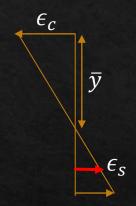
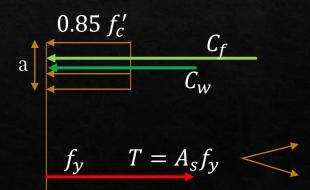


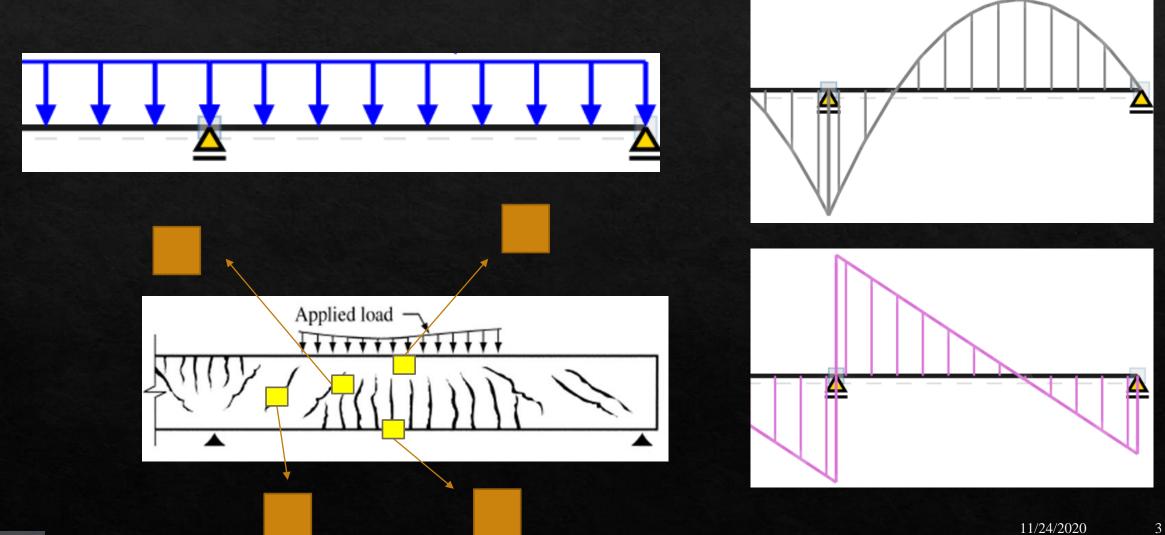
Reinforced Concrete Design I ENCE 335 Shear Design

Dr. Khalil M. Qatu


Previously on Design I


We only designed for the internal Bending moment

♦ Rectangular sections (Single, Double) reinforced.

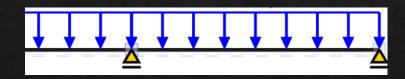

 \diamond T-sections

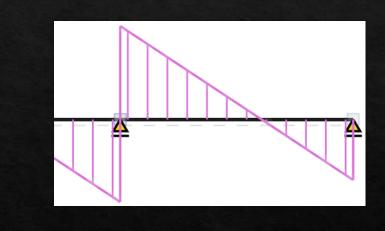
- ♦ Arbitrary sections
 - $\, \diamond \,$ In all cases we relied on stress and strain distributions
 - ♦ We need to comply with ACI code requirements for
 - ♦ Minimum spacing between bars (Width)
 - ♦ Minimum and maximum reinforcement ratios (maintain a min 0.004 tension strain)
 - ♦ Minimum depth

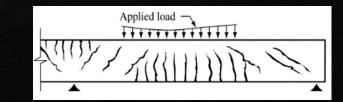
Cracks in Reinforced beams

Cracks in Reinforced beams

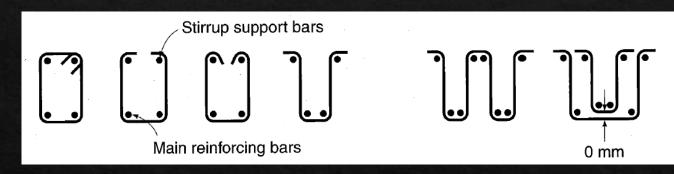
Shear Cracks

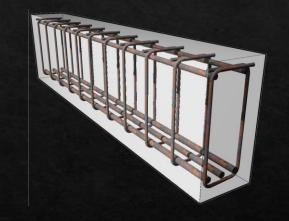

♦ Shear forces are typically maximum near supports


 \Leftrightarrow This not always the case, depends on the loading pattern

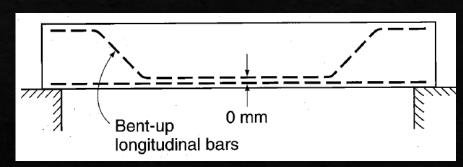

♦ Shear stress distribution in the cross-section ?? (Mechanics)

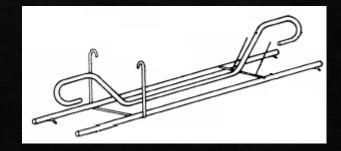
♦ Where is the critical section in concrete ?? (Mohr Circle)




Shear reinforcement

♦ We need to put the steel in a way to bridge these shear cracks


What steel area resist shear stress ???



♦ Bent Bars

Shear resistance components

♦ Concrete resistance for shear

$$V_c = 0.17 \sqrt{f_c'} b_w d$$

Shear reinforcement (steel stirrups)

$$V_{S} = \frac{A_{v}f_{y}d}{S} \dots V_{S} = \frac{A_{v}f_{y}d (\sin \alpha + \cos \alpha)}{S}$$
Where : A_{v} : steel area resisting shear stress
 f_{y} : yeild stress of steel
 d : effective dept
 S : Spacing between reinforcement
 α : angle of bent bars

ACI Code requirements

- When do we need shear reinforcement ??
 - ♦ If $V_u \leq \frac{\phi V_c}{2} \rightarrow \text{No reinforcement is needed}$
 - ♦ If $\phi V_c > V_u \ge \frac{\phi V_c}{2}$ → Minimum reinforcement is needed (Except ??)–
 - ♦ In general, we choose the stirrups diameter and control the spacing between them
 - \Leftrightarrow This means, Minimum shear reinforcement \rightarrow max spacing

$$S_{max} = \max \begin{cases} \frac{A_v f_y}{0.062\sqrt{f_c'}b_w} \le \frac{A_v f_y}{0.35b_w} \\ \frac{d}{2} \dots \dots (\frac{3}{4} d \text{ for bent bars }) \\ 600 \text{ mm} \end{cases}$$

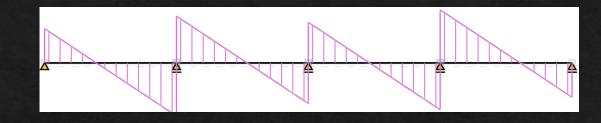
Table 9.6.3.1—Cases where $A_{v,min}$ is not required if $V_u \leq \phi V_c$				
Beam type	Conditions			
Shallow depth	$h \le 250 \; \mathrm{mm}$			
Integral with slab	$h \le \text{greater of } 2.5t_f \text{ or } 0.5b_w$ and $h \le 600 \text{ mm}$			
Constructed with steel fiber-reinforced normalweight concrete conforming to 26.4.1.5.1(a), 26.4.2.2(i), and 26.12.7.1(a) and with $f_c' \leq 40$ MPa	$h \le 600 \text{ mm}$ and $V_u \le 0.17 \phi \sqrt{f_c} b_u d$			
One-way joist system	In accordance with 9.8			

♦ If $\phi V_c > V_u$ → We Need to Calculate the required spacing for reinforcement (from previous slide) and compare it with max spacing

♦ If
$$V_s > 2V_c = 0.33\sqrt{f'_c}b_w d$$
 → The max spacing is divided by 2

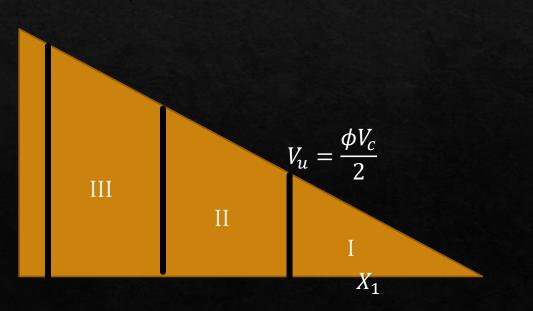
ACI Code requirements

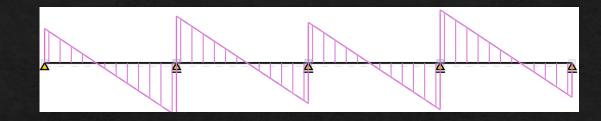
Minimum spacing between stirrups: recommended not less than 100mm


 \Rightarrow Strength reduction Factor: $\varphi = 0.75$

 V_u : shear at distance d from the face of support $V_{u@d}$

♦ If $V_s > 4V_c = 0.66\sqrt{f'_c}b_w d$ → Section geometry must be increased


Act	ion or structural element	¢	Exceptions
(a)	Moment, axial force, or combined moment and axial force	0.65 to 0.90 in accordance with 21.2.2	Near ends of pretensioned members where strands are not fully developed, ϕ shall be in accordance with 21.2.3.
(b)	Shear	0.75	Additional requirement are given in 21.2.4 for structures designed to resist earthquake effects
(c)	Torsion	0.75	—
(d)	Bearing	0.65	—
(e)	Post-tensioned anchorage zones	0.85	—
(f)	Brackets and corbels	0.75	—
(g)	Struts, ties, nodal zones, and bearing areas designed in accordance with strut-and-tie method in Chapter 23	0.75	_
(h)	Components of connections of precast members controlled by yielding of steel elements in tension	0.90	_
(i)	Plain concrete elements	0.60	—
(j)	Anchors in concrete elements	0.45 to 0.75 in accordance with Chapter 17	_

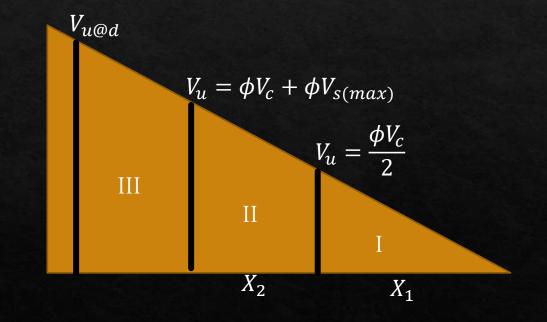

- \Rightarrow Draw shear diagram \rightarrow and get a triangle (if it is a triangular shape)
 - ♦ Since shear is changing, we need to change the spacing accordingly
 - ♦ We divide the shear diagram into three regions
 - ♦ Region I: No shear reinforcement is needed

 \diamond We need to find where on the shear diagram $V_u = \frac{\phi V_c}{2}$

C

Summary

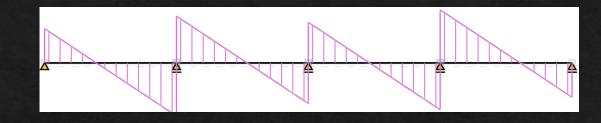
 \Rightarrow Draw shear diagram \rightarrow and get a triangle (if it is a triangular shape)


- \diamond We divide the shear diagram into three regions
 - ♦ Region II: Max spacing is needed
 - ♦ For this we need to calculate the shear force to be carried by steel

$$V_s = \frac{V_{u@d} - \phi V_c}{\phi}$$

♦ Compare
$$V_s$$
 with $2V_c = 0.33\sqrt{f'_c}b_w d$

- ♦ $V_s \le 2V_c = 0.33\sqrt{f'_c}b_w d$ → The max spacing remains the same
- * $V_s > 2V_c = 0.33\sqrt{f'_c}b_w d \rightarrow$ The max spacing is divided by 2
- ♦ $V_s > 4V_c = 0.66\sqrt{f'_c}b_w d \rightarrow$ Change Section geometry
- ♦ Calculate the shear force stirrups can support with max spacing


$$\phi V_{s(max)} = \frac{\phi A_v f_y d}{S_{max}}$$

♦ Calculate the shear force the section can support with max spacing and locate it on the shear diagram

$$V_u = \phi V_c + \phi V_s$$

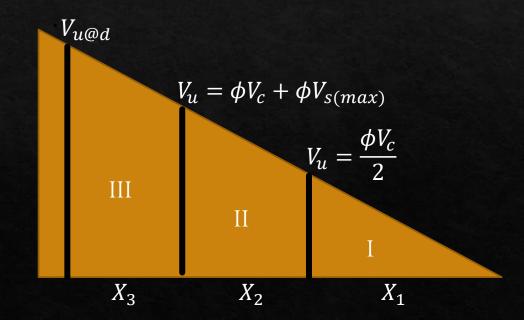
 \Rightarrow Draw shear diagram \rightarrow and get a triangle (if it is a triangular shape)

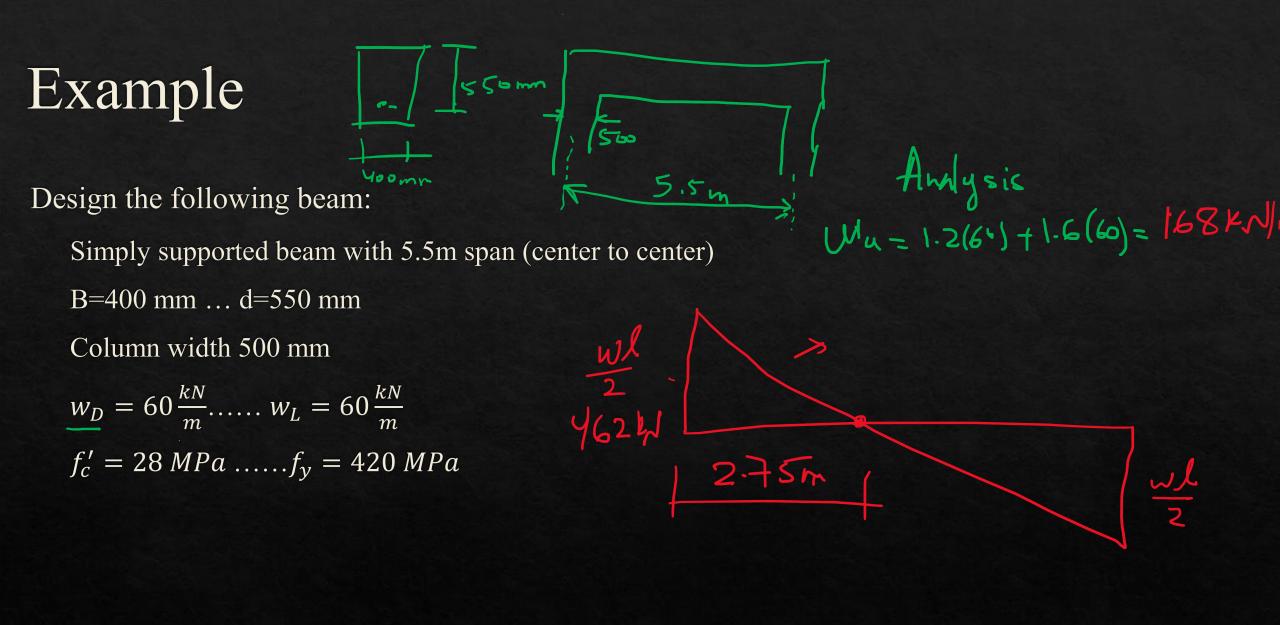
♦ We divide the shear diagram into three regions

Region III: Specially designed

 \diamond For this we need to calculate the shear force to be carried by steel

$$V_s = \frac{V_{u@d} - \phi V_c}{\phi}$$


♦ Calculate the spacing required to support the shear force


$$S = \frac{\phi A_v f_y d}{V_s}$$

♦ Calculate the total # of stirrups needed

$$\# stirrups = \frac{X_3}{S} + \frac{X_2}{S_{max}} + 1$$

Total # of stirrups for the beam ????

