Problem

 $F(F-1(C)) \subseteq C$

Step-by-step solution

Step 1 of 2

The objective is to prove that,

$$F(F^{-1}(C)) \subseteq C$$

The proof can be divided into two parts.

Part-1:

Let *F* be a function from X to Y and $C \subset Y$.

Let $x \in F(F^{-1}(C))$.

By the definition of inverse image,

$$x = F(y)$$
 for some $y \in F^{-1}(C)$

 $F(y) \in C$

So, $x \in C$.

Therefore,

$$F(F^{-1}(C)) \subset C.$$
 (1)

Step 2 of 2

Part-2: To show that $F(F^{-1}(C)) = C$. Let $x \in C$. By the definition of function F, x = F(y) for some y. Hence, $y \in F^{-1}(C)$. So, $x = F(y) \in F(F^{-1}(C))$. This shows that $C \subset F(F^{-1}(C))$. Henc $F(F^{-1}(C)) = C$(2) From equations (1) and (2), $\overline{F(F^{-1}(C))} \subseteq C$.

STUDENTS-HUB.com

Uploaded By: anonymous