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Edges
1

-1 Edges are sharp change in brightness (discontinuities).
-1 Edges are significant local changes of intensity in an image.

7 Where do edges occur?

Actual edges: Boundaries between objects

Sharp change in brightness can also occur within object
m Reflectance changes
m Change in surface orientation

® [llumination changes. E.g. Cast shadow boundary
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Edge detection
]

-1 Edge detection is the process of finding edges and

contours in images

7 Why do we care about edges?

Important features can be extracted from the edges

Further processing of edges into lines, curves and circular arcs result in useful

features for matching and recognition.

Recover geometry and viewpoint
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Edge Descriptors

o
-1 Edge direction: perpendicular to the direction of

maximum intensity change (i.e., edge normal)

-1 Edge strength: related to the local image contrast along
the normal.

-1 Edge position: the image position at which the edge is
located.

¥ EDGE
EDGE NORMAL

DIRECTION
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Types of Edge
I

* Edges can be classified according to intensity profiles into
* Step Edge (ideal edge)
involves transition between two intensity levels over a distance of one pixel

Occur mostly in computer generated images

* Ramp Edge
The transition between two intensity levels occur over a distance that is greater
than one pixel

Appear in real images as a result of noise and focusing limitations of imaging
devices

* Roof Edge
Essentially, they represent blurred lines that pass through a region

abc
FIGURE 10.8
From left to right,

‘ models (ideal
representations) of

a step, a ramp, and

a roof edge, and

their corresponding
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Characteristics of an Edge

|deal edge is a step function in a certain direction

X

f(z) y -H\"-.. (b)
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Basic Edge Detection Methods

_8 |
* Detection of edges can be through the use of first-order

or second-order derivatives

* For the first derivative, the magnitude can be used to detect the presence
of an edge

* For the second derivative, the sign of the second derivative is used to
detect the presence of the edge

e | * |

Horizontal intensity
profile

First
derivative

Second
derivative

N
N
\
\
o
Zero crossing R
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Basic Edge Detection Methods
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Therefore, for detecting edges, we can apply zero crossing detection to the 2nd derlvatlve
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Edge Detection: derivatives behavior

ab
C

FIGURE 10.2

(a) Image.

(b) Horizontal
intensity profile
that includes the
isolated point
indicated by the
arrow.

(c) Subsampled
profile; the dashes
were added

for clarity. The
numbers in the
boxes are the
intensity values
of the dots shown
in the profile. The
derivatives were
obtained using
Eqgs. (10-4) for the
first derivative
and Eq. (10-7) for
the second.
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Edge Detection: derivatives behavior

We are concerned about the behavior of 15t and 2nd
derivatives in the following areas

Constant intensity
Onset and end of discontinuities (ramps and steps)
Intensity ramps

Properties of 1% derivative
Zero in areas of constant intensity
Nonzero at the onset of a step and intensity ramp
Nonzero along intensity ramp

Properties 2"d derivative
Zero in areas of constant intensity
Nonzero at the onset and end of a step and intensity ramp
Zero along intensity ramp
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Edge Detection: derivatives behavior

Notes

Examining the 1t and 2" derivatives plots shows that all of their
properties are satisfied

15t derivative produce thicker edges than 2nd derivatives

2"d derivatives have a stronger response to fine detail, such as
thin lines, isolated points, and noise.

2"d derivative produce double edge separated by a zero crossing

The sign of the 2"d derivative can be used to determine whether
a transition into an edge is from light to dark or dark to light.

15t derivative is commonly used in edge detection since:

Less sensitive to fine details.

The first derivative is often less sensitive to noise compared to the
second derivative.

Provides information about both the magnitude and direction of
intensity changes.

less computationally expensive to calculate.
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Edge detection methods

First order derivative
Roberts operator
Prewitt operator
Sobel operator
Cany edge detector (optimal algorithm)

Second order derivative
Laplacian of Gaussian

Difference of Gaussian
Marr-Hildreth (LoG-based) Edge Detector

STUDENTS-HUB.com Uploaded By: anonymous



Edge Detection Using Gradient (First Derivative)
14

e The gradient is a powerful tool in finding the strength and
direction of edges.The gradient at pixel (x,y) is defined as

o

G
x ox
v o =
' M ¥
&y |

* The magnitude of the gradient measures the strength of

the edge (maximum rate of change)

/s
M(x,y)= U f| (Gf]} VS |*‘Gx‘+‘Gy‘

* The direction of the gradient is perpendicular to the edge
direction

G
o =tan (==
(G )

X

vf=1[2 0l _I_ | KVf—[afaf}

_ o
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Edge Detection Using Gradient

15 |
-V
Gradient vector Grddient vector
) y
i iy i (1]
|/ al- 9P
Y | | Hdge|direction
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e All edge pixels have the same gradient magnitude and
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Edge Detection Using Gradient

=]
* Gradient Masks to compute gradient at Z;

e Discrete |t Derivative

f‘

==Ly - fxy) |- = =Sl y+D)-f(x») [1]1
1

= Ly -Ls :Zﬁ'zi

SJ\&:

Not efficient in detecting diagonal edges

* Roberts Cross-gradient Operator Z1 | z2 | Z3

-1 0 0 =% Z4 Z5 Z6
0|1 10 Z7 Z8 Z9
Horizontal Operator Vertical Operator

. Pixel z5 and its neighbours
G.(x,y)=29 —Zs

G,(x,y)=23 —2¢

* 2x2 masks are not as good as symmetric masks which capture

stupentdorpation from opposite sides around the center POINt ;1 1vaded By: anonymous



Edge Detection Using Gradient

* Gradient Masks to compute gradient at Z;

Z1 | z2 | Z3
e Prewitt Operators 24 | 25 | 26
Sh BRI e L T 1 z7 | 28 | 29
0 0 0 _ 1 0 1 Pixel z5 and its neighbours
i EgE e Bein | -1 0 | 1
Mask to Compute Gx Mask to Compute Gy
of of
G, =——=(Z; t Zgt Zy)— (£, T Z,+ Z3) Gy=_—=(Z3 t 2t 2Zy)— (2, + 24+ Z5)
cx ) cy
e Sobel Operators
-1 -2 -1 -1 0 | 1
O 0| O 2| 0 | 2
d HEH b SR -1 0 | 1
Mask to Compute Gx Mask to Compute Gy
of of
G, =——= (Z; +223+Zy)—(Z, +22,+Z,) G, =_—= (Zy +2Z6+2y)— (2, +22,+2Z;)
ox : ra

» They have better response than Prewitt masks and have better smoothing
- STUDENTEiHbEg@ssential to reduce the effect of noise Uploaded By: anonymous



Edge Detection Using Gradient
O

Gx computed using Gy computed using
Sobel Operator Sobel Operator

|Gx| + |Gy] Angle of Gradient
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Edge Detection Using Gradient

* Gradient Masks to compute gradient at Z,

* Prewitt and Sobel masks shown before give the
strongest response for horizental and vertical edges. Ve
can modify these masks to obtain better response for
diagonal edges Prewitt Operators

b R ah Shlag & -1/-1]|0
-1 0| 1 -1
-1 (-1 0 0O 1)1

Prewitt Diagonal Masks

O| 1) 2 -2-10
-1 0 1 = O 51
-2 -1 0 0|1
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Edge Detection Using Gradient
_ 20 |
* Example - continued

e The Sobel masks used in the previous slides were those that
have stronger response for vertical and horizontal directions.
How about diagonal directions?

S@wmq{quw_Qmonal Sobel Oprator (+45) Gx computed using Diagonal SQQB'I&E’BE’&OBSﬁQnonymous



Edge Detection Using Gradient
N

* Example = continued
* Note that in the previous slide, the edges of the wall bricks

were successfully detected. However, this might not be
desirable if we are interested in the main edges

* We can eliminate such small edges (which might considered
as noise) by
Smoothing the image before computing the gradient

Thresholding the gradient image
Smoothing followed by thresholding

® 'y
a5

Gradient Image (|Gx| + |Gy|) without Gradient Image (|Gx| + |Gy|) after the onginal
STUDENTS-HUB.cé&#foothing image was smoothed by 5x5 psisladed By: anonymous



Edge Detection Using Gradient

 Example - continued

[ 3 ¥t - TN - LE o | | 1
! W o [ haa K'_'A.,_": = e ‘r ! :‘ | | | I I\
Gradient Image (|Gx| + |Gy|) Gradient Image (|Gx| + |Gy|) after the original
without smoothing image was smoothed by 5x5 mask

. - | - ||= _|’ _ o = &= (—\_.!_ -

H | ! . | i | i . | : |
Thresholded Gradient Image Thresholded Gradient Image (better
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Edge Detection Example

d"'/

//-ﬁ AL

Prewitt (C) (d)
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Edge detection using Laplacian operator

m Detect edges by considering second derivative

) 0 flx,y) 0 flx,y
i

= Isotropic (rotationally invariant) operator
m Zero-crossings mark edge location

ﬂ Detect
Zero crossing

Edge profile f{x) () ()
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Edge detection using Laplacian operator

When we consider an image function of two variables, f(x,y), at which time we
will dealing with partial derivatives along the two spatial axes.

The second derivative (Laplacian) in 2-D is defined as

2 2
vef 9 T(Xy) 0°1(Xy)

aXZ 8y2
If we define sz
7 F(x+Ly)+ f(x=Ly)-2f(x,y)
X
0° f
¥ =f(X,y+1)+ f(x,y—-1)-21(x,y)
Then

Vit =[f(x+1,y)+ f(x=1Y)
STUDENTS-HUB.com + f (X’ y +1) + f (X’ y _]'Qpﬁaoﬂd-%&%bhyr);ljs



Edge detection using Laplacian operator

%]
* The Laplacian can be implemented as a filter mask

e Or
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Edge detection using Laplacian operator

o 1 o
1 -4 1
o 5 o
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Comparisons

Prewi

STUDENTS-HUB.com



Edge Detection with the Existence of Noise
25

O

First column: 8-bit images with values in
the range [0,255], and intensity profiles
of a ramp edge corrupted by Gaussian
noise of zero mean and standard
deviations of 0.0, 0.1, 1.0, and 10.0
intensity levels, respectively.

Second column: First-derivative images
and intensity profiles.

Third column: Second-derivative images
and intensity profiles.
Notes:

The second derivative is more sensitive
to noise.

It would be difficult indeed to detect
edges as noise level increase.
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Edge Detection with Noise
_ 30 |

H-44ﬁ

---’+$

Orlgmal Laplacian Sobel X+Y
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Solution: Smooth First

Sigma = 50

-
Signal

>
Kernel

1 |
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o S O S 1
g
=
h/ * f E ................................................................................................... ]
SL..o— L — R S N
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9 2 ' ' : : 5 ! ' 5 '
ko] : :
9 (hxf) % 5 5
B 2
D[}_ ........ : | i G —

] 1 1 1 I
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Derivative theorem of convolution

Convolve the image with the derivative of the filter can saves us

one operation: %(h*f) — (%h) *f

Sigma = 50
T

Signal

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1800 1800 2000

............................................................................................

Kernel

I ! ! ! ! ! ! ! !
0 200 400 600 800 1000 1200 1400 1800 1800 2000

Convolution

(ZM*f

] | | | |
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Derivative of Gaussian filter

0G,(x x
B 26, (au)
L Oz
A
-ﬁf!ﬂ"ﬂ‘ \\‘v
JI:;Z.C ’ ‘\ v 1 -1 O 1
£ 1 1
€ B, * L 0 -1]= v gl2]0]2
2D-gaussian
0G,(z,y) y
£ = __GG(way)
AU Jy o?
/|
T
i 1
s —
!:,,:;,:,:,‘,u * 10 = 1 1121
-1 g]10]0]0
C e e -11-2 | -1

[in
LA
%’?ﬁ'f%""!":““
S

y - derivative

2D-gaussian
The standard definition of the Sobel operator omits the 1/8 term

— doesn’t make a difference for edge detection
STUDENTS-HUB.conthe 1/8 term is needed to get the right gradient valueyploaded By: anonymous



Laplacian of Gaussian

82
Look for zero-crossings of (Wh) * f

Sigma = 50

] ] ] ] ] ] ] ] ]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

2 LA WA ........ |
a—h operator

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Qv

&
I\J
S“
N’
>
~~

Cc:rwglutmn
;

( : : : :

] ] ] ]
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Laplacian of Gaussian

2ro2 B - V2G(2,y;0) = (M B 3) o gi0)

ab
c d

FIGURE 10.21

(a) 3-D plot of
the negative of the
LoG.

(b) Negative of
the LoG
displayed as an
image.

(c) Cross section
of (a) showing
Zero crossings.

(d) 535 kernel
approximation to
the shape in (a).
The negative

of this kernel 0 -1 | -2 -1 0
would be used in

practice. -1 - 16 -2 1

Zero crossing —\ /— Zero crossing

NV N~ 0 | 0 | -1] 0 | ¢
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1an

Laplacian of Gauss

Zero crossings of A*S

1*(xg)

Uploaded By: anonymous

STUDENTS-HUB.com



2D Edge Detection Filters

Gaussian

i

7

Iy
Al

A L,
et
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Derivative of Gaussian

Laplacian of Gaussian
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Laplacian of Gaussian vs Derivative of Gaussian

Zero-crossing

Laplacian of Gaussian filtering Derivative of Gaussian filtering
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Laplacian of Gaussian vs Derivative of Gaussian

Characteristic

Type of derivative filter

Convolution Kernels

Sensitivity to fine details
Robustness to noise

Type of detector

Best suited for

Computational expense

Edge localization

Parameter Tuning

STUDENTS-HUB.com

Laplacian of Gaussian (LoG)

Second-order derivative filter

Single kernel

More sensitive
Less robust
Zero-crossing detector

Edge detection in images with
fine details

More computationally
expensive

Better edge localization

Standard deviation

Derivative of Gaussian (DoG)
First-order derivative filter

Use separate kernels for
horizontal and vertical
gradients

Less sensitive
More robust
Peak detector

Edge detection in noisy
images

Less computationally
expensive

Less precise localization

Standard deviation
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Designing an optimal edge detector

Criteria for an “optimal” edge detector:

Good detection: the optimal detector must minimize the probability of false

positives (detecting spurious edges caused by noise), as well as that of false

negatives (missing real edges)

Good localization: the edges detected must be as close as possible to the

true edges

Single response: the detector must return one point only for each true edge

point; that is, minimize the number of local maxima around the true edge

True Poor robustness Poor Too many

STUDENTS-HUB.com edge to noise localization respeisksaded By: anonymous



Canny edge detector

The Canny edge detector is an edge detection operator
that uses a multi-stage algorithm to detect a wide

range of edges in images. It was developed by John F.
Canny in 1986.

This is probably the most widely used edge detector in

computer vision
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Canny Algorithm

The Process of Canny edge detection algorithm can be
broken down to 5 different steps:

Apply Gaussian filter to smooth the image in order to
remove the noise

Find the intensity gradients of the image

Apply non-maximum suppression to get rid of spurious
response to edge detection

Apply double threshold to determine potential edges

Track edge by hysteresis: Finalize the detection of edges
by suppressing all the other edges that are weak and not
connected to strong edges.
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Canny Algorithm — Step 1

Since edge detection is susceptible to noise in the
image, first step is to remove the noise in the image
with a 5x5 Gaussian smoothing filter.

o 5 12 15 12 5
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Canny Algorithm — Step 2

The second step is to use Sobel masks to find the edge

gradient strength and direction for each pixel.
The magnitude, or edge strength, of the gradient is then
approximated using the formula: |G| = |Gx| + | Gy]|

110 | +1 +1 | +2 | +1

200 |42 0 10 |0

110 | +1 -1 -2 | -1
Gx Gy

The direction of the edge is computed using the gradient in
the x and y directions

gli, j]1=tan " (Gy/Gx)

Uploaded By: anonymous
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Canny Algorithm — Step 3

Gradient Orientation

Reduce angle of Gradient 9]i,j] to one of the 4 sectors

Check the 3x3 region of each M[i,j]

Any edge direction falling within the yellow range (0 to 22.5 &
157.5 to 180 degrees) is set to 0 degrees. Any edge direction falling
in the green range (22.5 to 67.5 degrees) is set to 45 degrees. Any
edge direction falling in the blue range (67.5 to 112.5 degrees) is
set to 90 degrees. And finally, any edge direction falling within the
red range (112.5 to 157.5 degrees) is set to 135 degrees.

900

450
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Canny Algorithm — Step 4

Non-maximum suppression is an edge thinning technique.
The edge extracted from the gradient value is still quite blurred.

Non-maximum suppression can help to suppress all the gradient
values to 0 except the local maximal, which indicates location
with the sharpest change of intensity value.

The algorithm for each pixel in the gradient image is:

Compare the edge strength of the current pixel with the edge
strength of the pixel in the positive and negative gradient directions.

If the edge strength of the current pixel is the largest compared to the
other pixels in the mask with the same direction (i.e., the pixel that is
pointing in the y direction, it will be compared to the pixel above and
below it in the vertical axis), the value will be preserved. Otherwise,

the value will be suppressed.
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Canny Algorithm — Step 4

_ 47 |
7 Non-maximum Suppression

For each pixel (i,j):
= Find the direction d,, which best approximates the direction

= If M[i,j] is smaller than at least one of its two neighbors along d, assign
I[i,j]=0; otherwise assign I[i,j]=M[i,j]

|VS|(x,y) if |VS|(x,y) > |AS|(x',y')
_ noom x’ and x” are the neighbors of x along
M(x,y) &|AS|(x,y)>|AS|(x 4 ) normal direction to an edge
0 otherwise

[7G|(x,y) is the gradient at pixel (X, y)

STUDENTS-HUB. Uploaded By: anonymous



Canny Algorithm — Step 4

Non-maximum Suppression: an Example

1

O 0 0 O

1
1

3 0 O
O 0 2

2
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Canny Algorithm — Step 4

Non-maximum Suppression: an Example

After
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Canny Algorithm — Step 5

Hysteresis Thresholding

The image output by NONMAX- SUPPRESSION I[i,j] still contains the local
maxima created by noise. How do we get rid of these?
Reduce number of false edges by applying a threshold T

All values below T are changed to 0

Selecting a good values for T is difficult

Some false edges will remain if T is too low

Some edges will disappear if T is too high

Some edges will disappear due to softening of the edge contrast by shadows
Define two thresholds: Low and High

If less than Low, not an edge

If greater than High, strong edge

If between Low and High, weak edge

Consider its neighbors iteratively then declare it as “edge pixel” if it is connected to an

‘strong edge pixel” directly or via pixels between Low and High
STUDENTS-HUB.com Uploaded By: anonymous



Canny Algorithm — Step 5

Hysteresis Thresholding:
Double Thresholding

Two threshold values, T, and T,, are applied to I[i,j].
Here T, < T,
Two images in the output

The image from T, contains fewer edges but has gaps in the
contours

The image from T, has many false edges
Combine the results from T and T,
Link the edges of T, into contours until we reach a gap

link the edge from T,, with edge pixels from a T, contour untila T,
edge is found again
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Canny Algorithm — Step 5

Hysteresis Thresholding

T, =2 T, =1
000O0O0O0TO0 3 00 0O0O0O0O0 3
0 0 0 0 .3/0 0 0 0 0 1 3 0
0012.2 ONgapsMOOO
0030m0*filledMO()ooo
0¢ 200000 MO 3200000
013000000 '103000T10°1
01300 0 0 2 0 03001020

A T,, contour has pixels along the green arrows
Linking: search in a 3x3 of each pixel and connect the
pixel at the center with the one having greater value

Search in the direction of the edge (direction of GradientJ
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Hysteresis thresholding example

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)
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Canny Algorithm — Step 5

Hysteresis Thresholding

Gaussian
smoothing

(a) Hysteresis thresholding,
upper level = 40,
lower level = 10

(b) Uniform thresholding,

level = 40

(c) Uniform thresholding,
level = 10

STUDENTS-HUB.com
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Canny Algorithm

Stages in Canny edge detection - Example

(a) Gaussian (b) Sobel edge (c) Mon-maximum (d) Hysteresis
smoothing detection suppression thresholding
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Effect of Gaussian Kernel (smoothing)

o

[
7 o
. K
=,
L
!iw"l !
:‘?“l-._'l

)

I
L

Ty

original Canny with 0 = 1 Canny with o0 = 2

The choice of o depends on desired behavior

e large o detects large scale edges
 small o detects fine features

STUDENTS-HUB.com Uploaded By: anonymous



Canny Edge Detection Summery

The performance of the Canny algorithm depends heavily on
the adjustable parameters, , which is 6 and the threshold
values, ‘T1’ and ‘T2".

The bigger the value for §, the larger the size of the Gaussian filter
becomes. This implies more blurring, necessary for noisy images, as
well as detecting larger edges.

However, the larger the scale of the Gaussian, the less accurate is the
localization of the edge.

The user can tailor the algorithm by adjusting these parameters to
adapt to different environments.

Canny’s edge detection algorithm is computationally more expensive
compared to Sobel, Prewitt and Robert’s operator. However, the
Canny’s edge detection algorithm performs better than all these
operators under almost all scenarios
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Canny Edge Detection - Examples

m— N




Edge Detection Comparison Example

(@) Original Image
with Noise

(b) Sobel

(c) Robert

(d) Canny
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Edge Detection Comparison Example

iInput Image Roberts

Laplacian of Gaussian(LOG) Canny
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Edge Detection Other Approaches

SOFT COMPUTING APPROACHES

Fuzzy based Approach
Genetic Algorithm Approach
Neural Network Approach — Deep Learning

Soft computing approaches, are applied on a real
life example image of nature scene
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Edge Detection Other Approaches

Fuzzy Genetics Neural Network
STUDENTS-HUB.com Uploaded By: anonymous



Edge Detection with Deep Learning

s -
o We will revisit edge 1 _ BSDS500

detection after Deep
Learning tutorial
lectures BN
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= = = [F=539] Sobel (1968)
= = = [F=.483] Roberts (1965)
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