(¢p) = P(arccost) < P(P) = w(cos ) .

We use equation (17) to write an ODE for w. We have

O'(¢p) = —singpw'(cosp) =—v1—t2w'(t),

®"(¢p) = sin® pw” (cos¢) — cos pw’(cos ) = (1 — t2)w” (t) — tw'(t)
By replacing these expressions of ® and ®” in (17), we get
(18) (1 — ) w" () — 2tw'(t) + Mw(t) = 0.

This is the Legendre equation. To get w a bounded solution, we need to have
A = n(n + 1) with n a nonnegative integer. In this case w is a multiple of the
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Legendre polynomial P, (t). By going back to the function ® and variable ¢, we
get the following lemma.

Lemma 1. The eigenvalues and eigenfunctions of equation (17) are A =n(n+1)
with n a nonnegative integer and

®,(¢) = Pp(cos ) ,
where P, is Legendre polynomial of degree n.

For A = n(n + 1) the exponents p; o for the R-equation are p; = n and py =
—(n+ 1) and the independent solution of (16) are

1
n —(n+1) _
P P - pn+1 :

Note that the second solution is unbounded. We have established the following.

Proposition 1.  If u(p,¢) = R(p)P(¢p) is a bounded solution of the Laplace
equation Au = 0 inside a sphere, then there exists a nonnegative integer n so that

u(p, p) = Cp"Py(cos(¢)), (C constant).

The following figure illustrates the graphs of the spherical polynomials P, (cos ¢)
for n =0, 1, 2, and 3. The surface has parametric equation (| Py, (cos ¢)|, 8, ¢).

n=0 n=1

S

"
o

LR

n=2 n=3

7. DIRICHLET PROBLEM IN THE SPHERE WITH LONGITUDINAL SYMMETRY
Consider the following Dirichlet problem in the sphere of radius L:

u(L,0,9) = f(0,9)
Such a problem models the steady state heat distribution inside the sphere when
the temperature on the surface is given by f. The case with longitudinal symmetry

means that the problem is independent on the angle . Thus f = f(¢) and the
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temperature u depends only on the radius p and the altitude ¢ ( v = u(p, d)).
Problem (19) can be written as

u + gu + iu + ﬂu =0
(20) Pt T 2 ?¢ p?sin ¢ ¢ =

u(L,¢) = f(9)

Since u is assumed to be a bounded function, then the method of separation of
variables for the PDE in (20) leads (as we have seen above) to the following solutions
with separated variables

un(pa¢):pnpn(cos¢)a n=0,1,2 -
The general series solution of the PDE in (20) is therefore

o0
u(r, ¢) = Z Cnp" Pp(cos¢) .
n=0
In order for such a solution to satisfy the nonhomogeneous condition we need to
have

o0
u(L,¢) = f(¢) =Y CnL" Po(cos ) .
n=0
The last series is a Legendre series but it is expressed in terms of cos ¢. To find the
coefficients C),, we need to express the last series as a Legendre series in standard
form . We resort again to the substitution ¢ = cos ¢ with —1 < t < 1. We rewrite
f in terms of the variable ¢ (for instance g(t) = f(¢)). The last series is

g(t) = CuL"Py(t).
n=0

Now this is the usual Legendre series of the function g(¢). Its n-th Legendre coef-
ficients C,, L™ is given by

on+1 [*
o, ="+ /g(t)Pn(t)dt.

2 ),
We can rewrite C), this in terms of the variable ¢ as
2 1 [7
(21) Co= 25t [ sind f(@)Pa(coso) do
0

The solution of problem (20) is therefore

u(p, ¢) = Z Cpnp" Pn(cos¢) ,
n=0

where C), is given by formula (21).

Example 1. The following Dirichlet problem represents the steady-state temper-
ature distribution inside a ball of radius 10 assuming that the upper hemisphere is
kept at constant temperature 100 and the lower hemisphere is kept at temperature
0.

2 1
Upp + —Up + Uy + 5——Uup =0, u(10,9) = ()
P e T b9 P

| 100 if 0<¢<m/2,
ﬂ@{o it (7/2) < ¢ < T,
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The solution to this problem is

zcnp . (cos)

where
2n +1
" 10”
2 /2
= M / sin ¢ Py, (cos ¢) d¢
0

/ f(&)sin ¢ P, (cos ¢) do

10m

1
_ 50(2n+1)/ ey
o J,

We can find a closed expression for C),. You will be asked in the exercises to
establish the formula

/ P ( 2n+1[Pn71(0) — Ppy1(0)]
Thus, it follows from the fact that P,qq(0) = 0 that Ceyen = 0 and from
(29)!

o0 = U 3Gy

that ‘
25(—1)7(25)!
105771227 (j + 1) (j1)°

Cojt1 =

The solution to the problem
p\20+1
52 22] ] _|_1 (10) P2j+1(COS¢)

Example 2. (Dirichlet problem in a spherical shell). Consider the BVP

2 1 cos
upp+fup+—2u¢¢+p2sif¢u¢:0, l<p<2, 0<od<(m/2),
u(l,¢) =50, wu(2,¢) =100, 0<¢<(m/2),
u(p,m/2) =0 1<p<2.

Such a problem models the steady-state temperature distribution inside in a spher-
ical shell when the temperature on the outer hemisphere is kept at 100 degrees, that
in the inner hemisphere is kept at temperature 50 degrees and the temperature at
the base is kept at 0 degree.

The separation of variables for the homogeneous part leads to the ODE problems

p?R" +2pR — AR = 0,
sing @’ +cosp P’ + Asing® =0, P(w/2)=0

As we have seen above, the eigenvalues of the ®-equation are A = n(n + 1) and
corresponding eigenfunctions P, (cos ¢). This time however, we also need to have

O, (7/2) = P,(0) = 0.

Therefore n must be odd. The solutions with separated variables of the homoge-
neous part are p™ P, (cos ¢) and p~ ("1 P, (cos ¢) with n odd (note that since in this
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Temperature distribution in a spherical shell

u=100

u=50

problem p > 1, the second solution p~("*+1) of the R-equation must be considered).
The series solution is
- ; Baji1
ulp,d) =Y [A2j+1,023+1 + ijIQ} Pyji1(cos¢) .

=0

Now we use the nonhomogeneous boundary condition to find the coefficients.

100 = Z |:A2j+122j+1 + 222;i2li| P2j+1(COS (i))
670:0
50 = Z A2j+1 + B2j+1] P2j+1(COS ¢)

[

for 0 < ¢ < (7/2). Equivalently,

> . Bos
100 = Z |:A2j+122]+1 + 222;:21} Pyi(z), 0<z<l1,
OJO:O
50 =) [Aoj1+ Bojy1] Pojya(z), O0<z<1.
=0

By using the above series and the series expansion of 1 over [0, 1] into odd Legendre
polynomials (see previous examples)

(=17 (2)!
].:Z 5137 ,2P2j+1($) O<ax<l1,
=2+ 10
we get

50(—1)7(2))!
2202+ (1)

. 1 100(—1)7(25)!

27+1 A, . . _
29 o+ Bainigais = ey 1) ()2

From these equations As;y1 and Baj41 can be explicitly found.

Agjy1 + Bajp1 =
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8. MORE SOLUTIONS OF Au =0

Recall, from the previous section, that if u = R(p)O(0)®(¢) satisfies Au = 0,
then the functions R, ©, and ® satisfy the ODEs

(22) p*R"(p) +2pR'(p) = AR(p) = 0

(23) 0”(6) + aB(8) = 0
1(4) + P _@ -

(29 ¥(0) + S (0) + (A= S5 ) @(e) =0

The function © is 27-periodic, R and ® bounded. In the previous section we
assumed v independent on 6 (this is the case corresponding to the eigenvalue oo = 0.)
Now suppose that u depends effectively on 6. The eigenvalues and eigenfunctions
of the ©-problem are

©(0) = cos(mb)

_ .2 +
a=m, { 0%(0) = sin(mg) * MEZ
For a = m?2, the ®-equation becomes

o' (¢) + <>\ -

cos @ m?2

sind ) 0 =0

If we use the variable ¢t = cos ¢ and let w(t) = ®(cos ¢), then w solves

(25) "(¢) +

m2

(26) u—ﬁm%w—%ww+<A—l_ﬂ)Mﬂ:0.

or equivalently in self-adjoint form as

(27) [(1— )’ (1)] + (A - > w(t)=0.

Equation (26) (or (27)) is called the generalized Legendre equation. Its solutions are
related to those of the Legendre equation and are given by the following lemma.

m2
1—1¢2

Lemma. Let y(t) be a solution of the legendre equation

Py dy
1—#%)—2 —2t— + Ay =0.
T R T
Then the function

d™y(t)
t) = (1—¢2)ym222
w(t) = (1 -2y U
solves the generalized Legendre equation

a—ﬁm%ﬂ—%ww+<A—1ﬁ)mozo.

For A = n(n + 1), the bounded solutions of (26) are

d™P,(t)
P™(t) = (1 — ¢2ym/22 VY
() = ( ) Zm
these are called the associated Legendre polynomials (of degree n and order m).

Note that since P, is a polynomial of degree n, then if m > n, the function P is

identically zero (P (t) = 0). Note also that P?(x) = P,(z).
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Example.
P} (z) = 3zv/1 — 22, P?,l(;c)—§(5m2—1)\/1—a:2
P} = 152(1 — 2?) Pi(z) = 120 722 — 1)(1 — %)
P}(z) =1052(1 — 22)%2  Pd(x) = > (922 —1)(1 — 22)3/2

In summary we have constructed solutions of Au = 0 of the form
p" cos(m@) P (cos §) (m < n)
The functions
Yinn (0, ) = P (cos ¢) cos(md)
are called spherical harmonics. Some of the surfaces given in spherical coordinates
by
p=F(0)
are plotted in the figure

p=P2($) p=Pl(®) p=P1(%)

p=P1(®) p=P3() p=P3(®)

Example: small vibrations of a spherical membrane. Consider the radial
vibrations of a spherical membrane of radius L. Let u(0, ¢,t) denotes the radial dis-
placement at time ¢, from equilibrium, of the point on the L-sphere with coordinates
(0, $). The function u satisfies the wave equation

U = ¢ <u¢¢ +cot pug + sirluﬁu%)
The method of separation of variables for the PDE leads to the following solutions
P (cos ¢) cos(mb) cos(wmnt),
with m <n and wp,, = c\/vm.The solution
Umn (0, ¢, 1) = L + aP}"*(cos ¢) cos(mb) cos(wmnt),,
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are the (m,n)-modes of vibration of the spherical membrane. Some of the profiles

are illustrated in the following figure.

=4

m=0, n

\\STI/A1

=7

m=3, n

I/]

\\
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9. EXERCISES.

Exercise 1. Use the recurrence relation that gives the coefficients of the Legendre
polynomials to show that

(2n)!

Pen(0) = (1" sz -

Exercise 2. Use exercise 1 to verify that

dn + 3> (2n)!

Py (0) = Pany2(0) = (=1)" <2n +2) 222(n!)? "

Exercise 3. Use Py(x) = 1, Pi(x) = x and the recurrence relation (8):
2n+ 1)xPy(z) = (n+ 1)Pry1(x) + nPyr_1(z)

to find Py(x), Ps(x), Py(x), and Ps(x).

Exercise 4. Use Rodrigues’ formula to find the Legendre polynomials Py(x) to
P5 (.’L‘)

Exercise 5. Use Rodrigues’ formula to establish

2P (z) =nP,(z) + P,_,(x) .

Exercise 6. Write 22 as a linear combination of Py(z), Pi(x), and Ps(z). That is,
find constants A, B, and C' so that

22 = APy(z) + BPi(2) + CPy(x) .
Exercise 7. Write x> as a linear combination of Py, P;, P, and P;.
Exercise 8. Write z* as a linear combination of Py, P;, Py, P; and P;.

Exercise 9. Use the results from exercises 6, 7, and 8 to find the integrals.

1 1
/ 22 Py(x)dz, / 22 Py (z)dx

-1 -1

i i
/ 23 Py (z)dx, / 23 Py(z)dx
-1 -1
i i
/ x4 Py(z)de, / x*Py(z)dx
-1 -1

Exercise 10. Use the fact that for m € Z*, the function 2™ can written as a
linear combination of Py(z),- - , Py (x) to show that

1
/ 2P, (z) =0, forn >m .

-1
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Exercise 11. Use formula (8) and a property (even/odd) of the Legendre polyno-
mials to verify that

h
/1 P,(z)dx = ﬁ[PnH(h) = Pp1(h)]

, 1
[ Pala)dn = g IPacs (1) = Pasa ()

Exercise 12. Find the Legendre series of the functions

J@) =3, gle)=e° h(@)=o*, m()= el

Exercise 13. Find the Legendre series of the function

Fz) = 0 for —1<2<0
Tl oz for 0<z<1

Exercise 14. Find the Legendre series of the function

) = 0 for —1<xz<h
=11 for h<z<1

(Use exercise 11.)

Exercise 15. Find the first three nonzero terms of the Legendre series of the
functions f(x) = sinz and g(z) = cosz.

In exercises 16 to 19 solve the following Dirichlet problem inside the sphere

cos ¢
p2sin¢u¢ 0, O<p<L, 0<o<m

p
u(L,¢) = f(¢) 0<¢<m
Assume u(p, ¢) is bounded.

2 1
Upp T —Up + —Upp +

50 for 0< ¢ < (n/2),
100 for (7/2) < ¢ <.

Exercise 17. L =1 and f(¢) = cos ¢.

50 for 0< ¢ < (7/4),
0 for (w/4) < ¢ <.

Exercise 19. L =2 and f(¢) = sin®? ¢ = 1 — cos? ¢.

Exercise 16. L = 10, and f(¢) = {

Exercise 18. L =5 and f(¢) = {

Exercise 20. Solve the following Dirichlet problem in a hemisphere

2 1 cos @

- — —ugp =0 0 1, 0 2
upp+pup+p2u¢¢+p28m¢u¢ ; <p<l 0<o<(n/2)
u(l, ¢) = 100 0< o< (m/2)
u(p,m/2) =0 0<p<l.

Exercise 21. Solve the following Dirichlet problem in a hemisphere

2 1 cos ¢

Zu, 4 = 2 4y =0, O0<p<l, 0<¢<(r/2
upp+pup+p2u¢¢+pzsin¢u¢ , p ¢ < (m/2)
u(1, ¢) = cos ¢ 0< ¢ < (m/2)
u(p,m/2) =0 0<p<l.
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Exercise 22. Solve the following Dirichlet problem in a spherical shell

2 1 Cos ¢

- — ——ug =0, 1<p<2 0<op<
upp+p“p+p2“¢¢+pgsin¢“¢ P o<
u(l,¢) =50 O<op<m
u(2,¢) = 100 O<op<m.

Exercise 23. Solve the following Dirichlet problem in a spherical shell

2 1 Cos ¢

- — ——ug =0, l<p<2 0<op<
upp+pup+p2u¢¢+pzsin¢u¢ p o <m
u(l,¢) = cos ¢ O<op<m
u(2, ¢) = sin® ¢ 0<p<m.

Exercise 24. Find the gravitational potential at any point outside the surface of
the earth knowing that the radius of the earth is 6400 km and that the gravitational

potential on the earth surface is given by
£(@) = 200 — cos ¢ for 0< ¢ < (7/2),
] 200 for (w/2) <o <m.
(This is an exterior Dirichlet problem)
Exercise 25. The sun has a diameter of 1.4 x 10% km. If the temperature on
the sun’s surface is 20,000° C, find the approximate temperature on the following

planets.

Planet | Mean distance from sun
(millions of kilometers)
Mercury 57.9
Venus 108.2
Earth 149.7
Mars 228.1
Jupiter 778.6
Saturn 1429.0
Uranus 2839.6
Neptune 4491.6
Pluto 5880.2
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