Chapter 1 + 2
Introduction

Main Topics:

The study of OS includes mainly three basic topics which are related to the three

basic hardware components of the machine (CPU , MEMORY , I-O DEVICES) :

(1) Processor Management (CPU management).

(2) Memory Management.

(3) File System Management.

What is an operating system?

Operating system - a program (a set of programs) that acts as an intermediary
(interface) between a user (running computer program) and the computer hardware.

Operating system goals:

- Overall goal :Execute user programs and make solving user problems easier.

- Primary goal :Make the computer system convenient to use.

- Secondary goal :Use the computer hardware in an efficient manner.

Computer System Components

1. Hardware - provides basic computing resources (CPU, memory, I/O devices).

 Physical devices : Wires, chips, power supplies, … etc

 Microprogram – a primitive software layer which acts as interface between

 The bare hardware and the machine lang. Program.

 An interpreter that fetches and executes the machine (assembly) lang.

 Instruction in very little steps.

 Machine language : The set of instructions the Microprogram interprets.

2. Operating system - controls and coordinates the use of the hardware among the

 various application programs for the various users.

3. Applications programs - define the ways in which the system resources are
 used to solve the computing problems of the users (compilers, database
 systems, video games, business pro-grams).
4. Users programs.

Operating System Definitions

- Can’t give precise definition, like t he government, not useful by itself.

- Instead of defining the OS , what it is. We will state what it can do.

- It depends how we view the OS :

* Control program : controls the execution of user programs and operation

 of I/O devices.

 (Overall objective: Executes user programs)

* Extended machine : It hides all the complexity of system programming.

 (Primary goal :Conveniency)

* Resource (manager) allocator - manages and allocates resources.

 (Secondary goal : Efficiency)

* Kernel - the one program running at all times (Anything else is just an

 application programs).
History of Operating System:

(#) Early Systems - bare machine (early 1950s)

 Structure:

 - Large machines run from console

 - Single user system

- Programmer/User as operator

- Paper tape or punched cards

 Early Software:

 - Machine language

 - Assemblers

 - Loaders

 - Linkers

 - Compilers

Inefficient use of expensive resources:

 - LowCPU utilization

- significant amount of setup time

(#) A simple Batch systems

* Automatic job sequencing – automatically transfers control from one job to

 another. First operating system, which is called the Resident Monitor
 Problem:

 Poor Performance - since I/O and CPU could not overlap, and card reader very

 slow. (Slow I/O devices relative to CPU speed ,
 fast card reader 1200 cards/minute ,CPU processes 300 cards/second)
Solution:

* Off-line operation : speed up computation by loading jobs into memory from

 tapes and card reading and line printing done off-line.

* Bufferring : Using buffers by which the I-O of one job is overlapped with

 its execution.

* Spooling : Overlap the I-O of one job with the execution of another job

* While executing one job, the operating system:

- reads the next job from the card reader into a storage area on the disk (job queue).

- outputs the printout of previous job from disk to the line printer.

 * Job pool - data structure that allows the operating system to select which job to

 run next, in order to increase CPU utilization.

Multiprogrammed Batch Systems (Multiprogramming)

Several jobs are kept in main memory at the same time, and the CPU is fluctuates

among them.

i.e. , the CPU switches to another job when that job needs to wait, typically

 when it needs I-O. In addition to: (Finishes execution, System Interrupt)

OS Features Needed for Multiprogramming

(-) I/O routine supplied by the system.

(-) Memory management - the system must allocate the memory to several jobs.

(-) CPU scheduling - the system must choose among several jobs ready to run.

(-) Allocation of devices.
Time-Sharing Systems
(*) Several jobs are kept in main memory at the same time, and the CPU is fluctuates

 among them.

(*) Every job is assigned a slice of time (quantum Q)

(*) The CPU switches to another job when that job the Q for that is finished.

 In addition to: (Needs I-O ,Finishes execution, System Interrupt)

(*) A job is swapped in and out of memory to the disk.

 (#) Parallel Systems
 Multiprocessor systems with more than one CPU in close communication.

(A) Tightly coupled system - processors share memory and a clock; communication

 usually takes place through the shared memory.

 Advantages of parallel systems:

 - Increased throughput

 - Economical

 - Increased reliability

(*) Symmetric multiprocessing
 - Each processor runs an identical copy of the operating system.

 - Many processes can run at once without performance deterioration.

(*) Asymmetric multiprocessing
- Each processor is assigned a specific task; master processor schedules and allocates work to slave processors. (Master/Slave Relationship)

- More common in extremely large systems.

(B) Distributed Systems

 Distribute the computation among several physical processors.

(*) Loosely coupled system - each processor has its own local memory; processors

 communicate with one another through various communication lines, such as

 high-speed buses or telephone lines.

 Advantages of distributed systems:

 - Resource sharing

 - Computation speed up - load sharing

 - Communication

(#) Real-Time Systems

(*) Special purpose Os Often used as a control device in a dedicated application

 such as controlling scientific experiments, medical imaging systems, industrial

 control systems, and some display systems.

(*) Well-defined fixed-time constraints.

Computer-System Operation

(*) I/O devices and the CPU can execute concurrently.

(*) Each device controller is in charge of a particular device type.

(*) Each device controller has a local buffer.

(*) CPU moves data from/to main memory to/from the local buffers.

(*) I/O is from the device to local buffer of controller.

(*) Device controller informs CPU that it has finished its operation by causing

 an interrupt.

Bootstrap program

(*) The initial program that runs when the power is on.

(*) It initializes all aspects of the computer, CPU registers, Device Controllers,

 Memory contents) .

(*) Loads the Kernel of the OS into memory.

(*) The OS executes the first process init and waits for an event to occur (interrupt).

 Interrupts

 A signal sent to the CPU by a Hardware or a Software (System call).

Events that may trigger interrupts:

- Completion of an I-O.

- Division by zero.

- Invalid memory access.

- Request for OS service.

($$$) Each interrupt has a special service routine for handling the interrupt.
(*) Interrupt transfers control to the interrupt service routine, generally, through

 the interrupt vector, which contains the addresses of all the service routines.

(*) Interrupt architecture must save the address of the interrupted instruction.

(*) Incoming interrupts are disabled while another interrupt is being processed

 to prevent a lost interrupt.

(*) A trap (or an exception) is a software generated interrupt caused either by :

- An error : Division by zero , invalid memory access.

- A user program request for a service by the OS.

(*) An operating system is interrupt driven ,idle if there is no activity or interrupt. .

Interrupt Handling

(1) The operating system preserves the state of the CPU by storing registers and

 the program counter.

(2) Determines which type of interrupt has occurred:

 - polling (querying of all I-O devices which requested service.

 - By the vectored interrupt system.

(3) A correct action should be taken for each type of interrupt by executing

 the appropriate segment of code for that interrupt.

I-O Interrupts Structure

To start an I-O operation:

- CPU loads the appropriate register within the device controller with instruction.

- Device controllers examines the contents of the register to determine the action.

- Once the I-O is complete the device controller informs the CPU that I-O is

 through an interrupt.

There are two types of I-O.

 (1) SYNCHRONOUS : After I/O starts, control returns to user program only upon

 I/O completion which is accomplished by :

 - wait instruction idles the CPU until the next interrupt.

 - loop (LOOP : jmp LOOP)

 Advantage : at most one I/O request is outstanding at a time; no simultaneous

 I/O processing.

(2) ASYNCHRONOUS : After I/O starts, control returns to user program without

 waiting for I/O completion.

- System call: request to the operating system to allow user to wait for I/O

 completion.

Direct Memory Access (DMA)

(*) Used for high-speed I/O devices able to transmit information at close to

 memory speeds.

(*) Device controller transfers blocks of data from buffer storage directly to

 main memory without CPU intervention.

(*) Only one interrupt is generated per block, rather than the one interrupt per byte.

Storage Structure

 Primary Storage :

Main memory

- The Only large storage media that the CPU can access directly.

- Array of words, each is addressable.

- Activity is a sequence of load and store instructions.

 Load instruction : moves a word(s) from memory to an internal register

 Generally known as Instruction Register (IR).

 store instruction : moves a word(s) from the register into a memory location.

Instruction Cycle:

- Fetch instruction from memory into instruction register (IR)

- Decode the instruction. Fetch operands and operations.

- Execute the operands with the operations.

- Store the result back into memory.

Secondary storage

 extension of main memory that provides large nonvolatile storage capacity.

Storage Hierarchy

 Storage systems organized in hierarchy:

- speed

- cost

- volatility

Caching

 copying information into faster storage system.

- Registers are considered as a fast cache to memory.

- Main memory can be viewed as a fast cache for secondary memory.

Example: Instruction cache.

 A cache register which contains the next instruction to be executed instead

 of waiting for fetching the next instruction from memory.

Hardware Protection
 (*) Dual-Mode Operation

 (*) I/O Protection

 (*) Memory Protection

 (*) CPU Protection

Dual-Mode Operation

- Sharing system resources requires operating system to ensure that an incorrect

 program cannot cause other programs to execute incorrectly.

- Provide hardware support to differentiate between at least two modes of operations.

 1. User mode - execution done on behalf of a user.

 2. Monitor mode (also supervisor mode or system mode) - execution done on

 behalf of operating system.

- Mode bit added to computer hardware to indicate the current mode:

 0: monitor

 1: user

- When an interrupt or fault occurs hardware switches to monitor mode.

Privileged instructions can be issued only in monitor mode.

I/O Protection

- All I/O instructions are privileged instructions.

- Must ensure that a user program could never gain control of the computer

 in monitor mode (i.e., a user program that, as part of its execution, stores

 a new address in the interrupt vector).

Memory Protection

- Must provide memory protection at least for the interrupt vector and the interrupt

 service routines.

- In order to have memory protection, add two registers that determine the range of

 legal addresses a program may access:

 1- base register - holds the smallest legal physical memory address.

 2- limit register - contains the size of the range.

- Memory outside the defined range is protected.

CPU Protection

(*) Timer - interrupts computer after specified period to ensure operating system

 maintains control.

 - Timer is decremented every clock tick.

 - When timer reaches the value 0, an interrupt occurs.

(*) Timer commonly used to implement time sharing.

(*) Timer also used to compute the current time.

(*) Load-timer is a privileged instruction.

OPERATING-SYSTEM STRUCTURES

Most operating systems support the following types of system components:

- Process Management

- Main-Memory Management

- Secondary-Storage Management

- I/O System Management

- File Management

Process Management

(*) A process is a program in execution. A process needs certain resources, including

 CPU time, memory, files, and I/O devices, to accomplish its task.

(*) The operating system is responsible for the following activities in connection with

 process management:

 - process creation and deletion.

 - process suspension and resumption.

 - provision of mechanisms for:

 # process synchronization

 # process communication

Main-Memory Management

(*) Memory is a large array of words or bytes, each with its own address. It is a

 repository of quickly accessible data shared by the CPU and I/O devices.

(*) Main memory is a volatile storage device. It loses its contents in the case of

 system failure.

(*) The operating system is responsible for the following activities in connection with

 memory management:

 - Keep track of which parts of memory are currently being used and by whom.

 - Decide which processes to load when memory space becomes available.

 - Allocate and deallocate memory space as needed.

Secondary-Storage Management

(*) Since main memory (primary storage) is volatile and too small to accommodate all

 data and pro-grams permanently, the computer system must provide secondary

 storage to back up main memory.

(*) Most modern computer systems use disks as the principle on-line storage medium,

 for both pro-grams and data.

(*) The operating system is responsible for the following activities in connection with

 disk management:

 - Free-space management

 - Storage allocation

 - Disk scheduling

I/O System Management

 The I/O system consists of:

 - A buffer-caching system

 - A general device-driver interface

 - Drivers for specific hardware devices

File Management

(*) A file is a collection of related information defined by its creator. Commonly, files

 represent programs (both source and object forms) and data.

(*) The operating system is responsible for the following activities in connection with

 file management:

 - File creation and deletion.

 - Directory creation and deletion.

 - Support of primitives for manipulating files and directories.

 - Mapping files onto secondary storage.

 - File backup on stable (nonvolatile) storage media.

($$) The program that reads and interprets control statements is called variously:

 - control-card interpreter

 - command-line interpreter

 - shell (in UNIX)

Its function is to get and execute the next command statement.

Operating-System Services

(*) Program execution: system capability to load a program into memory and to

 run it. I/O operations - since user programs cannot execute I/O operations directly,

 the operating system must provide some means to perform I/O.

(*) File-system manipulation - program capability to read, write, create, and delete

 files.

(*) Communications - exchange of information between processes executing either

 on the same computer or on different systems tied together by a network.

 Implemented via shared memory or message passing.

(*) Error detection - ensure correct computing by detecting errors in the CPU and

Memory hardware, in I/O devices, or in user programs.

Additional operating-system functions exist not for helping the user, but rather for

ensuring efficient system operation.

(*) Resource allocation - allocating resources to multiple users or multiple jobs

 running at the same time.

(*) Accounting - keep track of and record which users use how much and what kinds

 of computer resources for account billing or for accumulating usage statistics.

(*) Protection - ensuring that all access to system resources is controlled.

System Calls

(*) System calls provide the interface between a running program and the operating

 system.

 - Generally available as assembly-language instructions.

 - Languages defined to replace assembly language for systems programming

 languages defined to replace assembly language for systems programming

 allow system calls to be made directly (e.g., C, Bliss, PL/360).

(*) Three general methods are used to pass parameters between a running program

 and the operating system:

 - Pass parameters in registers.

 - Store the parameters in a table in memory, and the table address is passed as

 a parameter in a register.

 - Push (store) the parameters onto the stack by the program, and pop off the

 stack by the operating system.

System Programs

(*) System programs provide a convenient environment for program development and

 execution.

They can be divided into:

- File manipulation

- Status information

- File modification

- Programming-language support

- Program loading and execution

- Communications

- Application programs

(*) Most users’ view of the operation system is defined by system programs, not the

 actual system calls.

Chapter 3 + 4

Processes + Threads
Process Concept

(*) An operating system executes a variety of programs:

 - System Task

 - Batch system - jobs

 - Time-shared systems - user programs or tasks

(*) Textbook uses the terms job and process almost interchangeably.

(*) Process; a program in execution; process execution must progress in a

 sequential fashion.

(*) A process includes:

 - program counter

 - stack

 - data section

Process States

(*) As a process executes, it changes state.

 - New: The process is being created.

 - Running: Instructions are being executed.

 - Waiting: The process is waiting for some event to occur.

 - Ready: The process is waiting to be assigned to a processor.

 - Terminated: The process has finished execution.

(*) Diagram of process state:

Process Control Block (PCB) - Information associated with each process.

- Process ID (number)

- Process state

- Program counter

- CPU registers(accumulator, index, stack pointer, …)

- CPU scheduling information(process priority, pointers to queues, …)

- Memory-management information(base & limit registers, page table, …)

- Accounting information

 - I/O status information(I-o devices allocated, opened files, …)

Note: keep in mind that the process is a sequence of cpu execution(burst) and I-O

 waits.

Process scheduling queues

- job queue - set of all processes in the system.

- ready queue - set of all processes residing in main memory, ready and waiting to

 execute.

- device queues - set of processes waiting for a particular I/O device.

(*) Process migration between the various queue.

Schedulers

- Long-term scheduler (job scheduler) – selects which processes should be brought

 into the ready queue.

- Short-term scheduler (CPU scheduler) - selects which process should be

 executed next and allocates CPU.

- Medium-term scheduler – jobs preempted from memory for some reason.

(*) Short-term scheduler is invoked very frequently (milliseconds)((must be fast).

(*) Long-term scheduler is invoked very infrequently (seconds, minutes)((may

 be slow).

(*) The long-term scheduler controls the degree of multiprogramming.

(*) Processes can be described as either:

 I/O-bound process - spends more time doing I/O than computations; many short CPU bursts.

- CPU-bound process - spends more time doing computations; few very long CPU bursts.

Context Switch

(*) When CPU switches to another process, the sys-tem must save the state of the old

 process and load the saved state for the new process.

(*) Context-switch time is overhead; the system does no useful work while switching.

(*) Time dependent on hardware support.

Process Creation

(*) Parent process creates children processes, which, in turn create other processes,

 forming a tree of processes.

(*) Resource sharing

 - Parent and children share all resources.

 - Children share subset of parent’s resources.

 - Parent and child share no resources.

(*) Execution

 - Parent and children execute concurrently.

 - Parent waits until children terminate.

(*) Address space

 - Child duplicate of parent.

 - Child has a program loaded into it.

(*) UNIX examples

 - fork system call creates new process.

 - execve system call used after a fork to replace the process’ memory space

 with a new pro-gram.

Process Termination

(*) Process executes last statement and asks the operating system to delete it (exit).

 - Output data from child to parent (via fork).

 - Process’ resources are deallocated by operating system.

(*) Parent may terminate execution of children processes (abort).

 -Child has exceeded allocated resources.

 - Task assigned to child is no longer required.

 - Parent is exiting.

 # Operating system does not allow child to continue if its parent terminates.

 # Cascading termination.

Cooperating Processes

Concurrent processes are either :

(1) Independent process cannot affect or be affected by the execution of

 another process.

(2) Cooperating process can affect or be affected by the execution of another process.

(*) Advantages of process cooperation:

 - Information sharing

 - Computation speed-up

 - Modularity

 - Convenience

Producer-Consumer Problem

(*) Talking about concurrency requires :

 - Cooperating among processes (i.e. communication between processes)

 - Synchronization of processes action.

(*) To illustrate the idea of cooperating process consider the producer-consumer

 problem ,i.e. Paradigm for cooperating processes;

 - producer process produces information.

 - consumer process consumes this information.

Examples:

 * Print program produces characters consumed by the printer.

 *Compiler produces assembly code consumed by the assembler.

 *Assembler produce object module consumed by the loader.

(*) There must be a buffer of items to be filled by the producer, and then consumed

 by the consumer.

 - unbounded-buffer places no practical limit on the size of the buffer.

 - bounded-buffer assumes that there is a fixed buffer size.

$$$ Shared data

 const n;

 type item = ... ;

 var buffer: array [0..n-1] of item;

 in, out: 0..n-1;

 in := 0;

 out := 0;

- Producer process

repeat

 ...

 produce an item in nextp

 ...

 while in+1 mod n = out do no-op;

 buffer[in]:=nextp;

 in := in+1 mod n;

until false;

- Consumer process

repeat

 while in = out do no-op;

 nextc := buffer[out];

 out := out+1 mod n;

 ...

 consume the item in nextc

 ...

until false;

- Solution is correct, but can only fill up n –1 buffer.

Threads

(*) A thread (or lightweight process LWP) is a basic unit of CPU utilization; it

 consists of:

 - program counter

 - register set

 - stack space

(*) A thread shares with its peer threads its:

 - code section

 - data section

 - operating-system resources

collectively known as a task.

(*) A traditional or heavyweight process is equal to a task with one thread.

Chapter 5

Basic Concepts

(*) Maximum CPU utilization obtained with multi-programming.

(*) CPU-I/O Burst Cycle - Process execution consists of a cycle of CPU execution

 and I/O wait.

(*) CPU burst distribution

(*) Short-term scheduler -selects from among the processes in memory that are

 ready to execute, and allocates the CPU to one of them.

(*) CPU scheduling decisions may take place when a process:

 1. switches from running to waiting state.

 2. switches from running to ready state.

 3. switches from waiting to ready.

 4. terminates.

(*) Scheduling under 1 and 4 is nonpreemptive.

(*) All other scheduling is preemptive.

Dispatcher

(*) Dispatcher module gives control of the CPU to the process selected by the

 short-term scheduler; this involves:

 - switching context

 - switching to user mode

 - jumping to the proper location in the user pro-gram to restart that program

(*) Dispatch latency - time it takes for the dispatcher to stop one process and start

 another running.

Scheduling Criteria

(*) CPU utilization - keep the CPU as busy as possible

(*) Throughput - # of processes that complete their execution per time unit

(*) Turnaround time - amount of time to execute a particular process

(*) Waiting time - amount of time a process has been waiting in the ready queue

(*) Response time - amount of time it takes from when a request was submitted

 until the first response is produced, not output (for time-sharing environment)

Optimization

- Max CPU utilization

- Max throughput

- Min turnaround time

- Min waiting time

- Min response time

(1) First-Come, First-Served (FCFS) Scheduling
Example:

 Process Burst time

 ---------- -------------

 P1 24

 P2 3

 P3 3

(*) Suppose that the processes arrive in the order: P1 , P2 , P3 .

 Compute Average waiting time & turnaround time.

(*) Suppose that the processes arrive in the order: P2 , P3 , P1 .

 Compute Average waiting time & turnaround time.

 (-) Much better than previous case.

 (-) Convoy effect: short process behind long process

 (2) Shortest-Job-First (SJF) Scheduling

(*) Associate with each process the length of its next CPU burst. Use these lengths

 to schedule the process with the shortest time.

(*) Two schemes:

1- Non-preemptive - once CPU given to the process it cannot be preempted until

 it completes its CPU burst.

2- Preemptive - if a new process arrives with CPU burst length less than

 remaining time of current executing process, preempt. This scheme is

 known as the Shortest-Remaining-Time-First (SRTF).

(*) SJF is optimal - gives minimum average waiting time for a given set of processes.

Example :

 Process Arrival time CPU time

 ---------- ---------------- -------------

 P1 0 7

 P2 2 4

 P3 4 1

 P4 5 4

(*) SJF (non-preemptive)
 Average waiting time = (0 + 6 + 3 + 7)/4 = 4

(*) SRTF (preemptive)

 Average waiting time = (9 + 1 + 0 + 2)/4 = 3

How do we know the length of the next CPU burst?

- Can only estimate the length.

- Can be done by using the length of previous CPU bursts, using exponential

 averaging.

1. Tn = actual length of n th CPU burst

2. Yn = predicted value of n th CPU burst

3. 1 (W (0

4. Define: Yn + 1 = W *Tn +(1 - W) Yn
Examples:

(*) W = 0

 Yn+1 = Yn

 Recent history does not count.

(*) W = 1

 Yn+1 = Tn
 Only the actual last CPU burst counts.

(*) If we expand the formula, we get:

 Yn + 1 = W * Tn + (1 - W) * W * Tn -1 +

 (1 - W)2 * W * Tn-2 + ... + (1 - W)q * W * Tn-q

So if W = 1/2 (each successive term has less and less weight.

(3) Priority Scheduling

(*) A priority number (integer) is associated with each process.

(*) The CPU is allocated to the process with the highest priority (smallest integer

 (highest priority).

 a) preemptive

 b) nonpreemptive

(*) SJN is a priority scheduling where priority is the predicted next CPU burst time.

(*) Problem (Starvation - low priority processes may never execute.

 Solution (Aging - as time progresses increase the priority of the process.

(4) Round Robin (RR)

(*) Each process gets a small unit of CPU time (time quantum), usually 10-100

 milliseconds. After this time has elapsed, the process is preempted and added

 to the end of the ready queue.

(*) If there are n processes in the ready queue and the time quantum is q , then each

 process gets 1/n of the CPU time in chunks of at most q time units at once. No

 process waits more than (n -1)q time units.

(*) Performance

 q large (FIFO

 q small (q must be large with respect to context switch, otherwise overhead is

 too high.

Example of RR with time quantum = 20 :

 Process CPU times

 ---------- ---------------

 P1 53

 P2 17

 P3 68

 P4 24

 Compute the average turnaround and waiting times

(*) Typically, higher average turnaround than SRT, but better response.

(5) Multilevel Queue

(*) Ready queue is partitioned into separate queues.

 Example: foreground (interactive)

 background (batch)

(*) Each queue has its own scheduling algorithm.

 Example: foreground - RR

 background - FCFS

(*) Scheduling must be done between the queues.

 - Fixed priority scheduling

 Example: serve all from foreground then from background.

 Possibility of starvation.

- Time slice - each queue gets a certain amount of CPU time which it can schedule

 amongst its processes.

 Example:

 80% to foreground in RR

 20% to background in FCFS

(*) Two schemes:

1- Preemptive

2- Non-preemptive

(6) Multilevel Feedback Queue

(*) A process can move between the various queues; aging can be implemented this

 way.

(*) Multilevel-feedback-queue scheduler defined by the following parameters:

- number of queues

- scheduling algorithm for each queue

- method used to determine when to upgrade a process

- method used to determine when to demote a process

- method used to determine which queue a process will enter when that process

 needs service

Example of multilevel feedback queue:

(*) Three queues:

 - Q0 - time quantum 8 milliseconds

 - Q1 - time quantum 16 milliseconds

 - Q2 - FCFS

(*) Scheduling
A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8

milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q 1 .At Q1 ,

job is again served FCFS and receives 16 additional milliseconds. If it still does not

complete, it is preempted and moved to queue Q 2 .

Algorithm Evaluation

(*) Deterministic modeling(Analytic Evaluation) - takes a particular predetermined

 workload and defines the performance of each algorithm for that workload.

(*) Queuing models

(*) Simulation
(*) Implementation
Chapter 6

Concurrent Processes and Process Synchronization

Concurrent Processes

· Concurrent process and either independent or cooperating

· Independent process : can't affect or be affected by the processors

Precedence Graph:

Given the following statements:
(1) a = x + y

(2) b = z + 1

(3) c = a – b

(4) w = c +1
Clearly,
statements (3) & { (1) or (2) }can't executed concurrently.

 (4) & (3) can't executed concurrently.

 (4) & { (1) or (2) or (3) } can't executed concurrently.

-
But statements (1) & (2) can be executed concurrently.

-
So if we have multiple functional units in our CPU such as adders or we have multiprocessor system then statements (1) & (2) can be executed concurrently (in parallel).

Definition: A precedence graph is a directed graph whose nodes correspond to statements. An edge from node Si to node Sj means that Sj is only executed after Si .
In the given graph:

· S2 & S3 can be executed only after S1 completes

· S4 can be executed only after S2 completes.

· S5 & S6 can be executed only after S4 completes.

· S7 can be executed only after S5, S6, S3 completes.
· S3 can be executed concurrently with S2 , S4 , S5 , S6 .
Concurrency Condition

· How do we know if two statements can be executed concurrently and produce the same result?
· Define:

R(Si​) = {a1, a2, …, am} be the READ set for statement Si, which is the set of all variables whose values are referenced by statement Si during execution.

W(Si​) = {b1, b2, …, bn} be the WRITE set for statement Si, which is the set of all variables whose values are changed (written) by the execution of statement Si
Examples : Given the statements:

- S : c = a – b

 R(S) = {a, b}

 W(S) = {c}

- S : w = c + 1

 R(S) = {c}

 W(S) = {w}

- S: x = x +2

 R(S) = {x}

 W(S) = {x}
- S: read(a)

 R(S) ={a}

 W(S) ={a}
The Bernstein's conditions for concurrent statements are:

 Given the statements S1 & S2 , then S1 & S2 can be executed concurrently if:

R(S1) (W (S2) = (
W(S1) (R (S2) = (
W(S1) (W (S2) = (
Example:

Given,
S1 : a = x+ y

 S2 : b = z+ 1

R(S1) = {x,y}

W(S1) = {a}

R(S2) = {z}

W(S2) = {b}

{x,y} ({b} = (
{z} ({b} = (
{a} ({b} = (
Example:

Given,
 S3 : c = a-b

R(S3) (W(S2) = {a, b} ({b} ((
Fork & Join Constructs:

· Precedence graph in difficult to use in Programming Languages, so other means must be provided to specify precedence relation.
· The Fork L instruction produces two concurrent executions.

- One starts at statement labeled L.

- Other, the continuation of the statement following the fork instruction

Example: The programming. segment corresponds to the precedence graph is:
 S1;

 Fork L;

 S2 ;

 .

 :
 L: S3 ;

(*) When the fork L statement is executed, a new computation is started at S3 which is executed concurrently with the old computation, which continues at S2. That is, the fork statement splits one single corporation into two independent computation, hence the name Fork

· The join instruction recombine two concurrent computation. Each computation must ask to be joined.
Since the two computations executes at different speeds, the statement which executes the join first is terminated first, while the second in allowed to continue.
· For 3 computations, two in terminated while the third continues.
· If count is number of computations to join, then the execution of the join has the effect
count = count – 1;

If count (0 then quit (quit this computation)

The join statement for two computations is executed atomically, i.e. can't be executed concurrently but in a sequential manner, because this might affect count giving a wrong result.

For example, if both decrement count at same time then count = 0, and the computation dues not quit.
· For two processes:
Count =2

Fork L1;

.

:

S1 ;

goto L​2​;

 L1 : S2
 L2 : join count

· Let us go back to out four statements in the beginning of this chapter. Using fork & join, this will look lila:

count =2;

Fork L1;

a = x+y;

goto L2;

 L1 : b=z+1;

 L2 : joint count;

 c =a-b;

 w =c+1;

· For the precedence graph earlier:

S1 ;

count = 3

Fork L1;

S2;

S4
Fork L2​;

S5;

goto L3;

 L2 : S6;

goto L3;
 L1 : S3;

 L3 : join count ;

S7;

· Another example is to copy a sequential file f to g using double buffers r & s.

· The program can read from f & write to g concurrently
T = some –record-type;

f , g : file of T;

r, s: T

Begin

 reset (f)

 read (f,r);

 while (not eof (f)) do

begin

 count = 2;

 s: = r;

 Fork L1;

 Write (g, s);

 goto L2;

 L1: read (f,r);

 L2: join count;

 End;

 Write (g,r);

End;

The concurrent statement:

· The fork & join instructions are powerful means of writing concurrent programs, unfortunately, it is clumsy and very difficult to keep track, because the fork is similar to goto statements.

· A higher–level language constructs for specifying concurrency due to Dijkstra using the notations: parbegin / parend

Example:

S0;

Parbegin

 S1;

 S2;

 :

 Sn;

Parend;

Sn+1;

· All statements enclosed between parbegin and parend can be executed concurrently

(*) In our pervious example,

parbegin

 a = x+y;

 b = z+1;

parend ;

 c =a-b;

 w =c+1;

(*) In the example:

S1;

parbegin

 S3;

 begin

 S2;

 S4;

 parbegin

 S5;

 S6;

 parend;

 end;

parend;

S7;

(*) For the files copying files :

begin

 reset (f);

 read (f, r);

 while (not eof (f)) do

 begin

 S = r;

 parbegin

 write (g, s);

 read (f, r);

 parend;

 end;

 write (g,r);

end;

Process Synchronization

Background
· Process Cooperation
· Information Sharing

· Computation Speedup

· Modularity

· Convenience

Example : Producer-Consumer problem , the bounded buffer problem:

 Data Structure used:

 item . . ; //can be of any data type

 item buffer[n], nextp , nextc;
 int in = 0, out = 0;

	Producer:
 do
 { ...
 produce an item in nextp
 ...
 while ((in+1)%n ==out)
 no-op; // full buffer
 buffer[in] = nextp;
 in = (in + 1) % n;

 }
 while true;
	Consumer:
 do
 { while (in == out)
 no-op; // empty buffer
 nextc = buffer[out];
 out = (out + 1)% n;
 ...
 consume the item in nextc
 ...

 }
 while true;

- Shared​ memory solution to bounded​ buffer problem discussed before allows at most n - 1 items in buffer at the same time.

- Suppose that we modify the producer consumer code by adding a variable counter, initialized to 0 and incremented each time a new item is added to the buffer, and decremented each time an item is taken from the buffer.

Bounded-Buffer
 Data Structure used:

 item . . ; //can be of any data type

 item buffer[n], nextp , nextc;
 int in = 0, out = 0;
 int counter = 0;

	Producer:
 do
 { ...
 produce an item in nextp
 ...
 while (counter == n)
 no-op;
 buffer[in] = nextp;
 in = (in + 1) % n;
 counter = counter + 1;

 }
 while true;
	Consumer:
 do
 { while (counter == 0)
 no-op;
 nextc = buffer[out];
 out = (out + 1)% n;
 counter = counter - 1;
 ...
 consume the item in nextc
 ...

 }
 while true;

· Counter = counter + 1; could be implemented as

 register1 = counter
 register1 = register1 + 1
 counter = register1
· Counter = counter – 1; could be implemented as

 register2 = counter
 register2 = register2 - 1
 counter = register2

· Consider this execution interleaving:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute counter = register1 {count = 6 }
S5: consumer execute counter = register2 {count = 4}

· No problems if there is a strict alternation of the consumer and producer processes
Problems with Bounded-Buffer with Counter

- Concurrent access to shared data may result in data inconsistency.

- Maintaining data consistency requires mechanisms to ensure the orderly execution
 of cooperating processes.

 - The statements:

· counter = counter +1;

· counter = counter ​ 1;

must be executed atomically.

Atomically: If one process is modifying counter the other process must wait, that is, as if this

 is executed sequentially.

The Critical​ Section Problem
The Problem with Concurrent Execution

· Concurrent processes (or threads) often need access to shared data and shared resources.

· If there is no controlled access to shared data, it is possible to obtain an inconsistent view of this data.

· Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating processes.

Race Condition: A situation in where several processes access and manipulate data concurrently and the outcome of execution depends on the particular order in which the access takes place.

- n processes all competing to use some shared data

- Each process has a code segment, called critical section, in which the shared data is

 accessed.

- Problem - ensure that when one process is executing in its critical section, no other

 process is allowed to execute in its critical section.

Structure of process Pi
[image: image1.png]repeat
entry section
critical section

exit section
remainder section
until false;

Solution Requirements:

Mutual Exclusion. If process Pi is executing in its critical section, then no other processes can be executing in their critical sections.

Progress. If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely.

Bounded Waiting. A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted.

· Assume that each process executes at a nonzero speed.

· No assumption concerning relative speed of the n processes.
Solution to Critical ​Section Problem
Types of Solutions

· Software solutions

· Algorithms whose correctness does not rely on any assumptions other than positive processing speed (that may mean no failure).

· Busy waiting.

· Hardware solutions

· Rely on some special machine instructions.

· Operating system solutions

· Extending hardware solutions to provide some functions and data structure support to the programmer.

SOFTWARE SOLUTION
· Only 2 processes, P0 and P1

· General structure of process Pi (other process Pj)

[image: image2.png]repeat
entry section
critical section

exit section
remainder section
until false;

· Processes may share some common variables to synchronize their actions.
Algorithm 1

· Shared variables: -

 int turn; //turn can have a value of either 0 or 1
 //if turn = i, P(i) can enter it's critical section

Process Pi

 do
 {
 while (turn != i) /*do nothing*/ ;

 critical section

 turn = j;

 remainder section
 }
 while (true)

- Mutual exclusion ok.

- Bounded waiting ok - each only waits at most 1 go.
- Progress not good - each has to wait 1 go. P0 gone into its (long) remainder, P1 executes critical and finishes its (short) remainder long before P0, but still has to wait for P0 to finish and do critical before it can again.
Strict alternation not necessarily good - Buffer is actually pointless, since never used! Only ever use 1 space of it.

Algorithm 2
· Shared variables

boolean flag[2];
flag[0] = flag[1] = false;
// if flag[i] == true, P(i) ready to enter its critical section

Process P i

do
 { flag[i]= true;
 while (flag[j]) /*do nothing*/ ;

 critical section

 flag[i]=false;

 remainder section
 }
 while (true)

· Doesn't work at all. Both flags set to true at start. "After you." "No, after you." "I insist." etc.
· Infinite loop.

Algorithm 3
Combined shared variables of algorithms 1 and 2.

 int turn; //turn can have a value of either 0 or 1
 boolean flag[2]; flag[0] = flag[1] = false;
 // if flag[i] == true, P(i) ready to enter its critical section
Process P i

do
 { flag[i]= true;

 turn = j;
 while (flag[j] && turn==j) /*do nothing*/ ;

 critical section

 flag[i]=false;

 remainder section
 }
 while (true)

Process P 0

Process P 1

do

do

{ flag[0]= true;

{flag[1]= true;
 turn = 1;
 turn = 0;

 while (flag[1] && turn==1) while flag[0] && turn==0)
 /*do nothing*/ ; /*do nothing*/ ;

 critical section critical section

 flag[0]=false;
 flag[1]=false;
 remainder section

 remainder section

 } while (true)

 } while (true)

· Meets all three requirements; solves the critical ​section problem for two processes.

· "flag" maintains a truth about the world - that I am at start/end of critical. "turn" is not actually whose turn it is. It is just a variable for solving conflict if two processes are ready to go into critical. They all give up their turns so that one will win and go ahead.

· e.g. flags both true, turn=1, turn=0 lasts, P0 runs into critical, P1 waits.
Eventually P0 finishes critical, flag =false, P1 now runs critical, even though turn is still 0.
Doesn't matter what turn is, each can run critical so long as other flag is false. Can run at different speeds.

· If other flag is true, then other one is either in critical (in which case it will exit, you wait until then) or at start of critical (in which case, you both resolve conflict with turn).
Bakery Algorithm
Introduction

This algorithm solves the critical section problem for n processes in software. The basic idea is that of a bakery; customers take numbers, and whoever has the lowest number gets service next. Here, of course, "service" means entry to the critical section.

Critical section for n processes

· Generalization for n processes.

· Each process has an id. Ids are ordered.
· Before entering its critical section, process receives a number. Holder of the smallest number enters the critical section.
· If processes P i and P j receive the same number, if i < j , then P i is served first; else P j is served first.
· The numbering scheme always generates numbers in increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...
· Notation <= lexicographical order (ticket #, process id #)
· (a,b) < (c,d) if a < c or if a = c and b < d

· max(a0, . . . , an-1) is a number, k , such that k >= ai for i = 0, . . . , n - 1
· Shared data
1 boolean choosing[n]; //initialise all to false
2 int number[n]; //initialise all to 0

 3 do
 4 { choosing[i] = true;
 5 number[i] = max(number[0], number[1], ...,number[n-1]) + 1;
 6 choosing[i] = false;
 7 for(int j = 0; j < n; j++)
 8 { while (choosing[j]== true)

 9 /*do nothing*/
 10 while ((number[j]!=0) && (number[j],j)< (number[i],i))

 11 /*do nothing*/
 12 }

 13 critical section

 14 number[i] = 0;

 15 remainder section

 } while (true)

Comments

lines 1-2: Here, choosing[i] is true if Pi is choosing a number. The number that Pi will use to enter the critical section is in number[i]; it is 0 if Pi is not trying to enter its critical section.

lines 4-6: These three lines first indicate that the process is choosing a number (line 4), then try to assign a unique number to the process Pi (line 5); however, that does not always happen. Afterwards, Pi indicates it is done (line 6).

lines 7-12: Now we select which process goes into the critical section. Pi waits until it has the lowest number of all the processes waiting to enter the critical section. If two processes have the same number, the one with the smaller name - the value of the subscript - goes in; the notation "(a,b) < (c,d)" means true if a < c or if both a = c and b < d (lines 9-10). Note that if a process is not trying to enter the critical section, its number is 0. Also, if a process is choosing a number when Pi tries to look at it, Pi waits until it has done so before looking (line 8).

line 14: Now Pi is no longer interested in entering its critical section, so it sets number[i] to 0.

Drawbacks of Software Solutions

· Complicated to program
· Busy waiting (wasted CPU cycles

· It would be more efficient to block processes that are waiting (just as if they had
 requested I/O).

HARDWARE SOLUTION

Hardware Solution Disable Interrupts

On a uni-processor, you can get mutual exclusion by locking out interrupts. Observations:

- You can only afford to do this for a little while, so you don't lose any interrupts (of course in
 general you don't want to protect expensive things with spin locks).

- Nothing else works if you're sharing memory with a device you sure can't use a spin lock!
 (DEADLOCK).

- Correct solution for a uni-processor machine, but this doesn't work on multiprocessors, the
 solution is not correct.
- During critical section multiprogramming is not utilized - performance penalty.

Repeat

 disable interrupts

 critical section

 enable interrupts

 remainder section

Forever
Hardware Solution Test and Set
Use better (more powerful) atomic operations:

· Test and modify the content of a word atomically.

boolean Test_and_Set(Boolean & target)

 {boolean test = target;
 target = true;

 return test;
 }

· Shared data: boolean lock = false;
 Process Pi

 do
 { while (Test-and-Set(lock))

 /*do nothing*/ ;
 critical section

 lock = false;

 remainder section

 }while (true)
OPERATING SYSTEM SOLUTION
Semaphores

Semaphore: wait and signal

[image: image3.png]

 Semaphore S - integer variable

 - can only be accessed via two indivisible (atomic) operations

 wait(s) : while (S<=0) /*do nothing*/ ;
 S = S-1;

 signal(S) : S = S + 1;

 mutex : semaphore =1;
 Repeat

 wait(mutex);

 critical section

 signal(mutex);

 remainder section

 Forever

Semaphore Implementation

· Define a semaphore as a record/structure

 struct semaphore
 { int value;
 List *L; //a list of processes
 }

· Assume two simple operations:

· block suspends the process that invokes it.

· wakeup(P) resumes the execution of a blocked process P.
· Semaphore operations now defined as

 wait(S)
 { S.value = S.value -1;
 if (S.value <0)
 { add this process to S.L;
 block;
 }
 }

 signal(S)
 { S.value = S.value + 1;
 if (S.value <= 0)
 { remove a process P from S.L;
 wakeup(P);
 }
 }

Classical Problems of Synchronization

· Bounded​ Buffer Problem

· Readers and Writers Problem

· Dining​ Philosophers Problem

Bounded Buffer Problem
· Shared data

 char item; // could be any data type
 char buffer[n];
 semaphore full = 0; // counting semaphore
 semaphore empty = n; // counting semaphore
 semaphore mutex = 1; // binary semaphore
 char nextp, nextc;

· Producer process

 do
 { produce an item in nextp
 wait (empty);
 wait (mutex);
 add nextp to buffer
 signal (mutex);
 signal (full);
 }
 while (true)

· Consumer process

 do
 { wait(full);
 wait(mutex);
 remove an item from buffer to nextc
 signal(mutex);
 signal(empty);
 consume the item in nextc;
 }

Readers-Writers Problem
· Shared data

 semaphore mutex = 1;
 semaphore wrt = 1;
 int readcount = 0;

· Writer process

 wait(wrt);
 writing is performed
 signal (wrt);

· Reader process

 wait (mutex);
 readcount = readcount + 1;
 if (readcount ==1)
 wait (wrt);
 signal (mutex);
 reading is performed
 wait(mutex);
 readcount = readcount - 1;
 if (readcount == 0)
 signal (wrt);
 signal (mutex);

Dining Philosopher Problem
· Shared data

 semaphore chopstick[5];
 chopstick[] = 1;

· Philosopher i:

 do
 { wait (chopstick[i]);
 wait (chopstick[i+1 mod 5]);
 eat;
 signal (chopstick [1]);
 signal (chopstick [i+1 mod 5]);
 think;
 }
 while (true)

Chapter 7

DEADLOCKS

- System Model

- Deadlock Characterization

- Methods for Handling Deadlocks

- Deadlock Prevention

- Deadlock Avoidance

- Deadlock Detection

- Recovery from Deadlock

- Combined Approach to Deadlock Handling

The Deadlock Problem
* A set of blocked processes each holding a resource and waiting to acquire a resource

 held by another process in the set.

* Example

- System has 2 tape drives.

- P 1 and P 2 each hold one tape drive and each needs another one.

 Example: bridge crossing

- Traffic only in one direction.

- Each section of a bridge can be viewed as a resource.

- If a deadlock occurs, it can be resolved if one car backs up (preempt resources

 and rollback).

- Several cars may have to be backed up if a deadlock occurs.

- Starvation is possible.

System Model
* Resource types R 1 , R 2 , ..., R -1 :

 CPU cycles, memory space, I/O devices

* Each resource type R i has W i instances.

* Each process utilizes a resource as follows:

 - request

 - use

 - release

Deadlock Characterization deadlock can arise if four conditions hold simultaneously.

- Mutual exclusion: only one process at a time can use a resource.

- Hold and wait: a process holding at least one resource is waiting to acquire

 additional resources held by other processes.

- No preemption: a resource can be released only voluntarily by the process holding

 it, after that process has completed its task.

- Circular wait: there exists a set {P 0 , P 1 , ..., P n } of waiting processes such that

 P 0 is waiting for a resource that is held by P 1 , P 1 is waiting for a resource that is

 held by P 2 , ..., P n -1 is waiting for a resource that is held by P n , and P n is

 waiting for a resource that is held by P
Resource-Allocation Graph a set of vertices V and a set of edges E.

(*) V is partitioned into two types:

 - P ={P 1 ,P 2 , ..., P n }, the set consisting of all the processes in the system.

 - R ={R 1 ,R 2 , ..., R m }, the set consisting of all resource types in the system.

(*) request edge directed edge P i (R j

(*) assignment edge directed edge R j (P i

Example

- Process

- Resource type with 4 instances

- P i requests instance of R j

- P i is holding an instance of R j

 Example of a resource-allocation graph with no cycles.

Example of a resource-allocation graph with a cycle.

(*) If graph contains no cycles  no deadlock.

(*) If graph contains a cycle 

 - if only one instance per resource type, then deadlock.

 - if several instances per resource type, possibility of deadlock.

Methods for Handling Deadlocks
- Ensure that the system will never enter a deadlock state.

- Allow the system to enter a deadlock state and then recover.

- Ignore the problem and pretend that deadlocks never occur in the system; used by

 most operating systems, including UNIX.

Deadlock Prevention restrain the ways resource requests can be made.

* Mutual Exclusion not required for sharable resources; must hold for nonsharable

 resources.

* Hold and Wait must guarantee that whenever a process requests a resource, it

 does not hold any other resources.

 - Require process to request and be allocated all its resources before it begins

 execution, or allow process to request resources only when the process has none.

 - Low resource utilization; starvation possible.

* No Preemption 

- If a process that is holding some resources requests another resource that cannot be

 immediately allocated to it, then all resources currently being held are released.

- Preempted resources are added to the list of resources for which the process is

 waiting.

- Process will be restarted only when it can regain its old resources, as well as the new

 ones that it is requesting.

* Circular Wait impose a total ordering of all resource types, and require that each

 process requests resources in an increasing order of enumeration.

Deadlock Avoidance requires that the system has some additional a priori

 information available.

(*) Simplest and most useful model requires that each process declare the maximum

 number of resources of each type that it may need.

(*) The deadlock-avoidance algorithm dynamically examines the resource-allocation

 state to ensure that there can never be a circular-wait condition.

(*) Resource-allocation state is defined by the number of available and allocated

 resources, and the maximum demands of the processes.

Safe State when a process requests an available resource, system must decide if

 immediate allocation leaves the system in a safe state.

(*) System is in safe state if there exists a safe sequence of all processes.

(*) Sequence <P 1 , P 2 , ..., P n > is safe if for each P i , the resources that P i can

 still request can be satisfied by the currently available resources plus the resources

 held by all the P j , with j < i.

- If P i resource needs are not immediately avail-able, then P i can wait until all P j

 have finished.

- When P j is finished, P i can obtain needed resources, execute, return allocated

 resources, and terminate.

- When P i terminates, P i +1 can obtain its needed resources, and so on.

(**) If a system is in safe state no deadlocks.

(**) If a system is in unsafe state possibility of deadlock.

(**) Avoidance ensure that a system will never enter an unsafe state.

Resource-Allocation Graph Algorithm
(*) Claim edge P i R j indicates that process P i may request resource R j ;

 represented by a dashed line.

(*) Claim edge converts to request edge when a process requests a resource.

(*) When a resource is released by a process, assignment edge reconverts to a claim

 edge.

 (*) Resources must be claimed a priori in the system.

Banker’s Algorithm
(*) Multiple resource types.

(*) Each process must a priori claim maximum use.

(*) When a process requests a resource it may have to wait.

(*) When a process gets all its resources it must return them in a finite amount of time.

 Data Structures for the Banker’s algorithm where:

 n = number of processes, and m = number of resource types.

- Available: Vector of length m. If Available[j] = k, there are k instances of resource

 type R j available.

- Max: n m matrix. If Max[i,j]=k, then process P i may request at most k instances

 of resource type R j .

- Allocation: n m matrix. If Allocation[i,j]=k, then P i is currently allocated k

 instances of R j .

- Need: n m matrix. If Need[i,j]=k, then P I may need k more instances of R j to

 complete its task. Need[i,j]=Max[i,j] Allocation[i,j].

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.

 Initialize:

Work := Available

Finish[i]:=false for i = 1, 2, ..., n.

2. Find an i such that both:

a. Finish[i]=false

b. Need i Work

If no such i exists, go to step 4.

3. Work := Work + Allocation i

Finish[i]:=true

go to step 2.

4. If Finish[i]=true for all i, then the system is in safe state.

May require an order of m n 2 operations to ecide whether a state is safe.

Resource-Request Algorithm for process P i

Request i = request vector for process P i . f Request i [j] k , then process P i wants

K nstances of resource type R j .

1. If Request i Need i , go to step 2. Otherwise, aise error condition, since process

 has exceeded its maximum claim.

2. If Request i Available, go to step 3. Other-wise, P i must wait, since resources are

 not available.

3. Pretend to allocate requested resources to P I by modifying the state as follows:

Available := Available Request i ;

Allocation i := Allocation i + Request i ;

Need i := Need i Request i ;

 - If safe قthe resources are allocated to P i .

 - If unsafe P i must wait, and the old resource-allocation state is restored.

Example of Banker’s algorithm

(*) 5 processes P 0 through P 4 ; 3 resource types A (10 instances), B (5 instances),

 and C (7 instances).

(*) Snapshot at time T 0 :

Allocation
Max

Available
Need

A B C

A B C

A B C

AB C

P 0
 0 1 0

 7 5 3

 3 3 2

7 4 3

P 1
 2 0 0

3 2 2

1 2 2

P 2
 3 0 2

9 0 2

 6 0 0

P 3
 2 1 1

2 2 2

 0 1 1

P 4
 0 0 2

4 3 3

4 3 1

(*) Sequence <P 1 , P 3 , P 4 , P 2 , P 0 > satisfies safety criteria.

(*) P 1 now requests resources.

Request 1 = (1,0,2).

- Check that Request 1 Available (that is,

 (1,0,2) (3,3,2)) ==> true

Allocation
Need

Available
A B C

A B C

A B C

P 0
0 1 0

7 4 3

2 3 0

P 1
3 0 2

0 2 0

P 2
3 0 2

6 0 0

P 3
2 1 1

0 1 1

P 4
0 0 2

4 3 1

- Executing safety algorithm shows that sequence <P 1 , P 3 , P 4 , P 0 , P 2 >

 satisfies safety requirement.

(*) Can request for (3,3,0) by P 4 be granted?

(*) Can request for (0,2,0) by P 0 be granted?

Deadlock Detection
(*) Allow system to enter deadlock state

(*) Detection algorithm

(*) Recovery scheme

Single Instance of Each Resource Type

(*) Maintain wait-for graph

- Nodes are processes.

- P i ---> P j if P i is waiting for P j .

(*) Periodically invoke an algorithm that searches for a cycle in the graph.

(*) An algorithm to detect a cycle in a graph requires n order of n 2 operations, where

 n is the number of vertices in the graph.

Several Instances of a Resource Type

(*) Data structures

- Available: A vector of length m indicates the number of available resources of each

 type.

- Allocation: An n m matrix defines the number of resources of each type currently

 allocated to each process.

- Request: An n m matrix indicates the current request of each process.

 If Request[i,j]=k, then process P i is requesting k more instances of

 resource type R j .

Detection Algorithm
1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

- Work := Available.

- For i = 1, 2, ..., n,

 if Allocation i ,

 then Finish[i]:=false;

 otherwise, Finish[i]:= true.

2. Find an index i such that both:

a. Finish[i]=false.

b. Request i Work.

If no such i exists, go to step 4.

3. Work := Work + Allocation i

 Finish[i]:=true

go to step 2.

4. If Finish[i] = false, for some i, 1 i n, then the system is in a deadlock state.

 Moreover, if Finish[i]=false, then P i is deadlocked.

(*) Algorithm requires an order of m n 2 operations to detect whether the system is

 in a deadlocked state.

Example of Detection algorithm

(*) Five processes P 0 through P 4 ; three resource types A (7 instances),

 B (2 instances), and C (6 instances).

(*) Snapshot at time T 0 :

Allocation
Request
Available
A B C

A B C

A B C

P 0
0 1 0

0 0 0

0 0 0

P 1
2 0 0

2 0 2

P 2
3 0 3

0 0 0

P 3
2 1 1

1 0 0

P 4
0 0 2

0 0 2

(*) Sequence <P 0 , P 2 , P 3 , P 1 , P 4 > will result in Finish[i] = true for all i.

(*) P 2 requests an additional instance of type C.

Request

A B C

P 0
0 0 0

P 1
2 0 2

P 2
0 0 1

P 3
1 0 0

P 4
0 0 2

(*) State of system?

 - Can reclaim resources held by process P 0 , but insufficient resources to fulfill other

 processes’ requests.

- Deadlock exists, consisting of processes P 1 , P 2 , P 3 , and P 4 .

Detection-Algorithm Usage

(*) When, and how often, to invoke depends on:

- How often a deadlock is likely to occur?

 - How many processes will need to be rolled back?

 one for each disjoint cycle

(*) If detection algorithm is invoked arbitrarily, there may be many cycles in the

 resource graph and so we would not be able to tell which of the many deadlocked

 processes‘‘caused’’ the deadlock.

Recovery from Deadlock
(*) Process termination

- Abort all deadlocked processes.

- Abort one process at a time until the deadlock cycle is eliminated.

- In which order should we choose to abort?

* Priority of the process.

* How long process has computed, and how much longer to

 completion.

* Resources the process has used.

* Resources process needs to complete.

* How many processes will need to be terminate

* Is process interactive or batch?

(*) Resource Preemption

- Selecting a victim minimize cost.

- Rollback return to some safe state, restart process from that state.

- Starvation same process may always be picked as victim; include number

 of rollback in cost factor.

Combined Approach to Deadlock Handling

(*) Combine the three basic approaches (prevention, avoidance, and detection),

 allowing the use of the optimal approach for each class of resources in the system.

(*) Partition resources into hierarchically ordered classes.

(*) Use most appropriate technique for handling deadlocks within each class.

Chapter 8

Memory Management

Introduction & Background

(*) Recall: Memory is an array of words, each with an address. CPU fetches

 instructions and store results from/to memory

(*) Program must be brought into memory (limited) as a process for execution.

(*) Job queue - collection of processes on the disk that are waiting to be brought

 into memory for execution.

(*) In this chapter, we assume the whole program must be in memory for execution.

(*) Except paging, we assume the program must reside contiguously in memory.

Logical versus Physical Address Space

(*) The concept of a logical address space that is bound to a separate physical address

 space is central to proper memory management.

 - Logical address - generated by the CPU; also referred to as virtual address.

 - Physical address – address seen by the memory unit.

(*) Logical and physical addresses are the same in compile-time and load-time

 address-binding schemes; logical (virtual) and physical addresses differ in

 execution-time address-binding scheme.

Memory-Management Unit (MMU)hardware device that maps virtual to physical

 address.

(*) In MMU scheme, the value in the relocation register is added to every address

 generated by a user process at the time it is sent to memory.

(*) The user program deals with logical addresses; it never sees the real physical

 addresses.

(*) Address binding of instructions and data to memory addresses can happen at

 three stages:

Compile time: If memory location known a priori, absolute code can be

 generated; must recompile code if starting location changes.

 Load time: Must generate relocatable code if memory location is not known at

 compile time. (relocatable for example address 14 from the beginning

 of the program).

 Execution time: Binding delayed until run time if the process can be moved

 during its execution from one memory segment to another.

 Need hardware support for address maps (e.g., base and

 limit registers).

Contiguous Allocation – Multiple Partitions

- Memory is divided into a number of regions(partitions).

- When a region becomes free, a process is loaded into it.

- Hardware: base and limit registers.

Fixed Regions

(*) Memory is divided into a fixed number of regions(partitions).

(*) Degree of multiprogramming is bounded by the number of regions.

(*) Job scheduling:

 (a) Each region has a separate queue , usually FCFS.

 (b) Only one queue of waiting jobs:

 - FCFS with or without skip.

 - Best fit only

 - Best available fit.

(*) Problems:

 - Selection of regions sizes.

 - What if one jib is very big.

 - Internal fragmentation.

(*) Example: IBM OS/360

 (called MFT : Multiprogramming with Fixed number of Tasks)

Variable(Dynamic) Regions

(*) Memory is a set of:

(a) Allocated regions .

(b) Holes : block of available memory; holes of various size are scattered

 throughout memory.

(*) When a process arrives, it is allocated memory from a hole large enough to

 accommodate it.

Example: Assume the following system load:

(*) Operating system maintains information about:

 - allocated partitions

 - free partitions (hole)

(*) Hardware Needed: base and limit registers.

(*) Question: how to satisfy a request of size n from a list of free holes.

 - First-fit: Allocate the first hole that is big enough.

- Best-fit: Allocate the smallest hole that is big enough; must search entire list,

 unless ordered by size. Produces the smallest leftover hole.

 - Worst-fit: Allocate the largest hole; must also search entire list. Produces the

 largest leftover hole.

(*) First-fit and best-fit better than worst-fit in terms of speed and storage utilization.

(*) Problems:

 - External fragmentation - total memory space exists to satisfy a request,

 but it is not contiguous.

 Solution :Compaction , possible only if relocation is dynamic, and is done at

 execution time.

 - Internal fragmentation - allocated memory may be slightly larger than
 requested memory.

Noncontiguous Allocation – Paging

(*) Logical address space of a process can be noncontiguous; process is allocated

 physical memory wherever the latter is available.

(*) Divide physical memory into fixed-sized blocks called frames (size is power of 2,

 between 512 bytes and 8192 bytes).

(*) Divide logical memory into blocks of same size called pages.

(*) Keep track of all free frames.

(*) To run a program of size n pages, need to find n free frames and load program.

(*) Set up a page table to translate logical to physical addresses.

(*) Internal fragmentation.

(*) Address generated by CPU is divided into:

· Page number (p) - used as an index into a page table which contains

 base address of each page in physical memory.

· Page offset (d) - combined with base address to define the physical memory

 address that is sent to the memory unit.

(*) Calculation of physical address:

 U = logical address , S = page size , then ,

 p = U div S

 d = U mod S

(*) In practice, the OS takes advantage of the page size being 2​n ,

 the low-order n bits equal d and the remaining bits equal p.

(*) Examples :

 DEC-10 : LA 20 bits ; page size is 512 ; page no. bits 9 ; page offset 9 bits.

 IBM-370: LA 24 bits ; page size is 2048 ; page no. bits 13 ; page offset 11 bits.

(*) Disadvantage :Separation between user’s view of memory and actual physical

 memory reconciled by address-translation hardware; logical addresses are

 translated into physical addresses.

(*) Advantages: Sharing pages.

Implementation of page table

(*) Each job has its own page table which is usually kept in the PCB.

(*) Hardware implementation:

1- A set of dedicated registers, that is loaded and stored by the CPU dispatcher

 during program execution like program counter(pc).

 Example: PDP-11 : LA = 16 bits ; page size = 8192 = 213 ; leaving 3 bits or 8

 Entries for the page table.

 Suitable if the page table is small (up-to 256 entries)

 2- Page table is kept in main memory.

 - Page-table base register (PTBR) points to the page table.

 - Page-table length register (PTLR) indicates size of the page table.

 - In this scheme every data/instruction access requires two memory accesses.

 One for the page table and one for the data/instruction.

 3- The two memory access problem is solved using special fast hardware cache,

 called associative registers or Translation Look-aside Buffers (TLBs).

- A set of high speed registers are used(associative registers).

- Each entry contains (page # , frame #).

- Associative registers contain only few page-table entries.

- When CPU generates an address, p is first checked in the associative registers. If

 found, then its frame f is used immediately. Otherwise, the page table in memory

 is used, and the (page # , frame #) is added to the associative registers table.

- Every context-switch, associative registers are flushed for the new process.

 - Hit ratio - percentage of times that a page number is found in the associative

 registers; ratio related to number of associative registers.

 - Effective Access Time (EAT) :

 associative registers lookup = t time unit

 assume memory cycle time - 100 nanoseconds

 hit ratio = h
 EAT= (100 + t) h +(200 +t)(1 -h)

 Example:

 t = 20 nanoseconds , h = 90 %

 EAT = (100+20)*0.9 + (200+20)*0.1 = 120*0.9 + 220 * 0.1

 = 108 + 22 = 130 nanoseconds.

Memory Protection

(*) Memory protection implemented by associating protection bits with each frame.

 (1) Valid-invalid bit attached to each entry in the page table:

 - ‘‘valid’’ indicates that the associated page is in the process’ logical address

 space, and is thus a legal page.

 - ‘‘invalid’’ indicates that the page is not in the process’ logical address space.

 (2) Read-write bit attached to each entry in the page table:

 It indicates whether the page is a read only or read/write page to protect the

 page from modifications and rewritten if it is a read only page.

Multilevel Paging

(*) Modern Computers support a very large logical address space (232 – 264) and the page table becomes very large.

(*) Partitioning the page table allows the operating system to leave partitions unused until a process needs them.

A two-level page-table scheme

Example 1:

 32 bits logical address ; 4k=212 page size ; 20 bits for page no.

 If every page table entry is 4 bytes , then page table size = 4 * 220 = 4 MB

and this is too large to store contiguously in memory.

Solution: use two level of page table.

 * Since the page table is paged, the page number is further divided into:

 - a 10-bit page number.

 - a 10-bit page offset.

 * Thus, a logical address is as follows:

(*) Multilevel paging and performance

Since each level is stored as a separate table in memory, converting a logical address to a physical one may take four memory accesses.

· One level requires two memory access.

· Two levels require three memory access.

· Three level requires four memory access.

Even though five memory access time are needed , caching permits

 Performance to remain reasonable.

 Cache hit rate of 98 percent yields:

effective access time = 0.98*120 + 0.02*520 = 128 nanoseconds

which is only a 28 percent slowdown in memory access time.

Inverted Page Table

(*) Instead of using a page table for each process, the system uses only one page table

 for all frames in memory..

(*) Each page table entry consists of 3 components

 [process-id , page-no , offset]

(*) Hashing table used using process-is & page-no.
(*) EX : IMB 38 ; IBM RISC 6000 ; IBM RT

Noncontiguous Allocation –Segmentation

Paging separates user’s view of memory from actual memory. But the segmentation

Scheme supports user view of memory.

(*) A program is a collection of segments. A segment is a logical unit such as:

 main program

 (subroutines) procedure & function

 global variables

 stack

 symbol table, arrays

(*) Logical address consists of a pair:

 (segment-number , offset).

(*) Segment table - maps two-dimensional user-defined addresses into one-

 dimensional physical addresses; each entry of table has:

 - base - contains the starting physical address where the segments reside in memory.

 - limit - specifies the length of the segment.

(*) Segment-table base register (STBR) points to the segment table’s location in

 memory.

(*)Segment-table length register (STLR) indicates number of segments used by a

 program; segment number s is legal if s < STLR.

Noncontiguous Allocation –Segmentation with Paging
Problem with segmentation:

· External fragmentation.

· Search time to allocate a segment using first-fit or best-fit.

Solution:

 Paging the segments.

QUESTION:

What if the program is too big to fit in memory, what to do ?
Dynamic Loading - routine is not loaded until it is called.

 - Better memory-space utilization; unused routine is never loaded.

 - Useful when large amounts of code are needed to handle infrequently occurring

 cases.

 - No special support from the operating system is required; implemented through

 program design.

Dynamic Linking – linking is postponed until execution time.

 - Small piece of code, stub, used to locate the appropriate memory-resident

 library routine.

 - Stub replaces itself with the address of the routine, and executes the routine.

 - Operating system needed to check if routine is in processes’ memory address.

Overlays - keep in memory only those instructions and data that are needed at any

 given time.

 - Needed when process is larger than amount of memory allocated to it.

 - Implemented by user, no special support needed from operating system;

 Programming design of overlay structure is complex.

Chapter 9

Virtual Memory Management

Background

(*) Virtual memory : allows a very large programs to be executed using limited

 memory, i.e. , the logical address space can therefore be much larger than

 physical address space. Dynamic Loading , Dynamic Linking , and Overlays

 are not good an powerful enough to solve this problem.

(*) Virtual memory : separation of user logical memory from physical memory.

 - Only part of the program needs to be in memory for execution.

 - Need to allow pages to be swapped in and out.

(*) Virtual memory : can be implemented via:

 - Demand paging

 - Demand segmentation

Demand Paging

(*) Demand paging is paging with swapping.

(*) Bring a page into memory only when it is needed.

 - Less I/O needed

 - Less memory needed

 - Faster response

 - More users

(*) Page is needed (reference to it

 - invalid reference (abort

 - not in memory (bring to memory

Valid-Invalid bit

(*) With each page table entry a valid-invalid bit is associated

 (1 (in-memory, 0 (not-in-memory)

(*) Initially valid-invalid bit is set to 0 on all entries.

(*) During address translation, if valid-invalid bit in page table entry is

 0 (page fault.

Page Fault

1. The LA address is checked through the page table if it is a valid address , if so,

then reference it , otherwise, trap to OS (page fault.

2. OS looks at another table copy (in PCB) to decide:

 a) Just an invalid reference (abort the process.

 b) Just not in memory.

3. Get empty frame.

4. Swap page into frame.

5. Reset tables, validation bit = 1.

6. Restart instruction:

What happens if there is no free frame?

(*) Page replacement - find some page (victim) in memory, but not really in use,

 swap it out.

 (algorithm
 (performance - want an algorithm which will result in minimum number

 of page faults.

(*) Same page may be brought into memory several times.

(*) We could start execution with 0 pages in memory, pure demand paging.

Performance of Demand Paging

(*) Page Fault Rate 0 (p (1.0

 if p = 0, no page faults

 if p = 1, every reference is a fault

(*) Effective Access Time (EAT)

 EAT = (1 - p) * memory access

 + p * (page-fault-handling overhead (* updating page table *)

 + [swap page out] (* […] 0 or 1 occurrence *)

 + swap page in)

(*) Example:

 - memory access time = 5 mics

- 50% of the time the page that is being replaced has been modified and

 therefore needs to be swapped out.

 - Swap Page Time = 10 mils = 10,000 mics

 - EAT = (1-p)*memory-access-time + p*(page-fault-handling-time)

 ((1-p)*5 + p (swap-out + swap-in)

 ((1-p)*5 + p (0.5*10000 + 10000)

 ((1-p)*5 + p (15000)

 (5 + 14995p (in mics)

 (15000p mics

(*) This means the memory access time is almost negligible compared to the swap

 time is the major time a

Page Replacement

(*) we want optimum page replacement time.

(*) Use modify (dirty) bit to reduce overhead of page transfers - only modified pages

 are written to disk.

Page-Replacement Algorithms

(*) Want lowest page-fault rate.

(*) Evaluate algorithm by running it on a particular string of memory references

 (reference string) and computing the number of page faults on that string.

(*) In all our examples, the reference string is

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

First-In-First-Out (FIFO) Algorithm

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 - 3 frames (3 pages can be in memory at a time per process)

 9 page faults

 - 4 frames (4 pages can be in memory at a time per process)

 10 page faults

FIFO Replacement - Belady’s Anomaly more frames does not (less page faults

Optimal replacement Algorithm

(*) Replace the page that will not be used for the longest period of time.

Example: 4 frames

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 6 page faults

(*) Problem: How do you know this? Estimate previous history.

(*) Used for measuring how well your algorithm performs.

Least Recently Used (LRU) Algorithm

(*) FIFO : Uses the time when the page has brought into memory.

 OPTR : Uses the time when the page will be used.

 LRU : Uses the recent past history. Replace the page which has not been used

 For the longest period of time.

Implementation:

 (*) Counter implementation

 - Every page entry has a counter; every time page is referenced through this

 entry, copy the clock into the counter.

 - When a page needs to be changed, look at the counters to determine which are

 to change

(*) Stack implementation

 -keep a stack of page numbers in a double link form:

 - Page referenced: move it to the top

 requires 6 pointers to be changed

 - No search for replacement

LRU Approximation Algorithms

(*) Reference bit

 - With each page associate a bit, initially = 0.

 - When page is referenced bit set to 1.

 - Replace the one which is 0 (if one exists). We do not know the order, however.

(*) Second chance

 - Need reference bit.

 - Clock replacement.

 - If page to be replaced (in clock order) has reference bit = 1, then:

 a) set reference bit 0.

 b) leave page in memory.

 c) replace next page (in clock order), subject to same rules.

Counting Algorithms

(*) keep a counter of the number of references that have been made to each page.

 - LFU Algorithm: replaces page with smallest count.

 - MFU Algorithm: based on the argument that the page with the smallest

 count was probably just brought in and has yet to be used.

(*) Page-Buffering Algorithm

 desired page is read into a free frame from the pool before the victim

 is written out.

(*) Other algorithms : Random Replacement Algorithm

Allocation of Frames

(*) Each process needs minimum number of pages.

Example: IBM 370 - 6 pages to handle

(*) Two major allocation schemes:

 - fixed allocation

 - priority allocation

Fixed Allocation

- Equal allocation

 If 100 frames and 5 processes, give each 20 pages.

- Proportional allocation

 Allocate according to the size of process.

 si = size of process pi
 S = (si

 m= total number of frames

 ai = allocation for pi = (si/S)*m

Example : m =64

 s1 =10

 s2 = 127

 a1 = (10/137)*64 (5

 a2 = (127/137)*64 (59

Priority Allocation

- Use a proportional allocation scheme using priorities rather than size.

- If process Pi generates a page fault,

 # select for replacement one of its frames.

 # select for replacement a frame from a process with lower priority number.

Global versus local allocation

(*) Global replacement - process selects a replacement frame from the set of all

 frames; one process can take a frame from another.

(*) Local replacement - each process selects from only its own set of allocated frames.

Thrashing

(*) If a process does not have ‘‘enough’’ pages, the page-fault rate is very high:

 (low CPU utilization.

 (operating system thinks that it needs to increase the degree of

 multiprogramming.

 (another process added to the system.

(*) Thrashing (a process is busy swapping pages in and out.

Demand Segmentation

used when insufficient hardware to implement demand paging.

(*) OS/2 allocates memory in segments, which it keeps track of through

 segment descriptors.

(*) Segment descriptor contains a valid bit to indicate whether the segment is

 currently in memory.

 - If segment is in main memory, access continues,

 - If not in memory, segment fault.

Chapter 10 +11+12
File Concept

(*) Contiguous logical address space

(*) Types:

 - Data

 numeric

 character

 binary

 - Program

 source

 object (load image)

 - Documents

File Structure

(*) None - sequence bytes, words

(*) Simple record structure

 - Lines

 - Fixed length

 - Variable length

(*) Complex Structures

 - Formatted document

 - Relocatable load file

Can simulate last two with first method by inserting appropriate control characters.

File Attributes

- Name - only information kept in human-readable form.

- Type - needed for systems that support different types.

- Location - pointer to file location on device.

- Size - current file size.

- Protection - controls who can do reading, writing, executing.

- Time, date, and user identification - data for protection, security, and usage

 monitoring.

(*) Information about files are kept in the directory structure, which is maintained

 on the disk, which is called generally, device directory.

File Operations

- create

- write

- read

- reposition within file - file seek

- delete

- open(F i) - search the directory structure on disk for entry F i , and move the

content of entry to memory.

- close(F i) - move the content of entry F i in memory to directory structure on disk.

Access Methods

- Sequential Access

read next

write next

reset

no read after last write

generally no (rewrite)

- Direct Access

read n

write n

position to n

read next

write next

rewrite n

n = relative block number

Directory Structures

(*) The general information kept about directory system are :

- Name

- Type

- Address(location)

- Current length

- Maximum length

- Current position (File Pointer – FP)

- Date last accessed (for archival)

- Date last updated (for dump)

- Owner ID (who pays)

- Protection information (discuss later)

(*) Operations performed on directory:

- Search for a file

- Create a file

- Delete a file

- List a directory

- Rename a file

- Traverse the file system g Date last accessed (for archival)

(*) There are two directory systems:

- Device Directory : The directory where the physical information generally is kept

 about the files in that device , such as, name, location, position, … etc.

- User File directory (UFD) : The directory where the logical information generally

 is kept about the user files, such as, name, size, date, … etc.

(*) Both the directory structure and the files reside on .

(*) Backups of these two structures are kept on tapes.

(*) Device Directory Implementation:

(1) Linear list :

 - simple to program

 - time-consuming to execute (search time)

(2) Sorted Linear list:

 - time-consuming to execute

 - what if a file added or deleted ?

(3) Hash Table - linear list with hash data structure.

 - decreases directory search time

 - collisions situations where two file names hash to the same location

(4) Tree Structure.

(*) User File Directory:

Organize the directory (logically) to obtain:

(*) Efficiency - locating a file quickly.

(*) Naming - convenient to users.

 - Two users can have same name for different files.

 - The same file can have several different names (Aliases).

(*) Grouping - logical grouping of files by properties, e.g., all Pascal programs, all

 games,…

The Structures of the UFD

(1) Single-Level Directory - a single directory for all users.

(*) Naming problem

(*) Grouping problem

(2) Two-Level Directory - separate directory for each user.

(*) Path name

(*) Can have the same file name for different user

(*) Efficient searching

(*) No grouping capability

(3) Tree-Structured Directories

(*) Efficient searching

(*) Grouping capability

(*) Current directory (working directory)

(4) Acyclic-Graph Directories - have shared subdirectories and files.

(*) Two different names (aliasing)

(*) If A deletes D ==> dangling pointer.

Solutions:

- Back pointers, so we can delete all pointers. Variable size records a problem.

- Back pointers using a daisy chain organization.

- Entry-hold-count solution.

Protection

(*) File owner/creator should be able to control:

- what can be done

- by whom

(*) Types of access

- Read

- Write

- Execute

- Delete

- List

Access Lists and Groups

(*) Mode of access: read, write, execute
(*) Three classes of users

RWX

a) owner access
7
1 1 1

b) group access
6
1 1 0

b) public access
1
0 0 1

(*) Ask manager to create a group (unique name), say G, and add some users to the

 group.

(*) For a particular file (say game) or subdirectory, define an appropriate access.

Disk Structure

(*) A disk can be viewed as an array of blocks.

A sector (block) : smallest addressable unit in the disk. (track , surface , sector)
(*) Given the address (i , j , k) , then , transformation from 3-dim to one-dim

 b = k + s * (j + i * t)

Where,

 t = number of surfaces (tracks per cylinder)

 s = number of sectors per surface

(*) Seek time : time to move the R/W head to a particular track.

(*) Latency time : time to rotate the sector under the R/W head.

(*) Access time = Seek time + latency time + transfer time

 File-System Structure

(*) File structure

 - Logical storage unit

- Collection of related information

(*) File system resides on secondary storage (disks).

(*) File control block - storage structure consisting of information about a file.

(*) The logical file must be mapped into the physical storage media (disk)

Blocking

Packing and unpacking a number of logical records in a physical block.

Blocking factor: The number of logical record packed into a physical block.

Allocation Methods:

How files are stored in the disk.

Contiguous Allocation

(*) each file occupies a set of contiguous blocks on the disk.

(*) The file is defined by the address of the first block and its length.

(*) No seek is required to access block (b+1) after block b unless b is last block in

 the cylinder.

(*) Random and sequential access are supported easily .

(*) Problem : external fragmentation (holes) in the disk.

 Solution : Compaction.

(*) Major problem : Files cannot grow.

(*) How to find hole for the file: First fit , Best fit , Worst fit

 First fit and best fit have better performance.

Linked Allocation

(*) each file is a linked list of disk blocks

(*) blocks may be scattered anywhere on the disk.

(*) Allocate as needed, link together.

Example:

(*) Advantages:

 - Simple - need only starting address and size.

 - Free-space management system - no waste of space. No External fragmentation.

 - File can grow

(*) problem: address pointer waste

 major problem: Supports sequential access only.

Indexed Allocation

 - brings all pointers together into the index block.

(*) Need index table

(*) Random access in addition to sequential access.

(*) Dynamic access without external fragmentation, but have overhead of index

 block.

(*) Mapping from logical to physical in a file of maximum size of 256K words and

 block size of 512 words. We need only 1 block for index table.

Free-Space Management

(*) Bit map - vector (n blocks)

(*) Linked list (free list)

(*) counting : keep the address of the first free block and the number n of

 adjacent free blocks. This is best used with contiguous allocation.

(*) grouping : Store the addresses of n free blocks in the first free block.

Disk Scheduling

(*) Disk Requests - Track/Sector

 - Seek

 - Latency

- Transfer

(*) Minimize Seek Time

(*) Seek Time » Seek Distance

(*) A number of different algorithms exist.

 We illustrate them with a request queue (0-199).

 98, 183, 37, 122, 14, 124, 65, 67

 Head is currently serving 53 and just finished 40.

Algorithms:

FCFS

SSF

SCAN

LOOK

C-SCAN

C-LOOK

NOTE : For diagrams and more details see the text book.

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

diagram

