Chapter 8: Storage and Indexing

STUDENTS-HUB.com Uploaded By: Jibreel Bofnat

Data on external storage

* File organization: Method of arranging a file of records on external
storage.

» Record id (rid) is sufficient to physically locate record
* Page Id and the offset on the page

* Index: data structure for finding the ids of records with given
particular values faster

* Architecture: Buffer manager stages pages from external storage to
main memory buffer pool. File and index layers make calls to the
buffer manager.

5

at

DATA|

STUDENTS-HUB.com Uploaded By: Jibreel Borm

Page Formats: Fixed Length Records

Slot 1 Slot 1
Slot 2 Slot2 L.
Free —~—_"
e O o Space e O o
Slot N Slot N

Nq\ 1]... |01 1)1\/1\
number M.. 321 number
PACKED of records UNPACKED, BITMAP of slots

. In first alternative, moving records for
free space management changes rid; may not be acceptable.

osDATABASE

STUDENTS-HUB.com Uploaded By: Jibreel Bofnat

Indexes

* An index on a file speeds up selections on the search key fields for
the index

* Any subset of the fields of a relation can be the search key for an index on the
relation

* Search key is not the same as a key in the DB

* An index contains a collection of data entries, and supports efficient
retrieval of all data entries k* with a given key value k.

STUDENTS-HUB.com

What is data entry k*?

* Three options depending on what level
» Data record with key value K (actual tuple in the table)

* <k, rid of a data record with search key value k>
* So not the record itself the recordid (where to get the record

* <k, list of rids of data records with a search key k>

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Alternative 1 — actual data record

* Actual data record stored in index
* Index structure is a file organization for data records (instead of a Heap file
or sorted file).

* At most one index on a given collection of data records can use
Alternative 1.

* Otherwise, data records are duplicated, leading to redundant storage and
potential inconsistency.

* If data records are very large, # of pages containing data entries is
high. Implies size of auxiliary information in the index is also large,

typically.

STUDENTS-HUB.com Uploaded By: Jibreel ED

Alternative 2 and 3

* Data entries typically much smaller than data records. So, better than
Alternative 1 with large data records, especially if search keys are
small.

* Large records take up space in the index — still have to maneuver around the
portion of index structure used to direct the search, which depends on size of
data entries, is much smaller than with Alternative 1.

* Alternative 3 more compact than Alternative 2, but leads to
variable-sized data entries even if search keys are of fixed length.

* Extra cost for accessing data records in another file
* Index only return rids

STUDENTS-HUB.com Uploaded By: Jibreel Born

Index classification

* Primary vs. secondary: If search key contains primary key, then called
primary index.
* Unique index: Search key contains a candidate key.

* Clustered vs. unclustered: If order of data records is the same as, or
‘close to’, order of data entries, then called clustered index.

* Alternative 1 implies clustered, in practice, clustered also implies Alternative 1
(since sorted files are rare).

* A file can be clustered on at most one search key.

* Cost of retrieving data records through index varies greatly based on whether
index is clustered or not.

A

STUDENTS-HUB.com Uploaded By: Jibreel B

Clustered vs. Unclustered Index

* Suppose Alternative 2 is used for data entries, and that the data
records are stored in a Heap file

* To build a clustered index, first sort the Heap file (with some free space on
each page for future inserts)

* Overflow pages may be needed for inserts. (Thus, order of data records is
close to but not identical to sort order.

STUDENTS-HUB.com Uploaded By: Jibreel ED

Clustered vs. Unclustered Index

AN

/ \ / \
Dataentries Data entries <> <>
/A L\ NN (Index File) AV N
e L\ \\wx_‘ Datafiley /. X N/ N4/
Data Records Data Records
CLUSTERE UNCLUSTERE
D D

STUDENTS-HUB.com Uploaded By: Jibreel Bofnat

Hash-based Indexes

* Good for equality selections

* Index is a collection of buckets. Bucket = primary page plus O or more
overflow pages

* Hashing function h: h(r) = bucket in which record r belongs/ h looks at the
search key fields of r.

* If alternative (1) is used, the buckets contain the data records,
otherwise they contain <key,rid> or <key, rid-list> pairs

DATA|

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Example

1| smith, 44, 3000 J&
h(age)=00 . -7 T 3000 [+
B Jones, 40, 6003 “~_ h(sal)=00
T Tracy, 44, 5004 e SO0 M
L i v 5004 = — |
e l'/ h1\" h(age) =01) A~ 5004 { h2 '«-Sa
A S T| Ashby, 25, 3000 | I
e Y -
N Basu, 33, 4003 PO o
e Bristow, 29, 2007 200317 h(sab=11
5 N 2007
hlage}=10 "~ A\ 6003
Cass, 50, 5004
: |
Daniels, 22, 6003

File of <sal. rid> pairs
File hashed on age hashed on sal

2 o@D
STUDENTS-HUB.com Uploaded By: Jibreel Bof

STUDENTS-HUB.com Uploaded By: Jibreel Boi

Example B+ Tree

13 17 24 30

2% | 3 |5 | T* 14* | 16* 19*| 20* | 22* 24* | 27 29* 33*| 34*[38* | 39*

STUDENTS-HUB.com

Tree-Based Indexes

* “Find all students with grade > 92"

* If data is in sorted file, do binary search to find first such student, then scan to
find others.

* Cost of binary search can be quite high.

*Simple idea: Create an ‘index’ file.

Page 1 Page 2 Page 3 Page N Data File

STUDENTS-HUB.com Uploaded By: Jibreel Born

Tree-Based Indexes (2)

index entry
|

P | K |P K, | P K |P

0 1 1 2 2 m m

40 — Root

|
ST
\

20 | [33 51| |63

L\

10* | 15* 20* 27* 33* | 37* 40* | 46* 51* 55* 63* | 97

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

STU

B+ Tree Indexes

B+ Tree Indexes

Non-leaf
Pages

Leaf
Pages

e 4 N e I

< Leaf pages contain data entries, and are chained (prev & next)
< Non-leaf pages contain index entries and direct searches:

index entry
[|

|
DENTS-HUB.com J’ ‘L J’ Upl%)

Example: B+ Tree

Example B+ Tree

Roo&

4 N

Ael

Entries <= @

5

13

[~

7 sons

o

Entries = @

27

p,

E

30
X
29" 337 34"

27| 3 L‘

5*

7*

8’

147 16"

K'\
&

24)

27"

38"

39"

« Find 28*? 29*? All > 15* and < 30*

+ Insert/delete: Find data entry in leaf, then
change it. Need to adjust parent sometimes.

STUDENTS-HUB.com ® And change sometimes bubbles up the iggicd By: Jibreel B

RELATIONALS bais.
ATABASE
R ADE S

ornat

B+ Trees in Practice

 Typical order: 100. Typical fill-factor: 67%.
* average fan-out =133

* Typical capacities:
* Height 4: 133*=312,900,700 records
* Height 3: 133 = 2,352,637 records

* Can often hold top levels in buffer pool:
e Level 1= 1 page = 8KB
*level2= 133 pages= 1MB
* Level 3=17,689 pages =133 MB

STUDENTS-HUB.com Uploaded By: Jibreel Bt rnat

Cost Model Analysis

* We ignore CPU costs, for simplicity:
* B: The number of data pages (Blocks)
* R: Number of records per page (Records)
* D: (Average) time to read or write a single disk page

* Measuring number of page I/O’s

* ignores gains of pre-fetching a sequence of pages; thus, even 1/O cost is only
approximated

* Average-case analysis; based on several simplifying assumptions
Far from Precise but Good enough to show the overall trends!

STUDENTS-HUB.com Uploaded By: Jibreel ED

Comparing File Organization

* Heap files (random order; insert at eof)

* Sorted files, sorted on attributes <age, sal>

* Clustered B+ tree file, Alternative 1, search key <age, sal>

* Heap file with unclustered B + tree index on search key <age, sal>
* Heap file with unclustered hash index on search key <age, sal>

(B 555 e

at

DATA|
.........

STUDENTS-HUB.com Uploaded By: Jibreel Borm

Operations to compare: Regular file (B)

e Scan: Fetch all records from disk. === B.D

* Equality search. ===% BD

* Range selection. ====B D
*Insertarecord. =====D+ D =2D
*Delete a record ====search + D

wuDATABASE

STUDENTS-HUB.com Uploaded By: Jibreel Bofnat

Operations to compare: Sorted file (B)

* Scan: Fetch all records from disk. ===B.D

* Equality search. === Binary search =D *Log, B

* Range selection. ====D * Log B + matches

*Insert a record. =====read half file, write it in different location
Search + 1/2BD + 1/2BD = Search + BD

* Delete a record ==== Search + BD

wuDATABASE

STUDENTS-HUB.com Uploaded By: Jibreel Bofnat

Assumptions for the File Organizations

* Heap Files:
* Equality selection on key; exactly one match.

*Sorted Files:
* Files compacted after deletions.

* Indexes:
* Alternatives 2, 3: data entry size = 10% of record size

* Tree: 67% occupancy (AUC for 1 std dev.).

* Implies file size = 1.5 data size

* Hash: No overflow buckets.
* 80% page occupancy => File size = 1.25 data size

STUDENTS-HUB.com Uploaded By: Jibreel ED

Assumptions for Operations

*Scans:
* Leaf levels of a tree-index are chained.

* Need to scan the index data-entries plus actual file scanned for unclustered
indexes.

* Range searches:

* We use tree indexes to restrict the set of data records fetched, but ignore
hash indexes.
* Why can’t we use hash index?

STUDENTS-HUB.com Uploaded By: Jibreel Bt rnat

Heap File — not sorted, no index

*Scan — need to read all records
* Number of data pages B X Time to read a page D BD

* Equality search
* On average need to search % the file to find a random record
* % (number of data pages B X timetodoaread D) .5BD
* Range search
* Data not sorted so have to read all records to make sure you get them all
* Number of data pages B X Time to read a page D BD
*Insert arecord
* 2 1/0 operations: read the page then write the page 2D

* Delete a record
* 1 write plus the search to the current page search + D

STUDENTS-HUB.com Uploaded By: Jibreel Born

Sorted file — Data records sorted

*Scan — need to read all records
* Number of data pages B X Time to read a page D BD

* Equality search
* Use a binary search to locate first page to satisfy criterion
* average Log2B reads to locate random record X cost of a read Dlog2B

* Range search
* Use a binary search to locate first page to satisfy criterion Dlog2B

* Also need a read for every other page that satisfies the criterion Dlog2B + H
matching pages

*|nsert arecord
 Search to the page for the insertion + BD

* Delete a record
 Search to the page for the deletion + BD

STUDENTS-HUB.com Uploaded By: Jibreel ED

Clustered file

* Scan — need to read all records - typically more pages since only 67%

occupancy (1.5)
* 1.5 X Number of original data pages B X Time to read a page D 1.5BD
* Equality search

* Find first leaf page to satisfy criterion in logF1.5B
* Number of disk reads logF1.5B X Time to read page D

* Range search
* Find first page to satisfy criterion in logF1.5B
* Subsequent leaf nodes are read until you hit a record not satisfying the condition

Logr1.58 + # matching pages X time to read a page D

* Insert arecord
 Search to the page for the insertion + BD

* Delete a record
 Search to the page for the deletion + BD

oiADA

STUDENTS-HUB.com Uploaded By: Jibreel Bor

STUDENTS-HUB.com

Unclustered file — tree index

* Scan — need to read all leaf pages - typically more pages since only 67%
occupancy (1.5); but smaller data entry in index
1(1.5) =.158B

* Read all data pages cost = BD(R + .15) Expensive!

* Equality search
* Find first leaf page to satisfy criterion in logF.15B
* Number of disk reads (1 + logF.15B) X Time to read page D

* Range search

* Find first page to satisfy criterion in logF.15B
* Subsequent leaf nodes are read until you hit a record not satisfying the condition

D(Logr.158 + # matching pages)

* Insert arecord
* Insert the data record in the file 2D
* Find insertion spot in index DLogF.15B, do insertion D => D(3 + LogF.15B)

* Delete a record
* Search to the page for the deletion + 2D (index + data write)

Uploaded By: Jibreel Bornat

Unclustered file — hash index

* Scan — need to read all leaf pages - typically pages only 80%
occupancy (1.25); but smaller data entry in index
1(1.25) =.1258B

» Read all data pages for every record cost = RBD
*Read index = .1258D Total = RDB +.125BD Expensive!

* Equality search
* Find read index page D
* Read data page D

* Range search — no help from index since hashing value
* Read entire heap file BD

* Insert arecord
* Read, write data record 2D
* Read, write index 2D Total cost (4D)

* Delete a record
 Search to the page for the deletion + 2D (index + data write)

STUDENTS-HUB.com Uploaded By: Jibreel ED

Cost of Operations (I/O only)

(a) Scan (b) Equality |(c) Range (d) Insert | (e) Delete
(L) Heap BD 0.5BD BD 2D Search
+D

(2) Sorted |BD Dlog 2B D(log2B + |(Search |Search
#pgswith |+BD -BD
maitch recs)

(3) 1L.5BD Diogr 1.5B D(logrF 1.5B Search |Search

Clustered -+ # 'nsw_ +D D
maitch recs)

(4) Undust. BD(R+0.15) |D(1+ D(logF Search |Search

Treeindex logF 0.158B + 2D + 2D

0.158) + # pgs W.

maitch recs)

(5 Unclust. BD(R+0.125 2D BD 2D Search

Hash index |) + 2D +2D

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Choosing an index

 What indexes should we create?

* Which relations should have indexes?
* What field(s) should be the search key?
* Should we build several indexes?

* For each index, what kind of an index should it be?
* Clustered?
* Hash or tree?

* Access method: index-only, index + data file

U e ae

,,,,,,,,,

STUDENTS-HUB.com Uploaded By: Jibreel Bo*ﬁat

Choice of indexes

* One approach:
* Consider the most important queries in turn.

* Consider the best plan using the current indexes, and see if a better plan is
possible with an additional index. If so, create it.

* Must understand how a DBMS evaluates queries and creates query
evaluation plans.

* Before creating an index, must also consider the impact on updates in
the workload.

* Trade-off: Indexes can make queries go faster, updates
slower. Require disk space, too.

STUDENTS-HUB.com Uploaded By: Jibreel Bt

Index selection guideline

e Attributes in WHERE clause are candidates for index keys.
* Exact match condition suggests hash index.

* Range query suggests tree index.
* Matches big = selectivity low = clustered tree
* Matches a few = selectivity high = unclustered tree

* Clustering is especially useful for range queries; can also help on equality
queries if there are many duplicates.

* Multi-attribute search keys should be considered when a WHERE clause
contains several conditions.

* Order of attributes is important for range queries.: most selective first

* Such indexes can sometimes enable index-only strategies for important
gueries: when only indexed attributes are needed.

* For index-only strategies, clustering is not important.
* Try to choose indexes that benefit many queries.

* Since only one index can be clustered per relation, choose it based on important
gueries that would benefit the most from clustering.

STUDENTS-HUB.com Uploaded By: Jibreel ED

Examples of cluster index

* B+ tree index on E.age can be SELECT E.dno

used to get qualifying tuples. FROM Emp E
* How selective is the condition?
WHERE E.age>40

*|s the index clustered?
* Consider the GROUP BY query.

* If many tuples have E.age > 10, SELECT E.dno, COUNT (*)
*using E.age index and sorting FROM Emp E
the WHERE E.age>10

* retrieved tuples may be costly. GROUP BY E.dno

* Clustered E.dno index may be
better!

* Equality queries and duplicates:
* [IClustering on E.hobby helps!

SELECT E.dno
FROM Emp E
WHERE E.hobby=‘Stamps’

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Indexes with composite key search

“ Examples of composite
21 80

* Composite Search Keys: kec}/ . =
Search on a combination , |, :_nex?zousmgh q #
of fields. graphic ordet. 2

* Equality query: Every field e m Age m 24
value is equal to a 25 75
constant. E.g. wrt el 22 1 2
<sal,age> index: Cal 21 30

* age=20 and sal =75

* Range query: Some field oe 2 20
value is not a constant. m Age Sue 25 75 “
E.g.: age =20; or age=20
and sal > 10 S Data records ?

* Data entries in index L Sorted by 20
sorted by search key to 20 24 name 75
support range queries. P -

 Lexicographic order, or
Spatial order Date entries in Date entries
index

STUDENTS-HUB.com
Carted hv

Uploaded %())/rﬁ%(rjelealyBornat
<cals

Composite Search Keys

* To retrieve Emp records with age=30 AND sal=4000, an index on
<age,sal> would be better than an index on age alone or an index on
sal.

* Choice of index key orthogonal to clustering etc.

* If condition is 20<age<30 AND 3000<sal<5000:
* Clustered tree index on <age,sal> or <sal,age> is best.

* If condition is age=30 AND 3000<sal<5000:
* Clustered <age,sal> index much better than <sal,age>

*index.
* Composite indexes are larger, updated more often.

(B 555 e

at

DATA|
.........

STUDENTS-HUB.com Uploaded By: Jibreel Borm

Index-only plans

A number of * SELECT D.mgr FROM Dept D, Emp
gueries can be E WHERE D.dno=E.dno

answered without - <edno> * SELECT D.mgr, E.eid FROM Dept
retrieving any D, Emp E WHERE D.dno=E.dno
tuples from one or

ore of the <E.dno,E.eid> *SELECT E.dno, COUNT(*) FROM

Emp E GROUP BY E.dno

* SELECT E.dno, MIN(E.sal) FROM
Emp E GROUP BY E.dno

relations involved if Tree index
a suitable index is

available.
<E.dno>

<E.dno,E.sal>
Tree index

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

When to use index-only plans?

* Index-only plans are possible if
the key is <dno,age> or we have
a tree index with key <age,dno>

* Which is better?

 What if we consider the second
query?

STUDENTS-HUB.com

* SELECT E.dno, COUNT (*) FROM
Emp E WHERE E.age=30 GROUP
BY E.dno

* SELECT E.dno, COUNT (*) FROM
Emp E WHERE E.age>30 GROUP
BY E.dno

Uploaded By: Jibreel Bornat

Summary: File Organization

* CREATE INDEX ON TABLE student(sid);

* Many alternatives file organizations exists, each appropriate in some
situations

* If selection queries are frequent, sorting the file or building an index
is important
* Hash-based indexes only good for equality search

* Sorted files and tree-based indexes best for range search; also good for
equality search
* Files rarely kept sorted in practice; B+ tree index is better

*Index is a collection of data entries plus a way to quickly find entries
with given search key values

STUDENTS-HUB.com Uploaded By: Jibreel Eooma

Summary: Index

* Data entries can be actual data records, <key, rid> pairs, or <key,
rid-list> pairs.

* Choice orthogonal to indexing technique used to locate data entries
with a given key value.
* Can have several indexes on a given file of data records, each with a different
search key.

* Indexes can be classified as clustered vs. unclustered and primary vs.
secondary.

* Differences have important consequences for utility/performance.

STUDENTS-HUB.com

Summary: Workload to Index

* Understanding the nature of the workload and performance goals
essential to developing a good design.
* What are the important queries and updates?
* What attributes and relations are involved?

* Indexes must be chosen to speed up important queries (and perhaps
some updates).
* Index maintenance overhead on updates to key fields.
* Choose indexes that can help many queries, if possible.
e Build indexes to support index-only strategies.

* Clustering is an important decision; only one index on a given relation can be
clustered!

* Order of fields in composite index key can be important.

STUDENTS-HUB.com Uploaded By: Jibreel Born

Example 8.11

Consider the following relations:
Emp(eid: integer, ename: varchar, sal: integer, age: integer, did: integer)

Dept(did: integer, budget: integer, floor: integer, mgr eid: integer)

Salaries range from $10,000 to $100,000, ages vary from 20 to 80, each department has
about five employees on average, there are 10 floors, and budgets vary from $10,000 to $1
million. You can assume uniform distributions of values.

Which of the listed index choices would you choose to speed up the query? If your
database system does not consider index-only plans (i.e., data records are always retrieved
even if enough information is available in the index entry), how would your answer
change? Explain briefly.

1. Query: Print ename, age, and sal for all employees.

(a) Clustered hash index on ename, age, sal fields of Emp.
(b) Unclustered hash index on ename, age, sal fields of Emp.
(c) Clustered B+ tree index on ename, age, sal fields of Emp.
(d) Unclustered hash index on eid, did fields of Emp.

(e) No index.

STUDENTS-HUB.com Uploaded By: Jibreel ED

Empleid: integer, ename: varchar, sal: integer, age: integer, did: integer)

Dept(did: integer, budget: integer, floor: integer, mgr eid: integer)

Salaries range from $10,000 to $100,000, ages vary from 20 to 80, each
department has about five employees on average, there are 10 floors, and
budgets vary from $10,000 to S1 million. You can assume uniform distributions
of values.

Query: Find the dids of departments that are on the 10th floor and have a
budget of less than 515,000.

(a) Clustered hash index on the floor field of Dept.

(b) Unclustered hash index on the floor field of Dept.

(c) Clustered B+ tree index on floor, budget fields of Dept.
(d) Clustered B+ tree index on the budget field of Dept.
(e) Unclustered B+ on budget,floor, did

onDATABASE &

STUDENTS-HUB.com Uploaded By: Jibreel Bofhat

